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Abstract. We present a generalization of the classical Pascal Hexagon Theorem
to real Hilbert spaces. The key ingredient is a Cone Lemma which allows a refor-
mulation of the problem in terms of vertices of cones with spherical cross-section
bases.
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1. Introduction

Pascal’s Hexagon Theorem [5, 7] is one of the marvels of elementary Euclidean geometry. It
asserts that if ABCDEF is a cyclic hexagon (not necessarily convex) in some Euclidean plane,
and if the opposite sides intersect, say M =

←→
AB ∩

←→
DE, N =

←→
BC ∩

←→
EF , and P =

←→
CD ∩

←→
FA,

then M , N , and P are collinear (see also Figure 1). Over the years it has been generalized
in various ways to conics, to projective planes [3], and in higher dimensions [1, 2, 4, 6]. We
present here a generalization to real Hilbert spaces. Such thing is possible by noticing first
that the points M , N , and P appear as vertices of cone regions supported by disk cross-
sections (AD and BE for M , BE and CF for N (cf. Figure 2), and CF and AD for P ).
Typically, pairs of cross-sections generate two cone regions (in Figure 2, BE and CF generate
cone regions with vertices V + = N and V − /∈ {M,N,P}), and then the challenge is to choose
judiciously the right cones. The whole task is possible due to a key Cone Lemma (see below).
The Cone Lemma already appears in [4], where a Pascal generalization to the Euclidean 3-
space is proposed. However, there the implementation and execution of cone methods are
lacking.

2. Cone Lemma

Let H be a real Hilbert space with inner product 〈· , ·〉 and associated norm ‖ · ‖. Denote by
S(H) the unit sphere of H, S(H) = {x ∈ H | ‖x‖ = 1}. In connection with S(H) we will
consider two types of geometric subsets of H, linear varieties and cones.

ISSN 1433-8157/$ 2.50 c© 2020 Heldermann Verlag



2 N. Anghel: Pascal’s Hexagon Theorem in Hilbert Spaces

Figure 1: Pascal hexagon: The points of intersection of opposite sides of
cyclic hexagon ABCDEF are collinear

As usual, a linear variety l of H is any subset of H with the property that if x, y are
distinct points of l then the line through x and y, {tx + (1 − t)y | t ∈ R}, is contained in l.
Important examples of linear varieties are the hyperplanes h = hc(z), where for fixed c ∈ R
and z ∈ S(H), hc(z) = {x ∈ H | 〈x, z〉 = c}. We will be interested primarily in hyperplanes
that do intersect S(H), and do it generically, i.e., they are not tangent to S(H). Equivalently,
they are hyperplanes of type hc(z), where z ∈ S(H) and c = cos θ, for some 0 < θ ≤ π/2. We
will call these intersections, S(H) ∩ hcos θ(z), z ∈ S(H), 0 < θ ≤ π/2, spherical cross-sections
in standard form. Notice that in a spherical cross-section, θ and z are unique, unless θ = π/2
in which case z is determined up to a ± ambiguity.

A cone in H, more precisely the cone with vertex v ∈ H and base ∅ 6= B ⊂ H, v /∈ B,
denoted C(v,B), is by definition the union of all the lines through v and the points of B,
i.e., C(v,B) = {tv + (1− t)b | t ∈ R, b ∈ B}. We will only be concerned with cones C(v,B)
for which v /∈ S(H) and B is a spherical cross-section. It is obvious that if two such cones
coincide (equal as sets) then their vertices are the same point. Not so for the bases.

Cone Lemma. Let S(H)∩hcos θ1(z1) and S(H)∩hcos θ2(z2) be two spherical cross-sections in
standard form such that θ1 6= θ2 and 〈z1, z2〉 6= ± cos(θ1 − θ2). Of all the cones C(v, S(H) ∩
hcos θ1(z1)), v ∈ H \ S(H), there are exactly two such that

C(v, S(H) ∩ hcos θ1(z1)) = C(v, S(H) ∩ hcos θ2(z2)). (1)

They have vertices

v± =
sin θ2

sin(θ2 ± θ1)
z1 ±

sin θ1
sin(θ2 ± θ1)

z2, (2)

where the signs ± correspond.

