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Abstract. J.W. Gaddum proved in 1952 that the solid angles sum of a tetra-
hedron is less than 2π by finding the bound to the sum of six angles between four
vertical segments from an interior point to the faces of the tetrahedron. We will
give a new proof of this result by embedding the tetrahedron into a parallelepiped.
In addition, we will give the bound on the sum of the four solid angles of a right
tetrahedron using direction angles, and prove that the sum of the four solid angles
of an equifacial tetrahedron is at most that of a regular tetrahedron.
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1. Introduction

The sum of the three angles of a triangle is π. However, it is surprising to note that the sum
of the four solid angles of a tetrahedron is not fixed. It was only 1952 when Gaddum [4]
proved that the sum of the four solid angles of a tetrahedron ω is less than 2π. He proves this
by first drawing four perpendicular segments from an interior point to its faces, and adding
six angles between them and called it R. Then he proves that R ≥ 3π, and concludes that
ω ≤ 2π by observing ω = 8π − 2R. Our approach in Theorem 1 is to embed a tetrahedron
into a parallelepiped, and deduce that ω ≤ 2π from the solid angle sum of the parallelepiped
being 4π. In Corollary 1.1, we show that the sum of six dihedral angles of a tetrahedron must
be between 2π and 3π.

Using direction angles, we will investigate the bound of the sum of four solid angles and the
sum of dihedral angles of a right tetrahedron (trirectangular tetrahedron) in Theorem 2. From
this result, we will prove that the sum of the four solid angles of an equaifacial tetrahedron
is at most that of a regular tetrahedron (Theorem 3). From this, we obtain the equation
π − 2 cos−1 1

√
3

= cos−1 1
3
.

For your interest, papers [1], [3], [6], [8], and [9] mostly deal with the measurements
of dihedral angles and solid angles of tetrahedra. Among them, Abu-Saymeh and Hajja
[1] proved that the solid angle ∠(O) at O of a tetrahedron OABC is given by cos∠(O) =
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1
3

[cos∠AOB + cos∠BOC + cos∠COA]. F. Eriksson [3] proved that if ~a = OA, ~b = OB,

~c = OC are three vectors in R3, then tan
∠(O)

2
=

~a ·~b× ~c
1 + ~a ·~b+~b · ~c+ ~c · ~a

. These results are
interesting, but we did not use them in this paper. Lagarius, Richardson and Lindsey
[7] dealt with an inequality comparing the solid angle at a vertex of a tetrahedron to the area
of the opposite face (see Remark 1 below for more detail).

2. Sum of solid angles

Let us begin this section by explaining the notion of solid angles using spherical geometry.

Definition 1. Let A, B, and C be points on a unit sphere, not all on a great circle. A
spherical triangle ABC is the triangle whose edges AB, BC, and AC are parts of great circles
on the unit sphere. The angle at A of the spherical triangle ABC is the angle between the
tangent lines to the great circles AB and AC at A. If points A, B, and C are points on a
great circle, the angle at A is π.

The next lemma is known, and we leave the proof to the readers.

Lemma 1. Let A, B, and C be points on a unit sphere. Let α, β, γ be the angles of the
spherical triangle ABC at A, B, and C, respectively. Then the area of the spherical triangle
is given by α + β + γ − π.

Definition 2. Let OABC be a tetrahedron. Let A1, B1, and C1 be points of intersections of
the unit sphere centered at O with the rays OA, OB, and OC, respectively. The solid angle
at the vertex O of the tetrahedron OABC is defined to be the area of the spherical triangle
A1B1C1, and we denote it by ∠(O;ABC) or ∠(O) when there is no confusion. Sometimes, a
solid angle of a tetrahedron is also called a trihedral angle.

We can generalize the solid angle of a tetrahedron to the solid angle of a polyhedron. Our
goal in this section is to prove ∠(O) + ∠(A) + ∠(B) + ∠(C) < 2π.

Lemma 2. The sum of eight solid angle of a parallelepiped is 4π.

The proof is left to the readers.

Theorem 1. The sum of the four solid angles of a tetrahedron is less than 2π.

