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Abstract. An infinitely long strip of paper is divided by a zigzagging line into
congruent triangles with side lengths 1, a and b. On both rims of the strip the
vertices Vk of the triangles are labeled from −∞ to +∞ with a shift n such that
(V0V1Vn) is a representative triangle. Along the sides of the triangles folds with
alternating fold angles are made. Under certain conditions on a, b and n and with
appropriately chosen fold angles it is possible to bring every vertex Vk on the
upper rim in coincidence with the vertex Vk of equal name on the lower rim. The
resulting body is a polyhedral cylinder (PC). The vertices are distributed at equal
intervals along a helix on the surface of a circular cylinder. For given lengths a and
b up to (n− 2) PCs can be formed. There are foldable PCs and self-intersecting
PCs. In the case n = 4 self-intersecting PCs consist of a core body with congruent
nonconvex pentagonal faces and of an infinite number of congruent tetrahedra,
each tetrahedron in edge-to-edge contact with the core body along three edges.
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1. Problem statement

Figure 1 depicts an infinitely long strip of congruent triangles of side lengths 1, a and b. Every
vertex Vk (k = −∞, . . . , 0, . . . ,+∞) is represented twice, once on the lower rim of the strip
and once on the upper rim with a shift n. The integer n of Vn in the representative triangle
(V0V1Vn) is, in addition to a and b, the third parameter of the system. The coordinates x, y
of this vertex are related to a, b :

a2 = x2 + y2, b2 = (x− 1)2 + y2, x = (1 + a2 − b2)/2. (1)
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Figure 1: Strip of congruent triangles. Representative triangle (V0V1Vn).
Coordinates (a, b) and (x, y) of Vn .

The sides of the triangles are interpreted as rods of a truss. The problem to be solved is
stated as follows:

Given the parameters a, b and n, in how many ways can the truss be assembled such that

vertices of equal name coalesce? Can the assembly be accomplished by folding the strip of

triangles or do triangles intersect each other?

2. Solution

In the assembled state every vertex is center of a cluster of six triangles. Every triangle is
part of three clusters. Figure 1 and the assembled structure are invariant with respect to

(a) replacing the label k by k +m (m arbitrary),
(b) replacing the label k by −k.

With an appropriate value of m every cluster of six triangles is centered at V0, and its
diagonals are V−1–V1, V−(n−1)–Vn−1 and V−n–Vn. The replacement (b) is a 180◦-rotation
about the midpoint of the line V−(n−ℓ)–Vn−ℓ with ℓ = n/2 or (n+1)/2 depending on whether
n is even or odd.

From these invariance properties it follows that in the assembled state all clusters of six
triangles each are congruent. This congruence requires that the triangles are the faces of a
polyhedral cylinder (PC). The vertices Vk are distributed at equal intervals along a helix on
the surface of a straight circular cylinder of unknown radius r. In a (ξ, η, ζ)-system with its
ζ-axis along the axis of the circular cylinder and with V0 on the ξ-axis, the position vector ~rk
of Vk (k arbitrary) has the coordinates

[ rck, rsk, kz ] (2)

with only three unknowns ϕ, r, z (0 ≤ z ≤ 1). Here and in what follows the abbreviations
ck = cos kϕ and sk = sin kϕ are used. For c1 and s1 also the simpler notations c and s,
respectively, are used. The unknowns are determined by the side lengths of the representative
triangle (V0V1Vn). Application of the formula (~ri − ~rj)

2 = 2r2[1 − cos(i − j)ϕ] + (i − j)2z2

results in the equations

2r2(1− c) + z2 = 1, (3)

2r2(1− cn−1) + (n− 1)2z2 = b2, 2r2(1− cn) + n2z2 = a2. (4)
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Decoupling is based on the formulas

1− ck = (1− c)fk(c), k2 − fk = (1− c)Fk(c),

fk(c) = k + 2

k−1
∑

ℓ=1

(k − ℓ)cℓ , F2 = 2, Fk(c) =
1

3
k(k2 − 1) +

2

3

k−1
∑

ℓ=2

ℓ(ℓ2 − 1)ck−ℓ (k ≥ 3),

(k + 1)2fk − k2fk+1 = −(1− c)[(k + 1)2Fk − k2Fk+1],

fk+1 − fk = 1 + 2
k

∑

ℓ=1

cℓ , Fk+1 − Fk = 2
k

∑

ℓ=1

fℓ .

