Journal for Geometry and Graphics Volume 23 (2019), No. 2, 179–182.

Three-Dimensional Viviani Theorem on a Tetrahedron

Hidefumi Katsuura

Department of Mathematics and Statistics, San Jose State University One Washington Square, San Jose, CA 95192, USA email: hidefumi.katsuura@sjsu.edu

Abstract. A theorem of Viviani states that the sum of the distances from an inside point to the sides of a triangle is constant if, and only if the triangle is equilateral. It has a more general version that deals with a point anywhere in the plane. We will give a theorem similar to this general Viviani Theorem on a tetrahedron.

Key Words: three-dimensional Viviani Theorem, equifacial tetrahedron, isosceles tetrahedron.

MSC 2010: 51N20, 52B10

1. Introduction

A theorem of Vincenzo VIVIANI (1622–1703) states that the sum of the distances from an inside point to the sides of a triangle is constant if, and only if the triangle is equilateral. But it can be improved to deal with a point anywhere in the plane.

Notation 1. Let ABC be a triangle. Let P be an arbitrary point on the plane. Then let $\Delta(P; AB)$ be the distance between the point P and the line AB if P and C are on the same side of the line AB. And if P and C are on the opposite sides of the line AB, $\Delta(P; AB)$ is the negative of the distance between the point P and the line AB.

Viviani Theorem: The triangle ABC is equilateral if, and only if

 $\Delta(P;AB) + \Delta(P;BC) + \Delta(P;CA)$

is constant for any point P in the plane.

KAWASAKI et al. in [2] proved that the sum of the distances from an inside point to the sides of a regular tetrahedron is constant. We will prove a theorem similar to the above more general Viviani Theorem on a tetrahedron.

ISSN 1433-8157/\$ 2.50 © 2019 Heldermann Verlag

2. The main result

180

We will prove our main theorem using two lemmas.

Definition 1. A tetrahedron ABCD is said to be *equifacial* (or *isosceles*) if AB = CD, AC = BD, and AD = BC.

The next lemma gives us a characterization of an equifacial tetrahedron.

Lemma 1. If ABCD is an equifacial tetrahedron, then there is a rectangular box Ω that contains an equifacial tetrahedron ABCD so that the six edges of the tetrahedron ABCD are diagonals of six faces of Ω (see Figure 1). The rectangular box Ω is said to diagonally embed the tetrahedron ABCD.

Conversely, the diagonally embedded tetrahedron in a rectangular box is equifacial.

Figure 1: An equifacial tetrahedron diagonally embedded in a rectangular box.

Proof. Suppose ABCD is an equifacial tetrahedron. Let

$$b = \sqrt{\frac{1}{2} \left[-(AB)^2 + (AC)^2 + (AD)^2 \right]}, \quad c = \sqrt{\frac{1}{2} \left[(AB)^2 - (AC)^2 + (AD)^2 \right]},$$

and

$$d = \sqrt{\frac{1}{2} \left[(AB)^2 + (AC)^2 - (AD)^2 \right]}.$$

Let $\hat{A}\hat{A}'\hat{B}\hat{B}'\hat{C}\hat{C}'\hat{D}\hat{D}'$ be a rectangular box such that a.) $(\hat{A}, \hat{A}'), (\hat{B}, \hat{B}'), (\hat{C}, \hat{C}'), (\hat{D}, \hat{D}')$ are pairwise diagonally opposite vertices, and b.) $\hat{A}\hat{B}' = b, \hat{A}\hat{C}' = c, \hat{A}\hat{D}' = d.$ Then,

$$c^{2} + d^{2} = (\hat{A}\hat{B})^{2}, \quad b^{2} + d^{2} = (\hat{A}\hat{C})^{2}, \quad c^{2} + b^{2} = (\hat{A}\hat{B})^{2}$$

so that $\hat{A}\hat{A}'\hat{B}\hat{B}'\hat{C}\hat{C}'\hat{D}\hat{D}'$ is a $b \times c \times d$ box. Moreover, we have $AB = \hat{A}\hat{B}$, $AC = \hat{A}\hat{C}$, $AD = \hat{A}\hat{D}$. This shows that ABCD and $\hat{A}\hat{B}\hat{C}\hat{D}$ are congruent equifacial tetrahedra. If $\hat{A}\hat{B}\hat{C}\hat{D}$ is not identical to ABCD, it is a mirror image of ABCD. In this case, the tetrahedron $\hat{A}\hat{B}\hat{C}\hat{D}$ is identical to ABCD.

