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Abstract. We aim at presenting material on conics, which can be used to for-
mulate, e.g., GeoGebra problems for high-school and freshmen maths courses at
universities. In a (real) projective plane two pencils of lines, which are projectively
related, generate, in general, a conic. This fact due to Jakob STEINER [4] allows
to construct points of a conic given by, e.g., 5 points. Hereby the problem of
transfering a given cross-ratio of four lines of the first pencil to the corresponding
ones in the second pencil occurs. To solve this problem in a graphically simple
and uniform way we propose a method, which uses the well-known fact that a pro-
jective mapping from one line (or pencil) to another always can be decomposed
into a product of perspectivities. By extending the presented graphical methods,
we also construct tangents and osculating circles at points of a conic. The cal-
culation following the graphic treatment delivers a parametrisation of conic arcs
applicable also for so-called 2" order biarcs. Even so the topic and its theoretical
background is a matter of the 19'" century, it is not at all well-known nowadays,
as also is stated in [3]. Some of the presented constructions might also be new.
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conic

MSC 2010: 51M15, 51N15

1. A simple linear procedure delivering a conic

In the plane of visual perception 7, let two line-elements (A, p), (B, q¢) and a point C' be given
(see Figure 1). An arbitrary line x through C intersects p at P and ¢ at (). The lines AQ
and BP intersect in a point X, which runs through a conic ¢, if x runs through the pencil at
C. Obviously, ¢ passes through the intersection point S of p and ¢ and touches AC resp. BC
at A resp. B. Let us call this the PP-construction of c.
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Figure 1: If x runs through the pencil at C, Figure 2: Euclidean interpretation of the
X runs along the conic ¢ projective coordinate frame

We see that only connections of points and intersections of lines are needed. Thus, for
the place of action only a projective plane 7 is needed, which, because of the occurrence of
a conic, must be coordinized by a commutative field F with char F # 2. As we point to
high-school applications, we restrict ourselves to the field 7 = R.

For the calculations, we use projective coordinates based on the frame

S=(1,0,0R, A=(0,1,0)R, B=(0,0,1)R, C' = (1,1,1)R. (1)

Line z intersects p at P = (1,¢,0)R and ¢ at @ = (¢t — 1,0,¢)R, such that AQ and BP get
equations tzg + (1 — t)xe = 0 and txy — x; = 0. For the intersection point X it follows

X =(1—t,tt—1),0R. 2)

A Euclidean interpretation of the projective coordinate frame and the described conic con-
struction is shown in Figure 2.

For a synthetic proof for ¢ = {X} being a conic we use the concepts “perspectivity"
(symbol A) and “projectivity" (symbol A) as the finite product of perspectivities (c.f., e.g.,
[1]). We note that

AAQ, .. VY Aq(Q,.. YACl(x,.. )Ap(P,...)AB(BP,...) = A(AQ,...)AB(BP,...). (3)

Therefore, according to Jakob STEINER, the two projectively related pencils A(AQ,...) and
B(BP,...) generate, in general, a conic. If there would be a self-corresponding element in
the pencils, the projectivity would be a perspectivity and the result the axis of perspectivity
instead of a conic. So we have to exclude C' € p or ¢ or AB to receive a conic c.

One might ask, how to position C' such that the resulting conic ¢ becomes a parabola in
a projectively enclosed affine plane with ideal line u. Then, in the two projective pencils at
A and B, there must occur a pair of parallel corresponding lines AQ’ || BP' (see Figure 3).
We start with pencils at A and B and define a projectivity from the first to the second
by the parallel relation. These pencils are in perspective position with the ideal line u as
perspectivity axis. Corresponding parallel lines intersect p and ¢ at Py and Q). Therefore,
the pointsets p(Py) and ¢(Qu) are projective related.

Applying the dual version of Steiner’s generation of a conic — we shall meet this con-
struction in Section 7 — we find that the lines PyQy envelop a conic h. It is obvious that
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Figure 3: If C lies on the hyperbola h then the resulting conic ¢ becomes a parabola

this conic is a hyperbola touching AB in the midpoint of segment A, B and has p and ¢ as
asymptotes. Choosing C' € h the PP-construction delivers a parabola c. If C'is an inner point
of h, the resulting conic c is an ellipse, and if C' is an outer point of h, then ¢ is a hyperbola.