Elimination of 2r2(1− c) from (3) and (4) leads to

(1− z2)fn−1 + (n− 1)2z2 = b2, (1− z2)fn + n2z2 = a2. (5)

Further decoupling results in the equations

(n2 − a2)Fn−1 − [(n− 1)2 − b2]Fn = 0, (6)

z2 = 1− 2r2(1− c), r2 =
(n− 1)2 − b2

2(1− c)2Fn−1
. (7)

Equation (6) is a polynomial equation of the order n− 2 for c. From (1) it follows that lines
c = const in Figure 1 are the circles

(x− x0)
2 + y2 = ̺2, x0 = n− ̺, ̺ = n− 1− Fn−1

Fn − Fn−1

. (8)

All circles are passing through the point x = n (the vertex Vn) on the x-axis. Let CE be the
circle passing through the vertex Vn of the equilateral triangle (V0V1Vn). Its radius is

̺E =
n2 − n+ 1

2n− 1
. (9)

From z2 ≤ 1 it follows that r2 > 0 if z2 > 0. PCs with z = 0 are flatfolded. On the line z = 0
a2 = fn, b2 = fn−1. This line is the higher-order cycloid (Wunderlich [2])

x = 1 +
n−1
∑

k=1

ck, y =
∣

∣

∣

n−1
∑

k=1

sk

∣

∣

∣
(0 ≤ ϕ ≤ π). (10)

The formula for y is proved by induction. In the interval 0 ≤ ϕ ≤ π the cycloid is composed
of a single branch connecting the points (x = n , y = 0) and (x = y = 0) and of n−2 branches
connecting the points (x = 1 , y = 0) and (x = y = 0).

2.1. The case n = 3

Equations (6), (7) and (8) are

c =
a2 − 4b2 + 7

2(b2 − 4)
, z2 =

a2 − (b2 − 1)2

15 + a2 − 6b2
, r2 =

(4− b2)3

(15 + a2 − 6b2)2
, ̺ = 2− 1

2c+ 3
. (11)

A single PC exists for every point V3(x, y) in the domain bounded by the ordinary cycloid
x = 1 + cosϕ+ cos 2ϕ, y = | sinϕ+ sin 2ϕ| (0 ≤ ϕ ≤ π) and by the circle (x− 2)2 + y2 = 1.
In Figure 2 this domain is shaded. All PCs are foldable.
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Figure 2: Boundaries z = 0 and c = −1 of the admissible domain for V3 .

2.2. The case n = 4

Equations (6), (7) and (8) are

2(9− b2)c2 + (20 + a2 − 4b2)c + 2(2 + a2 − 2b2) = 0, (12)

z2 = 1− 2r2(1− c), r2 =
9− b2

8(1− c)2(2 + c)
, ̺ = 3− c+ 2

2c2 + 3c+ 2
. (13)

The roots c11,2 of (12) satisfy the equation 2(1 + c11 + c12) + c11c12 = 0 independent of a, b.
In Figure 3 the radius ̺ of the circles c = const is shown as function of c. The radius has its
minimum ̺min = 4

7
(4 −

√
2) for c =

√
2 − 2. In Figure 4 the cycloid z = 0 is shown in thick

lines. It is tangent to the circles c = const with ̺ = 2 and ̺ = ̺min (with the latter one at
the point x = 2(23

√
2−32), y = [8(746

√
2−1055)]1/2 ). According to Figure 3 the number of

solutions −1 ≤ c ≤ 0 is two if V4 is located in the domain between the circles ̺ = ̺min and
̺ = 2. The number of solutions z2 > 0 changes by one every time V4 crosses the line z = 0.
The number is two for the equilateral triangle. Hence the conclusions:

Two PCs can be formed if V4 is located either in the vertically hatched domain or in the

dark-shaded domain. A single PC can be formed if V4 is located in the horizontally hatched

domain. No PCs can be formed if V4 is located elsewhere.

