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Abstract. This is an overview on ball packings in different geometries. How-
ever, parallel to reported mathematical results we discuss various appearances of
related phenomena in arts and architecture.
The ball (or sphere) packing problem with equal balls, without any symmetry
assumption, in a 3-dimensional space of constant curvature (E3, H3, S3) is a very
intensively researched area of geometry. In the Euclidean space E3 the famous
Kepler conjecture was settled by Thomas Hales and in other spaces of constant
curvatures (H3, S3) was partially solved by Böröczky and Florian. However,
in the hyperbolic space H3 many open questions still need to be answered. In
each considered geometry to every optimal ball packing configuration belongs a
tiling, e.g., Dirichlet-Voronoi tiling. Their tile types play important roles in the
crystallography.
Throughout human history the phenomenon of space and its orderliness has been
intriguing artists as well, who, at many instances has intuited spatial configu-
rations that bear striking resemblances with the outcomes of scientific research
done in this field. In an attempt to blur a rather artificial boundary between the
sciences and the arts, the ball packing problems unfolded in this article will be
illustrated not only with mathematical visuals but with relatable artefacts and
short introductions to their contexts.
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1. Introduction: the separation of the sciences and the arts

Mathematics as we know it is a product of cultures which genesis histories is an account on how
order conquers the primordial chaos. In such tales, the bright divine imposes predictable order
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over the dark and uncanny unruliness. The exploration into the nature of the triumphant
laws is the most respectable activity in such cultures as it is believed that a cooperation
with natural forces is the basis of the successful and lasting functioning of society as a whole.
In the early history of civilizations with such values, there was a common understanding in
society about the operation of the world and the place and purpose of humans within it.
Creation was the enquiry, understanding and collaboration with forces personified by divine
beings. Creative activity has taken many forms without differentiating it to be scientific or
artistic. Today we know only a few material manifestations of such ancient intelligences, and
can formulate only vague ideas about the nature of the intelligence itself.

With time, the study of the forces at play maintained its divine prestige, only the forces
themselves were gradually deprived of their godlike status. Anaximander (∼610 –∼546 BC)
is the first recorded thinker who proposed a view on nature as the manifestation of underlying
geometric harmonies and not as the caprice of Gods. He placed the origins of the world
on a rational basis by introducing the abstract concept of apeiron, the source from which
opposites were separated through which genesis gradually took place. The secret of creation
thus became mathematical in nature and the privilege of the initiated few, divorced from the
daily activities and needs of the common populace.

Physical creation (what we today call art ) came to be called ‘techné’, a mimesis of tangible
reality with a relatively law social status and was not included into the realm of the ‘liberal
arts’ as opposed to arithmetic and geometry. During the Renaissance, considerable effort
was invested to elevate the status of the arts to equal sciences. The pioneering role was
played by the artisan-impresario Filippo Brunelleschi (1377–1446) and the humanist Leon
Battista Alberti (1404 –1472). Brunelleschi introduced his perspective method in 1425
on two paintings (today lost) [8] and Alberti employed his expertise in optics to codify
Brunelleschi’s findings in an easy-to-follow, step-by-step form in his book De Pictura (On
Painting, 1434) [1]. While the former’s approach was still in the spirit of art as a mirror
of Nature and God’s brilliance revealed by geometry, Alberti’s ‘geometric figuring’ was to
provide means to the representation of a wordly perfection framed by geometry.

Although the outstanding architects, artists and scientist of the Renaissance shared com-
mon intellectual grounds, the language of mathematics and science in general came to be so
technical with time, that only a few giants, such as Leonardo da Vinci (1452 –1519) and
Johann Wolfgang von Goethe (1749 –1832) ventured to carry out work of scientific nature
— which was received with little appreciation from their respective scientific communities.
Isaac Newton (1643 –1727) was the last scientist who attributed a role — that of the de-
signer and the overseer — to God in the operation of the universe. Even with God on board,
he concentrated rather on demonstrating a proof for the calculation of the acting forces that
allow for their prediction and control. The deepening an understanding of the qualities of
these forces to uncover ways to cooperate with them harmoniously was an aim pursued rather
by artists.