2. A first application: Construction of a conic through 5 given points

Figure 4: Construction of a conic through 5 given points

We choose two of the given points, say A and B, as vertices of pencils of lines, the line
RS as p and ST as q. The lines AR and BT intersect in C, which will be used as vertex
of a pencil {z} (see Figure 4). Obviously, by the same arguments as (2), the set {X} with
X = AQ N BP is a conic c passing through the given five points A, B, R, S, T.

It is clear, how to proceed, if ¢ is given by one line-element and three points or by two
line-elements and one point.

3. Tangents of a conic

We start with a conic given by two line-elements and a point, as in Figure 5. We state:
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Figure 5: The tangent tx to ¢ at X is harmonic to XC with respect to AQ, BP

Corollary 1. If X € c is derived as intersection of AQ with BP, then the tangent tx to ¢ at
X is harmonic to XC with respect to AQ, BP.

Proof. We take XC' = u as axis of a harmonic homology x: ¢ — ¢. The centre of « is the pole
U of u with respect to ¢, and U is harmonic to u with respect to (A, B) (see Figure 5). As
X € u the line UX =: tx must be tangent to c. Obviously, the pair (X A, X B) is harmonic
to (u,tx). O

To facilitate the construction of U, we note that AC N BP =: P and BC N AQ =: @
correspond in x, such that we can find U as the intersection of P'Q)" with AB (see Figure 5).

Figure 6: Illustration to Corollary 2

A further reduction of the construction lines is a consequence of

Corollary 2. The harmonic point Tx to C' with respect to (P, Q) is a point of tx. Thereby
Tx € tg, and tg is harmonic to SC with respect to (p,q).

Proof. The mentioned four points are X-perspective to the harmonic lines (tx, XC, X A, AB)
and finally S-perspective to the harmonic lines (ts, SC, p, q) (see Figures 5 and 6). O
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Remark 1. We will meet a well-known Euclidean variant of the PP-construction and Corol-
laries 1 and 2 in Section 5.

Figure 7: Construction of tangents t4,tp at A and B.

For a conic given by five points, we start with constructing the tangents t4,tp at A
and B. We factorize the projectivity A: A(AX,...) = B(BX,...), which generates ¢, by
perspectivities using RS = p and ST’ = ¢ as intermediate “axes". As S is self-corresponding,
the induced mapping p — ¢ is a perspectivity with centre Z = ARN BT. To U := ABNp
corresponds U’ € ¢ and therefore t4 = AU’. To V' := ABNq corresponds V' € p and therefore
tp = BV (see Figure 7).

For further tangents we replace the given ¢ by the two line-elements (A,t4), (B, tg) and
a further point and proceed as described above.

Remark 2. Besides these simple and maybe new tangent constructions there exist of course
several other methods. For example, if one counts one of the five conic points twice, e.g.
A, then the application of Pappus-Pascals theorem to these formally six points delivers the
tangent t4 at A via the so-called Pascal-axis. This construction only makes use of incidences
and its place of action is a projective plane.

Figure 8: Conic c as the image of a circle k£ under a central projection
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Another descriptive geometric way is to interpret ¢ as the image of a circle k£ under a
certain central projection. We need the projectively enclosed Euclidean plane 7w as place of
action. Four of the given five points are interpreted as images of the vertices of a rectangle.
As an implication we get the vanishing line of central projection and a pair of vanishing
points of orthogonal directions. The fifth point, together with two diagonal endpoints of the
quadrangle, defines a second pair of vanishing points to orthogonal directions due to Thales’
theorem. Finally, the centre Z of the collineation x: ¢ — ¢ is a common point of the Thales-
circles over the two pairs of vanishing points (see Figure 8). To complete the figure, one has
to choose an axis a || v’ of k.

4. Osculating circles of a conic

In this section the place of action is the projectively enclosed Euclidean plane 7 realized as
the classical plane of visual perception.