In Figure 4 also the circle CE with radius ̺E = 13/7 is shown. For all points V4 on this
circle Eq. (12) is 16c2 +17c+2 = 0. The roots are c = (−17±

√
161)/32. For the equilateral

triangle Eqs. (13) yield the associated parameters z and r :

1. c = (−17 +
√
161)/32, ϕ ≈ 97.743◦, z ≈ .2347, r ≈ .6453, (14)

2. c = (−17−
√
161)/32, ϕ ≈ 158.090◦, z ≈ .1801, r ≈ .5010 . (15)

The PC with the parameters (14) is foldable. It is shown in Figure 6. The PC with the
parameters (15) is not foldable. Not foldable means that triangles intersect. In Figure 5, a
row of equilateral triangles is shown in the unfolded state. However, what follows is valid also
for intersecting irregular triangles with side lengths 1, a and b. In the assembled state two
triangles sharing a single vertex intersect. As example, the triangles (V0V1V4) and (V1V2V5)
are considered. The line segment V1–A1 on the triangle (V0V1V4) coalesces with the line
segment V1–V1 on the triangle (V1V2V5) where A1 is a point on the edge V0–V4 and S1 a
point inside the triangle (V1V2V5). A1 and S1 have the same distance ℓ1 from V1. From the
invariance properties it follows that all pairs of triangles sharing a single vertex intersect in like
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Figure 3: Graph of the function
̺(c) for n = 4 .

Figure 4: Admissible domains for V4 .

manner. This explains the line segments Vk–Ak, Vk–Sk, Vk–A′

k and Vk–S′

k (k = 0,±1, . . .).
In the assembled state S′

3 coalesces with A′

3. From this it follows that the line segment S′

3−A0

coalesces with the line segment A′

3–S0. Hence the conclusion:

The triangle (V0V1V4) is intersected

by the triangle (V1V2V5) in the line segment V1–A1,

by the triangle (V−1V0V3) in the line segment V0–S0,

by the triangle (V−1V2V3) in the line segment A′

3–S0 and at S0 by the edge V−1–V3.

In terms of the lengths u and v shown in the figure, the lengths ℓ1 and ℓ2 are calculated from
the formulas m = vy/[b+ v(x− 1)] (this is the slope of V0–B0),

ℓ21 = 1 + u2 − 2xu

a
, ℓ22 = ℓ21 + (a− u)2 − 2ℓ1

(

1− u

a

) x+my√
1 +m2

. (16)

The calculation of u and v themselves is based on the following formulas (Wittenburg [1,
pp. 64–67]):

The normal vector ~n of a plane and an arbitrary point ~rA in this plane define the vector
~m = −~n/(~rA · ~n) of the equation ~m · ~r = −1 governing the plane of the triangle. The vectors

Figure 5: n = 4 . Lines of intersection and line ζ = const.
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~m1 and ~m2 of two planes determine the Plücker vectors ~v = ~m1 × ~m2 and ~w = ~m2–~m1 of the
line of intersection g of these planes. A line through points ~rB and ~rC in one of the planes
has the second Plücker vector ~w1 = ~rB × ~rC . The point of intersection of this line with g is
~r = ~w1 × ~w/(~w1 · ~v) . The distance u of A1 from V0 and the distance v of B1 from V2 are

u = a
nth coordinate of (~rA1

− ~r0)

nth coordinate of (~r4 − ~r0)
, v = b

nth coordinate of (~rB1
− ~r2)

nth coordinate of (~r5 − ~r2)
(17)

for n = 1, 2, 3. Evaluation with n = 2 results in the expressions u/a = N1/D1, v/b =
(N2/D2 − s2)/(s5 − s2) with

N1 = (s4 − 4s1)(4s2 + 2s4 − 8s1 − s3 − s5),

D1 = s4(26s1 − 8s2 − 3s3 − 4s4 + 3s5)− 4(s1 + s3 − s4)(−7s1 + 4s2 + s4 − s5),

N2 = −s3N1 + (5s2 − 2s5)(s1 + s3 − s4)
2,

D2 = (s1 + s3 − s4)(37s1 − 10s2 + 3s3 − 14s4 + 6s5)− s3(26s1 − 8s2 − 3s3 − 4s4 + 3s5).

With addition theorems this is reduced to

u

a
=

c2 + (c+ 1)2

2c2
≥ 1

2
,

v

b
=

c+ 1

(2c+ 1)(3c+ 1)
. (18)

From Figure 5 it was learned that the line segments V0–A0 and V0–S0 and the line segments
V3–S′

3 and V3–A′

3 coalesce pairwise when the PC is formed. This means that the congruent
triangles (V0A0V3) and V0A

′

3V3) with side lengths ℓ1, a − u, b and the congruent triangles
(V0S0A

′

3) and (V3S
′

3A0) with side lengths ℓ1, a− u, ℓ2 are the faces of a tetrahedron labeled
T(0, 3).