This gradual mathematizing of the universe and an ever-increasing focus on its mechanical
working was fuelled by an almost religious faith in technology’s potential to bring salvation
to humans already during their earthly existence. The real fascination, however, was with
the powers of rational science of which technology was only a by-product. With industrializa-
tion, a completely new element in human thought occurred: the view on human labour as a
subhuman drudgery. The Saint Benedictine dictum, “laborare est orare”, the conviction that
humans may perfect themselves through work became profoundly violated. Technological
progress and the resulting industrialization indeed created working conditions that degraded
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work to a neither pleasurable nor sacred activity.

The ills of a system that ceases to concern itself with the spirit became first apparent on
the material plane, and manual labourers were the first to rebel against being robbed from
their creative faculties. But, eventually they ended trading the joy and satisfaction they used
to find in their work for amenities, safety and commodities. Beauty and sensibility became
relegated to spare time, the only part of life when most people take pleasure in themselves as
creative humans. “. . . in a normal society, the artist is not a special kind of man, but every
man is a special kind of artist, and there is no such hard distinction between the fine arts and
others . . . ” claimed the artist-workman Eric Gill (1882 –1940), joining the long lineage of
the English tradition of radical thought that has been addressing these issues since the dawn
of industrialisation.

Along this generic and thus inexorably oversimplified introduction, present authors are
equally aware of the many attempts that have been made in modern times both from the
artists’ and the scientists’ side to establish a common platform to mingle the artistic and the
scientific experience. The aim is to contribute to this ongoing process by placing side by side
visually similar but in their origin strikingly different phenomena. No further speculation
is intended beyond this juxtaposition. It is believed that a recognition of unity in variety
inspires the interchange of ideas and in turn kindles the creative powers of all backgrounds.

In Section 2 we summarize the geometrical aspects of our investigations and in Section 3
we bring several examples from architecture and the arts where similarities to extremal tilings
occur.

2. Mathematical background of ball packings

2.1. Ball packings in spaces of constant curvature

Finding the densest (not necessarily periodic) packing of balls in the 3-dimensional Euclidean
space is known as the Kepler Conjecture: No packing of spheres of the same radius has a den-
sity greater than the face-centered cubic packing. This density can be realized by hexagonal
layers (in continuum many ways). This conjecture was first published by Johannes Kepler

in his monograph The Six-Cornered Snowflake (1611), this treatise inspired by his corre-
spondence with Thomas Harriot (see Cannonball Problem). In 1953, László Fejes Tóth

reduced the Kepler conjecture to an enormous calculation procedure that involved specific
cases, and later suggested that computers might be helpful for solving the problem. In this
way the above four hundred year mathematical problem has finally been solved by Thomas
Hales [11]. He had proved that the guess of Kepler from 1611 was correct. Sphere packing
problems usually concern arrangements of non-overlapping equal spheres (rather balls) which
fill space, where space is interpreted as the usual three-dimensional Euclidean space. However,
ball (sphere) packing problems can be generalized to the other 3-dimensional Thurston ge-
ometries, but a difficult problem is — similarly to the hyperbolic space — the exact definition
of the packing density.

Ball and horoball (horosphere) packings: In an n-dimensional space of constant curva-
ture En, Hn, Sn (n ≥ 2) let dn(r) be the density of n+1 spheres of radius r mutually touching
one another with respect to the simplex spanned by the centres of the spheres. L. Fejes

Tóth and H.S.M. Coxeter conjectured that in an n-dimensional space of constant cur-
vature the density of packing balls of radius r cannot exceed dn(r). This conjecture has
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been proved by C.A. Rogers in the Euclidean space En [29]. The 2-dimensional spherical
case was settled by L. Fejes Tóth in [9], and in [3] K. Böröczky proved the following
generalization:

In an n-dimensional space of constant curvature consider a packing of spheres of radius
r. In spherical space suppose that r <

π

4
. Then the density of each sphere in its Dirichlet-

Voronoi cell cannot exceed the density of n + 1 spheres of radius r mutually touching one
another with respect to the simplex spanned by their centres.

The above greatest density in H3 is ≈ 0.85328 which is not realized by packing with

equal balls. However, it is attained by the horoball packing (in this case r = ∞) of H
3

where

the ideal centers of horoballs lie on the absolute figure of H
3
. This ideal regular tetrahedron

tiling is given with Coxeter-Schläfli symbol {3, 3, 6}. Ball packings of hyperbolic n-space and
of other Thurston geometries are extensively discussed in the literature see, e.g., [3], [25] and
[37], where the reader finds further references as well.