Let a conic ¢ be given by a line-element (A,t4) and three points R, S,T. We aim at the
osculating circle k4 at A. This circle belongs to a parabolic pencil of circles, and it defines
an elation €: ¢ — k4 with centre A and an axis a4, which is unknown.

We choose an arbitrary circle &” of the parabolic pencil of circles and project R, S,T onto
it with centre A. The triangle (RST') and the resulting triangle (R'S"T") are in Desargues
position and define a Desargues axis a’, which acts as axis of a homology x': ¢ — k' with the
center A. We make use of the following well-known fact:

Corollary 3. The Desargues azxes a, a/, and a” of three pairs of A-perspective triangles
(R'S'T"), (R"S"T")), (RST), (R'S'T")), and ((RST), (R"S"T")) pass through a common
point U.

Proof. Let x': (RST) — (R'S'T") and x": (RST) + (R"S"T") be homologies with the
common centre A and different axes a’,a”. Then o’ Na” =: U is a fixed point of y = x'~1x”:
(R'S'"T") — (R"S"T"). Therefore, the axis a of y must contain U. O

In the case depicted in Figure 9, y is a homothety such that a is the ideal line of plane 7
and U must be an ideal point. As a result we get @’ || @”. Therefore, the axis a4 = a” of the
elation € : ¢ — k4 has to be chosen parallel to a’ through A. This allows to reconstruct the
triangle (R”S"T") similar to (R'S"T") with its circumcircle as the demanded osculating circle
ka.

5. A generalization of the PP-construction

We started with a pair of lines p, ¢ and a pair of points A, B and a suitably chosen point C' to
perform the PP-construction (Figures 1 and 3). We might think of p, ¢ as a singular curve of
2°4 order and replace it by a regular conic d. Figure 10 shows the case, when A, B € d. The
result is a conic ¢, independent of which of the combinations AQ, BP or AP, BQ) we choose.
Again, the tangent tx at X is harmonic to CX with respect to XA and X B.

Figure 11 shows the case, when A, B € d. The result is a curve of 4™ degree, and again
both combinations AQ, BP or AP, BQ) deliver points of the same curve c. Taking the line
x =ty tangent to conic d, the points P and () coincide with a point 7" of ¢. There the tangent
tr at T to c is harmonic to tg with respect to TA and T'B.

Another generalization replaces the pencil {x} at C' by two projectively related pencils
{z} and {y} at C, and we keep the pair of lines p,q. Now we use tNp =P and yNqg=Q
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Figure 10: A generalization of the Figure 11: A generalization of the
PP-construction, A, B € d PP-construction, A, B ¢ d

for defining X := AQ N BP. In Figure 12 we rotate x by 30° resp. 90° to get its projectively
related line y. The results of the modified PP-construction are the conics labelled as c3q, cgg
(see Figure 12).

6. The dual version of the PP-construction

The dual of line-elements are still line-elements. So we start with (A, p), (B, ¢) as in Figure 1.
The point C'is replaced by a line d, the line x by a point X, which will run through = under
the dual version of the PP-construction (see Figure 13).

We met this dual Steiner construction already in Figure 3. Projecting X from A resp. B
to q resp. p we get points ) € ¢, P € p and x := P() is an element of a dual conic ¢*, i.e., a
tangent of a conic c¢. Dualising the construction of tangents as described in Corollaries 1 and
2 results in the point of contact T" of x with ¢ as intersection of x with a line ¢ harmonic to d
with respect to XA, XB.
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7. Steiner’s conic construction and the algebraic point of view

When we speak of Steiner’s construction of a conic we have the general case of two different
projective pencils of lines A(z,...), B(z/,...) in mind, whereby the line connecting the pen-
cils’ centres A and B is not self-corresponding. If this line AB =: u = ' is self-corresponding,
the pencils are perspective and generate a line, the perspectivity axis v. For u = u' one
might understand the not defined intersection z N2’ = {X} as the whole line u, such that
uUv = ¢? again becomes a (singular) curve of 2" degree. Similarly, if A and B coincide, there
are, counted in algebraic sense, two real, imaginary or coinciding pairs of self-corresponding
lines u = ', v = ', and again we can consider the singular curve u Uv = ¢ as the result of
Steiner’s construction.