We leave the verification of the converse to the readers.

Notation 2. Let ABCD be a tetrahedron. Let P be an arbitrary point in the space. The plane ABC divides the space into two regions. If P and D are on the same side of the plane ABC, let $\Delta(P; ABC)$ be the distance between the point P and the plane ABC. And if P and D are on the opposite side of the plane ABC, let $\Delta(P; ABC)$ be the negative of the distance between the plane ABC, let $\Delta(P; ABC)$ be the negative of the distance between the plane ABC.

Lemma 2.

- (1) A tetrahedron ABCD is equifacial if, and only if it can be represented by $A = (\alpha, \beta, \gamma)$, $B = (-\alpha, -\beta, \gamma), C = (\alpha, -\beta, -\gamma), and D = (-\alpha, \beta, -\gamma)$ for some three positive numbers α, β, γ .
- (2) Let P = (x, y, z) be an arbitrary point in the space. Suppose ABCD is an equifacial tetrahedron. Using the notation in (1), we have

$$\Delta(P;ABC) = \frac{\alpha\beta\gamma - x\beta\gamma + \alpha\gamma\gamma - \alpha\beta z}{\sqrt{(\beta\gamma)^2 + (\alpha\gamma)^2 + (\alpha\beta)^2}}, \quad \Delta(P;ABD) = \frac{\alpha\beta\gamma + x\beta\gamma - \alpha\gamma\gamma - \alpha\beta z}{\sqrt{(\beta\gamma)^2 + (\alpha\gamma)^2 + (\alpha\beta)^2}},$$
$$\Delta(P;ACD) = \frac{\alpha\beta\gamma - x\beta\gamma - \alpha\gamma\gamma + \alpha\beta z}{\sqrt{(\beta\gamma)^2 + (\alpha\gamma)^2 + (\alpha\beta)^2}}, \quad \Delta(P;BCD) = \frac{\alpha\beta\gamma + x\beta\gamma + \alpha\gamma\gamma + \alpha\beta z}{\sqrt{(\beta\gamma)^2 + (\alpha\gamma)^2 + (\alpha\beta)^2}}.$$

Proof. (1): Let α, β, γ be positive numbers. Then the eight points $A = (\alpha, \beta, \gamma), A' = (-\alpha, -\beta, -\gamma), B = (-\alpha, -\beta, \gamma), B' = (\alpha, \beta, -\gamma), C = (\alpha, -\beta, -\gamma), C' = (-\alpha, \beta, \gamma), and <math>D = (-\alpha, \beta, -\gamma), D' = (\alpha, -\beta, \gamma)$ form vertices of a rectangular box. So Lemma 1 implies the part (1).

(2): The plane ABC has an equation $\alpha\beta\gamma - \beta\gamma x + \alpha\gamma y - \alpha\beta z = 0$. Since $\alpha\beta\gamma > 0$, the side of the plane ABC that contains the origin is given by the inequality $\alpha\beta\gamma - x\beta\gamma + \alpha y\gamma - \alpha\beta z > 0$. Since the origin is the centroid of the tetrahedron ABCD and is inside of the tetrahedron ABCD, the origin and the point D are on the same side of the plane ABC. This shows that

$$\Delta(P; ABC) = \frac{\alpha\beta\gamma - x\beta\gamma + \alpha y\gamma - \alpha\beta z}{\sqrt{(\beta\gamma)^2 + (\alpha\gamma)^2 + (\alpha\beta)^2}}$$

since

$$\frac{|\alpha\beta\gamma - x\beta\gamma + \alpha y\gamma - \alpha\beta z|}{\sqrt{(\beta\gamma)^2 + (\alpha\gamma)^2 + (\alpha\beta)^2}}$$

is the distance from an arbitrary point P = (x, y, z) to the plane ABC.