In like manner tetrahedra T(k, k + 3) are defined for k = ±1,±2, . . . . Every face of a
tetrahedron is a section of a triangle of vertices. Every triangle of vertices is divided into two
triangles which are faces of (different) tetrahedra and a nonconvex pentagon, for example, the
pentagon (S0V0V1A1A

′

3) on the triangle (V0V1V4) and the pentagon (S′

4V4V3A
′

3A1) on the
triangle (V0V3V4). The congruent pentagons are the faces of a new PC referred to as core

body.
The core body is in edge-to-edge contact with each tetrahedron along three edges, for

example, with the tetrahedron T(0, 3) along the edges V0–A0 = V0–S0, A0–S′

3 = S3–A′

3 and
V3–S′

3 = V3–A′

3. The pentagon has side lengths ℓ1, 1, ℓ1, 2u− a = a(1 + c)2/c2, ℓ2.
Let α1, β1, α1, β4, α2 be the fold angles at these sides. β1 and β4 are the fold angles at

the edges V0–V1 and V0–V4, respectively. α1 and α2 are the angles made by the triangle
(V0V1V4) with the intersecting triangles (V−1V0V3) and (V−1V2V3), respectively. The cosine
of every angle is the scalar product of the unit normal vectors of the two triangles involved.
With (2) the expressions are obtained (β3 is the angle at the edge V0–V3):

cos β1 = (r/y)2[z2(−25c1 − 6c3 + 8c4 − c7 + 24)− r2(s1 + s3 − s4)
2],

cos β4 = (r/y)2[z2(8c1 − 16c2 + 24c3 − 10c4 − 6)− r2(s1 + s3 − s4)
2],

cos β3 = (r/y)2[z2(−6c1 − 17c3 + 24c4 − 9c5 + 8)− r2(s1 + s3 − s4)
2],

cosα1 = (r/y)2[z2(26c1 − 16c2 + 3c3 − 4c4 + 3c5 − 12) + r2(s1 + s3 − s4)
2],

cosα2 = (r/y)2[z2(22c1 − 32c2 + 9c3 + c5) + r2(s1 + s3 − s4)
2].



























(19)

We now return to Eqs. (18). Intersection of triangles occurs under the conditions u/a < 1
and 0 < v/b < 1. This is the condition −1 < c < −2/3. In Figure 3 this interval is marked
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self-intersecting. PCs with either c = −1 or with −2/3 ≤ c < 1 are foldable. PCs with
c = −1 or with c = −2/3 are both foldable and self-intersecting. In Figure 4 the circles
c = −1 (̺ = 2) and c = −2/3 (̺ = 3/2) are shown. Hence the conclusions:

If the number of PCs for a given triangle is one (V4 in the horizontally hatched domain), then

this PC is foldable. If the number is two, then two cases have to be distinguished: Two foldable

PCs exist if V4 is located in the dark-shaded domain. Two PCs exist, one foldable and one

self-intersecting, if V4 is located in the vertically hatched domain. Every self-intersecting PC

consists of a core body with congruent nonconvex pentagonal faces and of an infinite number

of congruent tetrahedra.

The two-parametric family of core bodies is one of the most interesting results of this inves-
tigation.

Example 1:

For equilateral triangles two PCs with the parameters (14) (foldable) and (15) (self-
intersecting) were obtained. Both PCs have the following properties in common. A single
cluster of six triangles reaches more than half around the circular cylinder. Since ϕ/π is
irrational no two vertices are located on one and the same generator of the circular cylinder.

Equations (19) can be given the forms

cos β1 = (49c+ 50)/48, cos β4 = (16c+ 5)/12, cos β3 = (4c+ 3)/3, cosα1 = −1/12

(the same for both PCs), cosα2 = (8c + 7)/12. The foldable PC in Figure 6 has the fold

Figure 6: n = 4; foldable PC
with equilateral triangles.