The dual point of view starts with two lines a, b and a linear mapping A between the point
sets a(X ...),b(X’...). If the intersection a Nb =: U # U’, we have the general case of a
projectivity A, and X X’ are tangents of a regular conic ¢. If U = U’, the lines X X’ form a
pencil with the common point V. The two pencils with vertices U and V' can be considered
as a singular dual curve ¢*® of 2" class. It is obvious, how to interpret the results, if a = b.

We notice that the starting point of Steiner’s construction, namely the two pencils
A(xz...), B(z'...) by themselves form a singular dual curve of type ¢*. It suggests itself
to replace this curve by a regular conic ¢ or a dual conic ¢* and, after defining a projectivity
A ¢ — cresp. \*: ¢ — ¢, apply Steiner’s construction for corresponding elements (see
Figures 15 and 16). Also here we meet elementary geometric constructions of conics. As an
analogue to a projectivity between lines a and b which is the product of perspectivities, we
formulate:

Corollary 4. A projectivity \: ¢ — c is defined by three pairs R — R', S — S’, and T — T".
This projectivity A is either the identity, an involutive projectivity (or “involution” in brief),
or the product of two involutions.

Proof. We define a first involution o;: ¢ — ¢ by the three pairs R— R"=S5', S +— S" = R/,
and T — T" (see Figure 14). It has the “involution centre" C; = RS’ N SR'. The second
involution oy : ¢ — ¢ is defined by the pairs R — R”, 8" +— S”, and T" — T”, and has the
involution centre Cy = R'S'NT'T". Therewith, A = oy - 0». O

Figure 12: Another modified PP-construction
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Figure 14: Involutions o; and o9 with centres C; and Cs
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As a modification of the PP-construction of Section 1, we can start with a conic ¢ and
two points C, Cy as involution centres to define a projectivity A\: ¢ — ¢ by A = 0y - 05 (see

Figure 15), which shows a well-known Euclidean construction of tangents of an ellipse.

XII

XI

Figure 15: Well-known construction of tangents of an ellipse

The dual version of this extended PP-construction starts with a dual conic ¢* and two
lines ¢1, ¢o to define a projectivity \*: ¢* — ¢* in the tangent set of ¢* (see Figure 16), where

we choose ¢; as the ideal line and ¢* as a circle.
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Figure 16: Dual version of the extended PP-construction

8. Poncelet’s porism and Steiner’s construction of conics

In Section 8, we considered two (different) pencils of lines as a singular curve of second degree.
The extended PP-construction uses such a pair of pencils. It suggests itself to replace this
pair of pencils by a regular dual conic ¢* and use it to define a projectivity A : X — X’ in the
pointset of a regular conic d (see Figure 17). The lines X X’ envelop a conic ¢ as the result of
this extension of Steiner’s construction of a conic.

Figure 17: The lines X X’ envelop a conic ¢

It is worth mentioning that, if X = X’ we get a fixed point of A\ and the triangle
(X1, Xo, X) is as well inscribed to d and circumscribed to ¢*. After relabelling this triangle,
we receive each of its vertices as fixed points of A such that, according to Corollary 4, the
projectivity A is the identity. This means that there exists a continuous one-parameter set
of triangles inscribed to d and circumscribed to ¢*, what represents an example of Poncelet’s
porism (see Figure 18).

9. Final remark

Dealing with constructive methods nowadays might look out of date. We justify the closer
look to this material by both, the elegance of projective geometric synthetic reasoning in the
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Figure 18: Poncelet’s porism

sense of Jakob STEINER, and its applicability as training material for analytic geometry and
computer aided problem proving via, e.g., GeoGebra.

Furthermore, even so it is possible to reconstruct the presented material from mostly
German references, which are, to a big part, from 19" and early 20" century, we try to give
a refreshed overview over a classical topic of constructive projective geometry.
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