Proof. The proof hinges on the observation that suitable involutions of S(H) take spherical
cross-sections to spherical cross-sections.

Indeed, for a fixed point p ∈ H \ S(H) define Tp : S(H)→ S(H) by

Tp(x) = the other point of intersection, besides x, of the

line through p and x with S(H), for x ∈ S(H).
(3)
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Figure 2: The two cone regions with vertices V ± generated by cross-sections
BE and CF in disk

Tp(x) = p+ t(x− p) for some t ∈ R, and from the power of a point property,

‖Tp(x)− p‖ · ‖x− p‖ =
∣∣‖p‖2 − 1

∣∣ ,
we get

t =
‖p‖2 − 1

‖x− p‖2
and Tp(x) = p+

‖p‖2 − 1

‖x− p‖2
(x− p), x ∈ S(H). (4)

Tp is an involution, Tp ◦ Tp = IdS(H), or equivalently T−1
p = Tp, or further

x = p+
‖p‖2 − 1

‖Tp(x)− p‖2
(Tp(x)− p), x ∈ S(H). (5)

Now, if x ∈ S(H) ∩ hc(z) for some fixed points z ∈ S(H) and c ∈ R, 0 ≤ c < 1, we get, via
the substitution y = Tp(x),

c = 〈x, z〉 =
〈
p+
‖p‖2 − 1

‖y − p‖2
(y − p), z

〉
or

(〈p, z〉 − c)‖y − p‖2 + (‖p‖2 − 1)〈y − p, z〉 = 0, or

(〈p, z〉 − c)
(
1− 2〈y, p〉+ ‖p‖2

)
+ (‖p‖2 − 1)〈y, z〉 − (‖p‖2 − 1)〈p, z〉 = 0, or

〈y, (‖p‖2 − 1)z − 2(〈p, z〉 − c)p〉 = c
(
‖p‖2 + 1

)
− 2〈p, z〉.

The point (‖p‖2 − 1)z − 2(〈p, z〉 − c)p ∈ H is non-zero. To see this immediately, it is a nice
exercise to verify first that

‖(‖p‖2 − 1)z − 2(〈p, z〉 − c)p‖2 =
(
c
(
‖p‖2 + 1

)
− 2〈p, z〉

)2
+
(
‖p‖2 − 1

)2 (
1− c2

)
, (6)

from which it also follows that∣∣c (‖p‖2 + 1
)
− 2〈p, z〉

∣∣ < ‖(‖p‖2 − 1)z − 2(〈p, z〉 − c)p‖.
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Setting now

z∗ =


|c (‖p‖2 + 1)− 2〈p, z〉|
c (‖p‖2 + 1)− 2〈p, z〉

· (‖p‖2 − 1)z − 2(〈p, z〉 − c)p
‖(‖p‖2 − 1)z − 2(〈p, z〉 − c)p‖

,

if c (‖p‖2 + 1)− 2〈p, z〉 6= 0,
(‖p‖2 − 1)z − 2(〈p, z〉 − c)p
‖(‖p‖2 − 1)z − 2(〈p, z〉 − c)p‖

, if c
(
‖p‖2 + 1

)
− 2〈p, z〉 = 0,

(7)

and
c∗ =

|c (‖p‖2 + 1)− 2〈p, z〉|
‖(‖p‖2 − 1)z − 2(〈p, z〉 − c)p‖

, (8)

we just proved that
Tp(S(H) ∩ hc(z)) = S(H) ∩ hc∗(z∗)).

Notice that above the choices of z, c, z∗, and c∗ make S(H) ∩ hc(z) and S(H) ∩ hc∗(z∗)
spherical cross-sections in standard form.