Figure 7: n = 4; self-intersecting PC with
equilateral triangles (a) and core body (b).
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angles β1 ≈ 25.29◦, β4 ≈ 76.29◦, β3 ≈ 34.88◦.
For the self-intersecting PC the angles are

β1 ≈ 101.11◦, β4 ≈ 145.32◦, β3 ≈ 103.81◦, α1 ≈ 94.78◦, α2 ≈ 95.97◦.

Equation (18) yields u ≈ .5030, v ≈ .0473, (u/v = 85/8). In Figure 5 the length v is
shown correctly. Not so the side length A1–A′

3 of the pentagon. It is very small: 2u − 1 =
(c + 1)2/c2 ≈ .006. Equations (16) yield the side lengths ℓ1 = (3

√
23 − 5

√
7 )

√
143/16,

ℓ2 = [(6209 − 489
√
161)/8]1/2. Figure 7a shows the self-intersecting PC inside the circular

cylinder in projection along the ξ-axis onto the η, ζ-plane. In Figure 7b the core body alone
is shown. On every edge Vk–Vk+4 (k arbitrary) the points A′

k+3 closer to Vk and Ak+1 closer
to Vk+4 are located. The line segments of intersection are Vk–Ak–A′

k+3–Vk+3 (k = 0,±1, . . .).

Example 2:

Given are x = 6/5 and b = 1. This determines a2 = 12/5, y2 = 24/25, ̺ = 11/7 and two
PCs with c = −3/4 (self-intersecting) and c = −2/5 (foldable). For the self-intersecting PC
Eqs. (13), (18), (16) and (19) determine

z2 = 3/35, r2 = 64/245, u = 2
√
15/9, v = 2/5, ℓ21 = 11/27, ℓ22 = 7/135,

cos β1 = 17/32, β4 = 90◦, cos β3 = −7/8, cosα1 = 3/56, cosα2 = −51/175.

Figure 5 has the form shown in Figure 8. The pentagons constituting the faces of the core
body are shaded. The short side A1–A′

3 of the pentagon has the length 2u − a = a/9. The
four parallel lines are explained later. The foto in Figure 9 shows on the far left a model of
the core body with three tetrahedra in place (red, green and blue).

The parameters of the foldable PC with c = −2/5 are

z2 = 3/28, r2 = 125/392, cos β1 = 24/25, cos β4 = 7/8, β3 = 90◦.

The second from the left in Figure 9 is a model of this PC.

Example 3:

The vertex V4 is an arbitrary point on the circle ̺ = 2. As independent parameter the
distance a from V0 is chosen (0 < a < 4). In Figure 4 the line connecting the vertex V4 in

Figure 8: V4 at x = 6/5 , b = 1 . Triangular faces of tetrahedra, pentagonal faces
of the core body (shaded), lines h = const.
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Figure 9: From left to right: Core body and foldable PC of Example 2;
two foldable PCs of Example 4.

the triangle (V0V1V4) with the vertex V4 on the x-axis is orthogonal to the edges V0–V4,
V1–V5, . . . of triangles (Thales’ circle). From this it follows that vertices of equal name come
into coincidence in two ways, namely, by folding the equidistant edges V0–V4, V1–V5, . . .
(distance d =

√
16− a2/4) either with fold angles β4 = 90◦ or with β4 = 180◦. In either

case β1 = β3 = 0 and z = a/4. The resulting PCs are a straight cylinder with square cross
section of side length d (β4 = 90◦) and a flatfolded strip of width d (β4 = 180◦). The cylinder
with square cross section is a foldable four-bar mechanism if the edges are revolute joints.
In deformed positions the vertices of triangles are not on the surface of a straight circular
cylinder. The same results are obtained from Eqs. (1), (12), (13) and (19).

Example 4:

The vertex V4 is an arbitrary point on the circle ̺ = 3/2. As independent parameter the
coordinate x is chosen (1 < x < 4). The equation (x − 5/2)2 + y2 = (3/2)2 of the circle
determines y2 = (4 − x)(x − 1), a2 = 5x − 4, b2 = 3(x − 1). The roots associated with the
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Figure 10: V4 at x = 3/2 , y =
√
5/2 . Lines of intersection and lines h = const.

circle are c = −1/2 and c = −2/3. The PC with c = −1/2 is foldable. It is characterized by
the parameters z2 = 1

3
(x − 1), r2 = 1

9
(4 − x) and, independent of x, β1 = β4 = 0, β3 = 120◦.