An equation of the plane ABD is given by $\alpha\beta\gamma + x\beta\gamma - \alpha y\gamma - \alpha\beta z = 0$, the plane ACD is $\alpha\beta\gamma - x\beta\gamma - \alpha y\gamma + \alpha\beta z = 0$, and the plane BCD is $\alpha\beta\gamma + x\beta\gamma + \alpha y\gamma + \alpha\beta z = 0$. So the other cases are left to the readers.

Note. In Lemma 2(2), at most one of $\Delta(P; ABC)$, $\Delta(P; ABD)$, $\Delta(P; ACD)$, $\Delta(P; BCD)$ is a negative number.

Theorem 1 (Three-Dimensional Viviani Theorem).

The tetrahedron ABCD is equifacial if, and only if

$$\Delta(P; ABC) + \Delta(P; ABD) + \Delta(P; ACD) + \Delta(P; BCD)$$

is constant for any point P in the space.

Proof. Suppose a tetrahedron *ABCD* is equifacial. By Lemma 3, we assume $A = (\alpha, \beta, \gamma)$, $B = (-\alpha, -\beta, \gamma)$, $C = (\alpha, -\beta, -\gamma)$, and $D = (-\alpha, \beta, -\gamma)$ for some positive numbers α, β, γ . Let P = (x, y, z) be an arbitrary point. Then we have

$$\begin{split} &[\Delta(P;ABC) + \Delta(P;ABD) + \Delta(P;ACD) + \Delta(P;BCD)] \cdot \sqrt{(\beta\gamma)^2 + (\alpha\gamma)^2 + (\alpha\beta)^2} \\ &= (\alpha\beta\gamma - x\beta\gamma + \alpha\gamma\gamma - \alpha\beta z) + (\alpha\beta\gamma + x\beta\gamma - \alpha\gamma\gamma - \alpha\beta z) \\ &+ (\alpha\beta\gamma - x\beta\gamma - \alpha\gamma\gamma + \alpha\beta z) + (\alpha\beta\gamma + x\beta\gamma + \alpha\gamma\gamma + \alpha\beta z) \\ &= 4\alpha\beta\gamma. \end{split}$$

Therefore, $\Delta(P; ABC) + \Delta(P; ABD) + \Delta(P; ACD) + \Delta(P; BCD)$ is a constant.

Conversely, suppose $\Delta(P; ABC) + \Delta(P; ABD) + \Delta(P; ACD) + \Delta(P; BCD)$ is constant for any *P*. Then by replacing *P* by *A*, *B*, *C* or *D*, we have

$$\Delta(D; ABC) = \Delta(C; ABD) = \Delta(B; ACD) = \Delta(A; BCD).$$

This shows that the four altitudes of the tetrahedron ABCD from any four vertices are the same. Since the volume of a tetrahedron is $\frac{1}{2}$ base area height, the areas of the four faces of the tetrahedron must be the same. Theorem 306 of [1] states that a tetrahedron is equifacial if, and only if the areas of the four faces are the same. This proves that the tetrahedron ABCD is equifacial.

Corollary 1.1. The tetrahedron is equifacial if, and only if the sum of the distances from an inside point to the faces of a tetrahedron is constant.

References

- [1] N. ALTSHILLER-COURT: Modern Pure Solid Geometry. Macmillan Co., New York 1935.
- [2] K. KAWASAKI, Y. YAGI, K. YANAGAWA: On Viviani's Theorem in Three Dimension. Math. Gaz. 89, 283–287 (2005).

Received October 24, 2018; final form November 11, 2019