Proof. Let OABC be a tetrahedron. Let Ω be the parallelepiped defined by vectors
−→
OA,−−→

OB, and
−→
OC. Let O′ , A′ , B′ , C ′ be diagonally opposite vertices of vertices O, A, B, C in

Ω, respectively. Let ω = ∠(O) + ∠(A) + ∠(B) + ∠(C), the sum of four solid angles of the
tetrahedron OABC.
Since the tetrahedra OABC and O

′
A

′
B

′
C

′ are congruent, the sum of four solid angles of
O

′
A

′
B

′
C

′ is also ω. Let λ be the sum of six solid angles of the octahedron ABCA
′
B

′
C

′ .
Since the union of OABC, O′

A
′
B

′
C

′ , and ABCA
′
B

′
C

′ is the parallelepiped Ω, we have
2ω + λ = 4π by Lemma 2. Since λ > 0, we have ω < 2π. This proves the theorem.
Alternately, we divide Ω by the plane ABA′

B
′ into two equal polyhedra, OAB′

A
′
BC and

O
′
A

′
BAB

′
C

′ , each having solid angle sum of 2π. Since the polyhedron OAB′
A

′
BC contains

the tetrahedron OABC, the sum ω of the four solid angles of OABC is less than 2π. This
also proves the theorem.
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Definition 3. Let OABC be a tetrahedron. The dihedral angle at the edge OA of the
tetrahedron OABC is the inner angle between the two faces OAB and OAC, and it is denoted
by (OA;OABC), or OA for short if there is no confusion.

Lemma 3. Let OABC be a tetrahedron. Let A1, B1 and C1 be points of intersections with
the unit sphere centered at O and the rays OA, OB, and OC, respectively. Then the angle at
A1 of the spherical triangle A1B1C1 is the same as the dihedral angle OA of the tetrahedron
OABC.

The proof is left to the readers.
The next lemma is about the relation between dihedral and solid angles.

Lemma 4. Let OABC be a tetrahedron. Then ∠(O) = OA + OB + OC − π. In particular,
the relation between the sum of solid angles and the sum of dihedral angles is given by

∠(O) + ∠(A) + ∠(B) + ∠(C) = 2 · [OA+OB +OC + AB +BC + CA− 2π].

Proof. Combining Lemmas 1 and 3, we have ∠(O) = OA + OB + OC − π. This implies that
∠(A) = OA+AB + CA− π, ∠(B) = AB +OB +BC − π, ∠(C) = CA+BC +OC − π. Hence,
we have ∠(O) + ∠(A) + ∠(B) + ∠(C) = 2 · [OA+OB +OC +AB +BC + CA− 2π].

Corollary 1.1. The sum of the six dihedral angles of a tetrahedron is between 2π and 3π.

Proof. Let OABC be a tetrahedron. By Theorem 1 and Lemma 4, we have 0 < 2 · [OA+OB+

OC+AB+BC+CA−2π] < 2π. This shows that 2π < [OA+OB+OC+AB+BC+CA ] < 3π.

Remark 1. (1) As pointed out in [4], the bounds in Theorem 1 and Corollary 1.1 cannot be
improved.
(2) If (ABC) is the area of the face ABC of the tetrahedron OABC, and if

α =
∠(O)

∠(O) + ∠(A) + ∠(B) + ∠(C)
and β =

(ABC)

(ABC) + (OBC) + (OAB) + (OAC)
,

then β ≥ 1

csc (πα) + 1
≥ α according to [7].

3. Right tetrahedra

We will investigate the sum of four solid angles of a right tetrahedron.

Definition 4. A tetrahedron OABC is a right tetrahedron with right angle at O if three faces
OAB, OAC, and OBC are right triangles with all right angles at the vertex O. Since the
dihedral angles OA, OB, and OC are π

2
, we have ∠(O) = π

2
+ π

2
+ π

2
− π = π

2
by Lemmas 1

and 4. This is the motivation of calling OABC a right tetrahedron. A right tetrahedron is
called trirectangular tetrahedron in [2].