This PC is a straight cylinder with equilateral triangular cross section. The second from the
right in Figure 9 is a model of this PC in the special case x = 3/2, y =

√
5/2.

The PC with c = −2/3 is both foldable and self-intersecting. The parameters are z2 =
(27x− 28)/80, r2 = (81/800)(4− x). The condition z2 ≥ 0 requires that x ≥ 28/27. At x =
28/27 the circle ̺ = 3/2 intersects the line z = 0. Furthermore, cos β1 = (27x−29)/[27(x−1)],
cos β4 = (11x − 12)/[16(x− 1)] and, independent of x, β3 = 180◦, u = 5

8
a, v = b, ℓ1 = 3

8
a,

ℓ2 = 0.
In the special case x = 3/2, y =

√
5/2 , Figure 5 has the form shown in Figure 10. The

results for v, ℓ1 and ℓ2 show that for an arbitrary k Sk coincides with A′

k+3 and S′

k+3 with Ak.
In the folded state Ak coalesces with A′

k+3, triangles sharing the edge Vk–Vk+3 are coplanar
(β3 = 180◦), the edge Vk–Vk+4 is intersected by the edge Vk+1–Vk+5 at Ak+1 and by the edge
Vk−1–Vk+3 at A′

k+3. The tetrahedra are degenerate with volume zero. Figure 9 shows on the
far right a model of this PC. Seen in projection along the ζ-axis the infinitely many triangles
cover the circular ring with outer radius r and with inner radius ri = r cos(2ϕ− π) = r/9.

2.2.1. Cross sections

In this section, cross sections of foldable and of self-intersecting PCs in planes ζ = const.
are investigated. As is shown further below, the lines parallel to V2–V2 in Figure 5 and
in Figure 8 are mapped into polygonal contours of cross sections. Since the shape of cross
sections is periodically repeated with period length z, it suffices to investigate planes ζ = hz
with 0 ≤ h ≤ 1.

A line h = const. intersects eight edges of triangles in points P1, . . . ,P8 as shown in
Figure 5. If the PC is foldable, the cross section is the octogon (P1, . . . ,P8) (a symmetric
hexagon if h = 0 or h = 1). If the PC is self-intersecting, a line h = const. intersects, in
addition to eight edges of triangles, edges connecting the core body to three tetrahedra. In
Figure 5 the points of intersection are Q1 coalescing with Q′

1, Q2 coalescing with Q′

2 and Q3

coalescing with Q′

3. In the assembled state these three points are determined by P1, . . . ,P8.
Q1, for example, is the point of intersection of the lines P1–P2 and P3–P4.

The coordinates of P1, . . . ,P8 in the assembled state are determined as follows. The edge
V−3–V1, for example, has the equation ~r(λ2) = ~r−3 + λ2(~r1 − ~r−3) with parameter λ2. The
condition ζ = hz is −3z + 4λ2z = hz. It determines λ2 = 1

4
(3 + h) and the ξ, η-coordinates

of P2 : ξ2 = r[c3 + λ2(c1 − c3)] = rc(hs2 + c2), η2 = r[−s3 + λ2(s1 + s3)] = rs(hc2 + s2). In
like manner the coordinates of the other points are determined (Table 1). In the same way
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Table 1: Coordinates at cross sections

i edge λi ξi/r ηi/r

1 V0–V1 h h(c− 1) + 1 sh

2 V−3–V1
1
4
(3 + h) c(hs2 + c2) s(hc2 + s2)

3 V−2–V1
1
3
(2 + h) 1

3
[2c2 + 2c− 1 + h(1− c)(2c+ 1)] 1

3
s[h(2c+ 1) + 2(1− c)]

4 V−2–V2
1
4
(2 + h) 2c2 − 1 shc

5 V−1–V2
1
3
(1 + h) 1

3
[2c2 + 2c− 1− h(1− c)(2c+ 1)] 1

3
s[h(2c+ 1)− 2(1− c)]

6 V−1–V3
1
4
(1 + h) c(−hs2 + c2) s(hc2 − s2)

7 V0–V3
1
3
h 1 + 1

3
h(c− 1)(2c+ 1)2 1

3
sh(4c2 − 1)

8 V0–V4
1
4
h 1− 2hc2s2 shc(2c2 − 1)

the coordinates of P1, . . . ,P8 in the unfolded state are determined. They prove that in the
unfolded state lines h = const. are straight lines.