In a previous paper [13] we proved that the above known optimal horoball packing ar-
rangement in H3 is not unique using the notions of horoballs in same and different types. Two
horoballs in a horoball packing are of the “same type” if the local densities of the horoballs to
the corresponding cell (e.g., D -V cell or ideal simplex) are equal (see [35]). We gave several
new examples of horoball packing arrangements based on totally asymptotic Coxeter tilings
that yield the above Böröczky–Florian packing density upper bound (see [4])

We have also found that the Böröczky–Florian type density upper bound for horoball
packings of different types is no longer valid for fully asymptotic simplices in higher dimensions
n > 3 (see [36]). For example in H4, the density of such optimal, locally densest horoball
packing is ≈ 0.77038 larger than the analogous Böröczky–Florian type density upper bound
of ≈ 0.73046. However, these horoball packing configurations are only locally optimal and
cannot be extended to the whole hyperbolic space H4.

In papers [14], [16] and [15] we have continued our previous investigation in Hn (n ∈ {4, 5})
allowing horoballs of different types. We gave several new examples of horoball packing
configurations that yield high densities (≈ 0.71645 in H4 and ≈ 0.59421 in H5) where horoballs
are centered at ideal vertices of certain Coxeter simplices, and are invariant under the actions
of their respective Coxeter groups.

Hyperball (hypersphere) packings: A hypersphere is the set of all points in Hn, lying
at a certain distance, called its height, from a hyperplane, on both sides of the hyperplane (cf.
[48] for the planar case). In hyperbolic plane H2 the universal upper bound of the hypercycle

packing density is
3

π

, and the universal lower bound of hypercycle covering density is
√
12

π

,

proved by I. Vermes in [47, 48, 49].

In [31] and [32] we analysed the regular prism tilings (simply truncated Coxeter or-
thoscheme tilings) and the corresponding optimal hyperball packings in Hn (n = 3, 4) and we
extended the method developed in [32] to 5-dimensional hyperbolic space (see [38]). In [39]
we studied the n-dimensional hyperbolic regular prism honeycombs and the corresponding
coverings by congruent hyperballs and we determined their least dense covering densities.
Furthermore, we formulated conjectures for candidates of the least dense hyperball covering
by congruent hyperballs in 3- and 5-dimensional hyperbolic spaces.

In [42] we discussed congruent and non-congruent hyperball packings of the truncated
regular tetrahedron tilings. These are derived from the Coxeter simplex tilings {p, 3, 3}
(7 ≤ p ∈ N) and {5, 3, 3, 3, 3} in 3- and 5-dimensional hyperbolic space. We determined
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the densest hyperball packing arrangement and its density with congruent hyperballs in H5

and determined the smallest density upper bounds of non-congruent hyperball packings gen-
erated by the above tilings in Hn (n = 3, 5).

In [40] we deal with the packings derived by horo- and hyperballs (briefly hyp-hor pack-
ings) in n-dimensional hyperbolic spaces Hn (n = 2, 3) which form a new class of the classical
packing problems. We constructed in the 2- and 3-dimensional hyperbolic spaces hyp-hor
packings that are generated by complete Coxeter tilings of degree 1 and we determined their
densest packing configurations and their densities. We proved using also numerical approx-
imation methods that in the hyperbolic plane (n = 2) the density of the above hyp-hor
packings arbitrarily approximate the universal upper bound of the hypercycle or horocy-

cle packing density
3

π

and in H3 the optimal configuration belongs to the {7, 3, 6} Coxeter

tiling with density ≈ 0.83267. Furthermore, we analyzed the hyp-hor packings in truncated
orthoschemes {p, 3, 6} (6 < p < 7, p ∈ R) whose density function is attained its maximum
for a parameter which lies in the interval [6.05, 6.06] and the densities for parameters lying in
this interval are larger that ≈ 0.85397.

In [41] we proved that if the truncated tetrahedron is regular, then the density of the
densest packing is ≈ 0.86338. This is larger than the Böröczky–Florian density upper bound
but our locally optimal hyperball packing configuration cannot be extended to the entirety
of H3. However, we described a hyperball packing construction, by the regular truncated
tetrahedron tiling under the extended Coxeter group {3, 3, 7} with maximal density ≈ 0.82251.