Lemma 5. Let P = (x, y, z), where x, y, z > 0, be an arbitrary point in the first octant such
that x2 + y2 + z2 = 1. Let Λ be the plane through P normal to the vector

−→
OP = 〈x, y, z〉. Let

O be the origin and let A,B,C be the x, y, and z intercepts of the plane Λ, respectively.
(1) Then cosBC = x, cosCA = y, and cosAB = z.
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(2) Let α be the angle between
−→
OP and 〈1, 0, 0〉, β the angle between

−→
OP and 〈0, 1, 0〉, and

γ the angle between
−→
OP and 〈0, 0, 1〉. (The angles α, β, γ are the direction angles of

the vector
−→
OP .) Then α = BC, β = CA, γ = AB.

(3) 3 cos−1 1
√
3
≤ α + β + γ < π. The equality holds only when x = y = z = 1

√
3
.

Proof. (1) and (2): Since
−→
OP and 〈0, 0, 1〉 are normal vector to the planes ABC and OAB,

respectively, and since γ is the angle between
−→
OP and 〈0, 0, 1〉, the dot product gives us

cosAB =
−→
OP · 〈0, 0, 1〉 = z = cos γ. Similarly, we have cosBC = x = cosα, and cosCA =

y = cos β. Hence, α = BC, β = CA, γ = AB.
(3): Let f(x, y, z) = cos−1x + cos−1y + cos−1z, and g(x, y, z) = x2 + y2 + z2. We want to
minimize f(x, y, z) subject to g(x, y, z) = 1, x, y, z > 0. We use Lagrange multipliers method.
We have the gradients

∇f(x, y, z) =

〈
− 1√

1− x2
, − 1√

1− y2
, − 1√

1− z2

〉
and ∇g(x, y, z) = 〈2x, 2y, 2z〉. From the equation ∇f(x, y, z) = λ∇g(x, y, z), we have −2λ =

1

x
√
1− x2

=
1

y
√
1− y2

=
1

z
√
1− z2

. This shows that the minimal value of f(x, y, z) = cos−1x+

cos−1y + cos−1z is achieved only when x = y = z = 1
√
3
. We have f(x, y, z) ≥ 3 cos−1 1

√
3
. By

(1) and (2), we have f(x, y, z) = α + β + γ ≥ 3 cos−1 1
√
3
.

On the boundary of {(x, y, z) : x2 + y2 + z2 = 1, x, y, z > 0}, i.e., when at least one of x, y, z is
0, we have f(x, y, z) = cos−1x+cos−1y+cos−1z = π. This shows that f(x, y, z) = α+β+γ < π.

Theorem 2. Let OABC be a right tetrahedron with right angle at O. Then
(1) 3 cos−1 1

√
3
≤ AB +BC + CA < π.

The equality on the left side holds only when ABC is an equilateral triangle.
(2) 6 cos−1 1

√
3
− 3

2
π ≤ ∠(A) + ∠(B) + ∠(C) < 1

2
π.

The equality on the left side holds only when ABC is an equilateral triangle.
(3) 6 cos−1 1

√
3
− π ≤ ∠(O) + ∠(A) + ∠(B) + ∠(C) < π.

The equality on the left side holds only when ABC is an equilateral triangle.

Proof. (1): This is by Lemma 5, parts (2) and (3).
(2): Since OA = OB = OC = 1

2
π, we have

∠(A) = OA + AB + AC − π = AB + AC − 1
2
π, ∠(B) = AB + BC − 1

2
π, and

∠(C) = AB + BC − 1
2
π. So ∠(A) + ∠(B) + ∠(C) = 2[AB + BC + AC] − 3

2
π, or

AB + BC + AC = 1
2

[
3
2
π + ∠(A) + ∠(B) + ∠(C)

]
. Hence, from (1), we have 3 cos−1 1

√
3
≤

1
2

[
3
2
π + ∠(A) + ∠(B) + ∠(C)

]
< π or 6 cos−1 1

√
3
− 3

2
π ≤ ∠(A) + ∠(B) + ∠(C) < 1

2
π.

(3): This is from part (2) and by noting that ∠(O) = 1
2
π.