Let ~̺i (i = 1, . . . , 8) be the vector with coordinates [ξi, ηi, 0]. In Figure 11 cross sections
of the foldable PC with equilateral triangles in the planes h = 0 and h = .5 are shown.
Points on the circle of radius r denote the equidistant vertices V−3, . . . ,V4. The cross section
in the plane h = 0 is the symmetric hexagon drawn in solid lines with vectors ~̺i(0). The
cross section in the plane h = .5 is the symmetric octogon drawn in dashed lines. The cross
sectional area A(h) is

A(h) =
1

2

∣

∣~̺2 × (~̺3 − ~̺1) + ~̺4 × (~̺5 − ~̺3) + ~̺6 × (~̺7 − ~̺5) + ~̺8 × (~̺1 − ~̺7)
∣

∣. (20)

It turns out that A(h) is, independent of h, A = 2
3
r2s(1− c)2(4c+ 3). Hence

volume PC
volume circular cylinder

=
2

3π
s(1− c)2(4c+ 3) . (21)

In Figure 12 the cross section of the self-intersecting PC with equilateral triangles in the
plane h = .4 is shown. The shaded areas are the cross sections of the tetrahedra T(−2, 1),
T(−1, 2), T(0, 3), and of the core body. Figure 8 shows that the line h = const passing through
the coalescing points A1 and S1 is a significant line. The value of h on this line is

h∗ = 2(c+ 1)2/c2. (22)

In the interval h < h∗ the cross section of the core body is the pentagon (P1Q1P4Q2Q3). In
the interval h∗ ≥ h ≤ 1 − h∗ it is the quadrilateral (P1Q1Q2Q3). As examples see the cross
sections h = 1/9 < h∗ and h = .4 > h∗ in Figure 13.

In Figure 11 all cross products ~̺i × ~̺i+1 have the same sense of direction. In contrast, in
Figure 12 the cross products ~̺1× ~̺2 and ~̺8× ~̺1 have one sense of direction, and all other cross
products have the opposite sense of direction. This has the consequence that the expression
in (20) is the difference cross sectional area Ac of the core body minus total cross sectional

area At of the three tetrahedra. Equation (21) is replaced by

Ac(h)− At(h)

πr2
≡ 2

3π
s(1− c)2(4c+ 3) independent of h. (23)
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Figure 11: Cross sections in Figure 6
in planes h = 0 and h = .5 .

Figure 12: Cross section in Figure 7a
in the plane h = .4 .

In the case c = −3/4 treated in Example 2, we obtain Ac(h) ≡ At(h). In Figure 13 this
identity is demonstrated by the cross sections in the planes h = 1/9, h = h∗ = 2/9, and
h = .4 (shaded).

The ratios (21) and (23) are constant on the circle c = const (arbitrary). The derivative
with respect to ϕ is const.×(1−c)2(16c2+17c+2). It is zero on the circle c = (−17±

√
161)/32.

Figure 13: Three cross sections. Self-intersecting PC with c = −3/4 , h∗ = 2/9.
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This is the circle CE (see (14), (15) and Figure 4). The ratio has its maximum ≈ .6663 for
c = (−17 +

√
161)/32 and its minimum ≈ −.2093 for c = (−17 −

√
161)/32. Hence the

conclusion:

Among all foldable PCs the ones made of triangles having V4 on the circle CE have the largest

ratio (21). Among all self-intersecting PCs the ones made of triangles having V4 on the circle

CE have the smallest ratio (23).

On the basis of Table 1 the cross sectional area Ac(h) of the core body is calculated:

2Ac(h) =

{

r2(A1 +B1h
2) (0 ≤ h ≤ h∗),

r2[A2 +B2h(1− h)] (h∗ ≤ h ≤ 1− h∗),

A1 =
8s5(1 + c)

3c2 + 4c+ 2
, B1 =

−2sc(1− c)2(2c+ 1)(3c+ 2)

3c2 + 4c+ 2
,

A2 =
−8s5(1 + c)(c2 + c+ 1)

c(c+ 2)(3c2 + 4c+ 2)
, B2 =

8s5c(2c+ 1)

(c + 2)(3c2 + 4c+ 2)
.



