Recently, (to the best of author’s knowledge) the candidates for the densest hyperball
(hypersphere) packings in the 3-, 4- and 5-dimensional hyperbolic space Hn are derived by
the regular prism tilings which have been studied in [31], [32] and [38].

In [43] we considered hyperball packings in 3-dimensional hyperbolic space and developed
a decomposition algorithm that for each saturated hyperball packing provides a decomposi-
tion of H3 into truncated tetrahedra. Therefore, in order to get a density upper bound for
hyperball packings, it is sufficient to determine the density upper bound of hyperball packings
in truncated simplices.

In [45] we studied hyperball packings related to truncated regular octahedron and cube
tilings that are derived from the Coxeter simplex tilings {p, 3, 4} (7 ≤ p ∈ N) and {p, 4, 3}
(5 ≤ p ∈ N) in 3-dimensional hyperbolic space H3. We determined the densest hyperball
packing arrangement and its density with congruent and non-congruent hyperballs related to
the above tilings. Moreover, we prove that the locally densest congruent or non-congruent
hyperball configuration belongs to the regular truncated cube with density ≈ 0.86145. This is
larger than the Böröczky–Florian density upper bound for balls and horoballs. We described a
non-congruent hyperball packing construction, by the regular cube tiling under the extended
Coxeter group {4, 3, 7} with maximal density ≈ 0.84931.

In [44] we examined congruent and non-congruent hyperball packings generated by doubly
truncated Coxeter orthoscheme tilings in the 3-dimensional hyperbolic space. We proved
that the densest congruent hyperball packing belongs to the Coxeter orthoscheme tiling of
parameter {7, 3, 7} with density ≈ 0.81335. This density is equal — by our conjecture —
with the upper bound density of the corresponding non-congruent hyperball arrangements.

2.2. Formulation of the problem

Let X be one of the 3-dimensional geometries of constant curvature (E3, H3, S3) (see [37]).
In the present paper we consider ball packings where their symmetry group Γ is a fixed group
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of isometries of the space X.
In these geometries the geodesic curves are generally defined as having locally minimal arc

length between any two of their points (sufficiently close to each other). The equation systems
of the parametrized geodesic curves γ(τ) in our model can be determined by the general theory
of Riemann geometry. Then a geodesic sphere and ball can be usually defined as follows below.
We consider only those geodesic ball packings which are transitively generated by discrete
groups of isometries of X and the density of the packing is related to its Dirichlet-Voronoi
cells.

Definition. The distance d(P1, P2) between the points P1 ∈ X and P2 ∈ X is defined by the
arc length of the geodesic curve from P1 to P2.

Definition. The geodesic sphere of radius ρ (denoted by SP1
(ρ)) with centre at the point P1

is defined as the set of all points P2 in the space with the condition d(P1, P2) = ρ. Moreover,
we require that the geodesic sphere is a simply connected surface of the space X having no
self-intersection.

Definition. The body of the geodesic sphere of centre P1 and with radius ρ in space X is
called geodesic ball, denoted by BP1

(ρ), i.e., Q ∈ BP1
(ρ) iff 0 ≤ d(P1, Q) ≤ ρ.

In the following let Γ be a fixed group of isometries of X. Denote by d(P1, P2) the distance
of two points P1, P2 (see Definition above).

Definition. We say that the point set

D(K) = {P ∈ X : d(K,P ) ≤ d(Kg, P ) for all g ∈ Γ}

is the Dirichlet-Voronoi cell (D -V cell) to Γ around the kernel point K ∈ X.

Definition. We say that
ΓP = {g ∈ Γ : P g = P}

is the stabilizer subgroup of P ∈ X in Γ.

Definition. Assume that the stabilizer ΓK = I is the identity, i.e., Γ acts simply transitively
on the Γ-orbit of K ∈ X. Then let BK denote the greatest ball with centre K inside the D-V
cell D(K). Moreover, let ρ(K) denote the radius of BK . It is easy to see that

ρ(K) = min
g∈Γ\I

1

2
d(K,Kg).