Assume now that v ∈ H \S(H) and the spherical cross-sections in standard form S(H)∩
hcos θ1(z1) and S(H) ∩ hcos θ2(z2), θ1 6= θ2, generate the same cone with vertex v. Without
loss of generality we can assume θ2 6= π/2. This guarantees that in hcos θ2(z2), z2 and θ2 are
unique. Consequently, Equations (7) and (8) above yield

z2 =
|cos θ1 (‖v‖2 + 1)− 2〈v, z1〉|
cos θ1 (‖v‖2 + 1)− 2〈v, z1〉

· (‖v‖2 − 1)z1 − 2(〈v, z1〉 − cos θ1)v

‖(‖v‖2 − 1)z1 − 2(〈v, z1〉 − cos θ1)v‖
,

cos θ2 =
|cos θ1 (‖v‖2 + 1)− 2〈v, z1〉|

‖(‖v‖2 − 1)z1 − 2(〈v, z1〉 − cos θ1)v‖
.

(9)

Via Equation (6), the Equations (9) are equivalent to(
cos θ1

(
‖v‖2 + 1

)
− 2〈v, z1〉

)
z2 = cos θ2

(
(‖v‖2 − 1)z1 − 2(〈v, z1〉 − cos θ1)v

)
,∣∣cos θ1 (‖v‖2 + 1

)
− 2〈v, z1〉

∣∣ = sin θ1 cos θ2
sin θ2

∣∣‖v‖2 − 1
∣∣ . (10)

After some routine algebra, from (10) we get

2(〈v, z1〉 − cos θ1) sin θ2v =



(‖v‖2 − 1) (sin θ2z1 − sin θ1z2),

if
2(〈v, z1〉 − cos θ1)

‖v‖2 − 1
< cos θ1,

(‖v‖2 − 1) (sin θ2z1 + sin θ1z2),

if
2(〈v, z1〉 − cos θ1)

‖v‖2 − 1
> cos θ1.

(11)

Notice that since θ1 6= θ2 and z1, z2 ∈ S(H), in either form of (11) we must have 〈v, z1〉 −
cos θ1 6= 0. This means that v must be of the form

v =
1

λ
(sin θ2z1 − sin θ1z2) or v =

1

µ
(sin θ2z1 + sin θ1z2), (12)

for suitable non-zero real scalars λ and µ. A straightforward calculation shows that for the
expressions (12) of v to satisfy (11) it is necessary that both λ and µ satisfy the same quadratic
equation σ2 − 2 sin θ2 cos θ1 + (sin2 θ2 − sin2 θ1) = 0, whose roots are sin(θ2 ± θ1).
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It is easy to check now that when v =
sin θ2

sin(θ2 ± θ1)
z1 −

sin θ1
sin(θ2 ± θ1)

z2 (the signs corre-

spond), then
2(〈v, z1〉 − cos θ1)

‖v‖2 − 1
=

sin(θ2 ± θ1)
sin θ2

.

Obviously, only the minus sign meets the restrictions imposed on acceptable vertices by the
first half of Equation (11), which leads to the correct vertex

v− =
sin θ2

sin(θ2 − θ1)
z1 −

sin θ1
sin(θ2 − θ1)

z2.

Likewise, when v =
sin θ2

sin(θ2 ± θ1)
z1 +

sin θ1
sin(θ2 ± θ1)

z2, again it follows that

2(〈v, z1〉 − cos θ1)

‖v‖2 − 1
=

sin(θ2 ± θ1)
sin θ2

.

In the equation directly above only the plus sign works now, and so the valid vertex becomes

v+ =
sin θ2

sin(θ2 + θ1)
z1 +

sin θ1
sin(θ2 + θ1)

z2.

Finally, the hypotheses 〈z1, z2〉 6= ± cos(θ1 − θ2) guarantee that v± /∈ S(H). Also, it is easy
to see that v+ 6= v−. The proof of the lemma is complete.

3. Main results

Classical Pascal Theorem in Hilbert Spaces. Let S(H) ∩ hcos θ1(z1), S(H) ∩ hcos θ2(z2),
and S(H)∩hcos θ3(z3) be three spherical cross-sections in standard form, pairwise satisfying the
hypotheses of the Cone Lemma. Let v±12, v

±
13, and v±23 be the vertices of the cones guaranteed

to exist by the Cone Lemma, where the indices indicate the hyperplanes associated to them.
Then for any choice of two vertices w12 ∈ {v±12} and w13 ∈ {v±13} there is a vertex w23 ∈ {v±23}
such that w12, w13, and w23 are collinear.