(24)

Taking into account the symmetry Ac(h) = Ac(1− h) this yields the ratio

volume core body
volume circular cylinder

=
2

πr2

∫ 1/2

0

Ac(h) dh =
2s5

3πc3
(

4c2 + 7c+ 2
)

. (25)

This ratio increases monotonically from 0 at c = −1 to 50
√
5/(243π) ≈ .1464 at c = −2/3.

With c = −3/4 (Figures 13 and 9) it is 49
√
7/(648π) ≈ .06368 and with c = −(17+

√
161)/32

(Figures 12 and 7b) it is ≈ .00202.
The difference ratio (25) minus ratio (23) is the ratio

volume tetrahedra
volume circular cylinder

=
2s

3πc3
(1− c)2(2c+ 1)2(3c+ 2). (26)

This ratio is zero for c = −1 and for c = −2/3. The case c = −2/3 was the subject of
Example 4 (Figure 10). With c = (−17 −

√
161)/32 (Figure 12) the ratio is ≈ .2113. The

maximum ratio is ≈ .2114 at c ≈ −.9247.

Let V be the volume of a single tetrahedron. Figures 5 and 8 show that between the
planes ζ = 2z and ζ = 5z the entire tetrahedron T(2, 5) and parts of T(0, 3), T(1, 4), T(3, 6),
and T(4, 7) are located. For reasons of symmetry the partial volumes of T(0, 3) and T(1, 4)
and of T(3, 6) and T(4, 7) add up to V . The total volume between the two planes is 3V .
Hence V/(πr2z) is the ratio (26). This yields

V =
s(2c+ 1)2(3c+ 2)

12c3(2 + c)
(9− b2)

√

1− 9− b
2

4(1− c)(2 + c)
. (27)

With the parameters c = (−17 −
√
161)/32, b = 1 of the equilateral triangle V ≈ .36373

(Figure 7a) and with c = −3/4, b = 1 V = 8
√

3/5/405 ≈ .24833 (the far left of Figure 9).
Equation (27) has the form V (λ, ϕ) = λf(ϕ)

√

1 + λg(ϕ) with λ = 9− b2 and with functions
f(ϕ) and g(ϕ).

The stationarity conditions ∂V/∂λ = 0 and ∂V/∂ϕ = 0 are λ = −2/(3g), λ = −2f ′/(fg′+
2f ′g). With the first equation Eqs. (13) yield r2 = 1/[3(1 − c)], z2 = 1/3. Both equations
together yield fg′−f ′g = 0. This means that the derivative of f/g is zero. This is the equation
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(1− c)(2c+1)(12c4+10c3 +5c2+12c+6) = 0. The only root in the interval −1 < c < −2/3
is c ≈ −.919800. It determines the maximum volume Vmax ≈ .40513, the radius r ≈ .4167
and the parameters of the triangle (V0V1V4): a ≈ 2.387, b ≈ 1.863, x ≈ 1.613, y ≈ 1.759.

Summary.

In the interval 0 ≤ ϕ ≤ π the higher-order cycloid z = 0 has n − 2 branches connecting the
points x = 0 and x = 1 on the x-axis. By these branches and by circles c = const. tangent
to them the (x, y)-domain is divided into N(n2) domains differing in the number of solutions
−1 ≤ c < 1 and in the number of solutions z2 ≥ 0. For every k = 1, . . . , n − 2 there is a
domain for Vn admitting k different PCs. In the case n = 4 self-intersecting PCs consist of a
core body with congruent nonconvex pentagonal faces and of an infinite number of congruent
tetrahedra.

Conjecture.

In the case n = 4 the ratio A/(πr2) with A calculated from Eq. (20) was given the interpre-
tations (21) and (23). The ratio has two stationary values if V4 is located on the circle CE.
Conjectures:

1. For arbitrary n ≥ 3 the area A(h) calculated from an equation equivalent to Eq. (20) is
independent of h.

2. The ratio A/(πr2) has n− 2 stationary values if Vn is located on the circle CE.

3. The stationarity condition is Eq. (6) with a = b = 1.

For n = 3, 5 and 6 this was verified. The ratio is 2s(1−c)2/(3π) for n = 3, 2s(1−c)2(2c+1)2/π
for n = 5 and 2s(1− c)2(32c3+36c2+8c+1)/(3π) for n = 6. For foldable PCs A/(πr2) is the
ratio volume PC/volume circular cylinder. For self-intersecting PCs the interpretation needs
clarification.
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