4. Equifacial tetrahedra

We will label a tetrahedron by ABCD rather than OABC in this section because of the
symmetrical nature of an equifacial tetrahedron ABCD.
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Definition 5. A tetrahedron ABCD is equifacial if AB = CD, AC = BD, and AD = BC.
So four triangular faces of an equifacial tetrahedron are congruent and AB = CD, AC = BD,
AD = BC (see Exercise 15 on page 102 in [2]). An equifacial tetrahedron is also called an
isosceles tetrahedron.

The next lemma is Lemma 1 of [5], so we omit its proof.

Lemma 6. If ABCD is an equifacial tetrahedron, then there is a rectangular box Ω that
contains an equifacial tetrahedron ABCD so that the six edges of the tetrahedron ABCD are
diagonals of six faces of Ω (see Figure 1. We say the rectangular box Ω is said to diago-
nally embed the tetrahedron ABCD.) Conversely, the diagonally embedded tetrahedron in a
rectangular box is equifacial.

Figure 1: Ω is diagonally embedding the tetrahedron ABCD.

Theorem 3. Let ABCD be an equifacial tetrahedron.
(1) 0 < ∠(A) + ∠(B) + ∠(C) + ∠(D) ≤ 8

(
π − 3 cos−1 1

√
3

)
. Equality on the right holds

only when ABCD is a regular tetrahedron.

(2) 2π < [AD +AB +AC +BC +DC +DB] ≤ 6
(
π − 2 cos−1 1

√
3

)
. Equality on the right

holds only when ABCD is a regular tetrahedron.
(3) π − 2 cos−1 1

√
3

= cos−1 1
3
. So the right side of (2) can be replaced by 6 cos−1 1

3
.

Proof. (1) By Lemma 6, we assume that ABCD is embedded in a rectangular box Ω. Let
A

′
, B

′
, C

′
, D

′ be the diagonally opposite points of A,B,C,D in Ω. Let σ = ∠(A
′
;BCD) +

∠(B;A
′
CD)+∠(C;A

′
BD)+∠(D;A

′
BC), the sum of four solid angle of the right tetrahedron

A
′
BCD. Since the right tetrahedra, AB′

CD, ABC ′
D, and ABCD′ are congruent to A′

BCD,
the sum of solid angles for each of these is σ. Let ω = ∠(A) +∠(B) +∠(C) +∠(D), the solid
angle sum of the equifacial tetrahedron ABCD. Since the solid angle sum of the rectangular
box Ω is 4π, we have 4π = 4σ + ω or σ = π − 1

4
ω. Substituting it to 6 cos−1 1

3
− π ≤ σ < π

in Theorem 2(3), we have 0 < ω ≤ 8
(
π − 3 cos−1 1

√
3

)
. The equality holds when BCD is an

equilateral triangle. But when BCD is an equilateral triangle, the tetrahedron ABCD is a
regular tetrahedron.
Proof of (2): By Lemma 4, we have

∠(A) + ∠(B) + ∠(C) + ∠(D) = 2 · [OA+OB +OC + AB +BC + CA− 2π].
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By the part (1), we have

0 < 2 · [OA+OB +OC + AB +BC + CA− 2π] < 8
(
π − 3 cos−1

1√
3

)
,

or

2π < [OA+OB+OC+AB+BC+CA−2π] < 4
(
π−3 cos−1

1√
3

)
+2π = 6

(
π−2 cos−1

1√
3

)
.

The equality on the right holds only when ABCD is a regular tetrahedron.
Proof of (3): The dihedral angle of a regular tetrahedron is cos−1 1

3
. From the part (2), the

sum of the six dihedral angles of a regular tetrahedron is 6
(
π − 2 cos−1 1

√
3

)
. Hence, we have

π − 2 cos−1 1
√
3

= cos−1 1
3
.

Remark 2. Let A = (a, 1, 1), B = (a,−1,−1), C = (−a, 1,−1), and D = (−a,−1, 1). Then
ABCD is an equifacial tetrahedron. We can show that

cosAD =
1

1 + 2a2
, cosAB =

−1 + 2a2

1 + 2a2
, and cosAC =

1

1 + 2a2
.

By letting a → ∞, we have AD = BC → π

2
, AB = CD → 0, and AC = BD → π

2
. This

shows that, in Theorem 3(2), the sum of the six dihedral angles can be made as close to 2π
as possible.
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