Proof. There are four possible choices for the vertices w12 and w13. One of the great com-
putational strengths of the Cone Lemma is that the vertices v± are interchangeable: If one
allows for an angle θ to be negative (−π/2 ≤ θ < 0) then the cross-section does not change
since cos(−θ) = cos θ, however the vertices are flipped. This observation allows to prove the
Theorem by assuming, without loss of generality, that

w12 = v+12 =
sin θ2

sin(θ2 + θ1)
z1 +

sin θ1
sin(θ2 + θ1)

z2,

w13 = v+13 =
sin θ3

sin(θ3 + θ1)
z1 +

sin θ1
sin(θ3 + θ1)

z3.

We will show then that

w23 := v−23 =
sin θ3

sin(θ3 − θ2)
z2 −

sin θ2
sin(θ3 − θ2)

z3
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belongs to the line through w12 and w13, i.e., there is t ∈ R such that

w23 = tw12 + (1− t)w13

or equivalently,

sin θ3
sin(θ3 − θ2)

z2 −
sin θ2

sin(θ3 − θ2)
z3 = t

(
sin θ2

sin(θ2 + θ1)
z1 +

sin θ1
sin(θ2 + θ1)

z2

)
+ (1− t)

(
sin θ3

sin(θ3 + θ1)
z1 +

sin θ1
sin(θ3 + θ1)

z3

)
.

(13)

Since generically z1, z2 and z3 can be chosen to be linearly independent in H if dimRH ≥ 3,
the only chance for (13) to hold true is to have

t
sin θ2

sin(θ2 + θ1)
+ (1− t) sin θ3

sin(θ3 + θ1)
= 0,

or

t =
sin θ3 · sin(θ2 + θ1)

sin θ1 · sin(θ3 − θ2)
. (14)

Amazingly, it works, as for the choice of t given by (14) it is easily seen that the coefficients
of z2, respectively z3, on both sides of (13) are the same.

One can infer that the proof of Pascal’s Theorem is more natural when dimRH ≥ 3,
since in the truly classical Pascal case (H = R2) one might be led to believe that the linear
dependence of z1, z2, and z3 should play a role. As we have just seen, it does not.

In preparation for our next result we remind the reader that if S is a non-empty subset
of H, the linear span of S, l(S), is by definition the intersection of all the linear varieties of
H containing S. l(S) is obviously a linear variety, and moreover

l(S) =

{
n∑
j=1

tjsj | sj ∈ S, tj ∈ R,
n∑
j=1

tj = 1, n = 1, 2, . . .

}
.

Generalization of Pascal Theorem. For some arbitrary index set I such that 0 /∈ I
assume given S(H) ∩ hcos θ0(z0), S(H) ∩ hcos θi(zi), i ∈ I, spherical cross-sections in standard
form such that for any pair (0, i), i ∈ I, respectively (i, j) ∈ I × I, i 6= j, the associated cross-
sections satisfy the hypotheses of the Cone Lemma, with corresponding vertices v±0i, respectively
v±ij . Fix one vertex w0i ∈ {v±0i} for each i ∈ I. Then for each (p, q) ∈ I × I, p 6= q, one of the
two vertices v±pq belongs to l ({w0i | i ∈ I}), the linear span of {w0i | i ∈ I}.

Proof. The proof is trivial since by the previous theorem for any (p, q) ∈ I × I, p 6= q, there
is one of v±pq which belongs to l ({w0p, w0q}) ⊂ l ({w0i | i ∈ I}).

Obviously, the theorem is relevant only if l ({w0i | i ∈ I}) 6= H. If dimRH = n, n ≥ 2,
the largest cardinality of I for which the theorem is interesting (for generic choices of cross-
sections) is n, for a total of n+1 cross-sections. In such a case an additional n(n−1)/2 points
are found to belong to the linear span of n points.
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