Definition. If the stabilizer ΓK > I then Γ acts multiply transitively on the Γ-orbit of K ∈ X.
Then the greatest ball radius of BK is

ρ(K) = min
g∈Γ\ΓK

1

2
d(K,Kg),

where K belongs to a 0-, 1-, or 2-dimensional region of X (vertices, axes, reflection planes).

In both cases the Γ-images of BK form a ball packing BΓ
K with centre points KG.

Definition. The density of ball packing BΓ
K is

δ(K) =
Vol (BK)

VolD(K)
.
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It is clear that the orbit KΓ and the ball packing BΓ
K have the same symmetry group.

Moreover, this group contains the starting crystallographic group Γ:

SymKΓ = Sym BΓ
K ≥ Γ.

Definition. We say that the orbit KΓ and the ball packing BΓ
K is characteristic if SymKΓ =

Γ, otherwise the orbit is not characteristic.

2.2.1. Simply transitive ball packings

Let Γ be a fixed group of isometries in the space X. Our problem is to find a point K ∈ X
and the orbit KΓ for Γ such that ΓK = I and the density δ(K) of the corresponding ball
packing BΓ(K) is maximal. In this case the ball packing BΓ(K) is said to be optimal.

Our aim is to determine the maximal radius ρ(K) of the balls, and the maximal density
δ(K). The considered space groups could have free parameters. So we have to find the densest
ball packing for fixed parameters p(Γ), and then we have to vary them to get the optimal ball
packing

δ(Γ) = max
K, p(Γ)

(δ(K)).

We look for the optimal kernel point in a 3-dimensional region, inside of a fundamental domain
of Γ. The Dirichlet-Voronoi cell belonging to the optimal kernel point is called the optimal
cell of the considered group.

2.2.2. Multiply transitive ball packings

Similarly to the simply transitive case we have to find a kernel point K ∈ X and the orbit
KΓ for Γ such that the density δ(K) of the corresponding ball packing BΓ(K) is maximal,
but here ΓK 6= I. This ball packing BΓ(K) is called optimal, too. In this multiply transitive
case we look for the optimal kernel point K in possible 0-, 1-, or 2-dimensional regions L,
respectively. Our aim is to determine the maximal radius ρ(K) of the balls, and the maximal
density δ(K).

The considered space group can have also free parameters p(Γ). Then we have to find
the densest ball packing for fixed parameters, and vary them to get the optimal ball packing.
The Dirichlet-Voronoi cell belonging to the optimal kernel point is called the optimal cell of
the considered group

δ(Γ) = max
K∈L, p(Γ)

(δ(K)).

3. Intriguing examples in hyperbolic space H3

In this section, we identify some interesting overlaps between the artistic areas and the optimal
cells in hyperbolic space. Further examples can be found in other Thurston geometries, but
these will be studied in a further publication.

3.1. Hypersphere packings – Scottish stone balls

The optimal congruent and non-congruent hyperball packing arrangements impressively re-
semble some of the specimens out of the around 400 stone balls found predominantly in
Scotland that date back to between 3200 – 2500 BC. The size of these spheres is identical,
around 7 centimetres in diameter and almost half of them have six knobs, while other designs
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vary from 3 to 160 knobs. There are only speculations concerning the purpose of these balls.
They are obviously not by-products of a mathematical ability in our sense but are remnants
of a cultural conduct described in the introduction, when peoples intuited the existence of
natural forces and aimed to cooperate with them for their own benefit.

The widely diverse stone materials used for the execution and the varied quality of crafts-
manship of these balls suggests that the size and the form were the dominant factors of these
objects to fulfil their purpose. The time and skill required to fashion these pieces gives fur-
ther hints that they were precious possessions that are unlikely to be used as weapons or
games that involved throwing. They might have been instruments of fortune-telling, but it is
doubtful that they were owned by individuals as they were never found in burial sites or near
habitats.

The most daring explanations presume that in the preliterate societies the stone balls
served to store of information about celestial motions and about how this information can be
applied to the construction of calendrical monuments. According to such reckonings Neolithic
societies had an awareness about the workings of magnetism and telluric earth energy currents
and the stone balls formulated a network with the monolithic sites in which the stone pillars
acted as antennae and the spheres functioned as distributors of energy currents to enhance
crop growth among other beneficial effects. These ‘charged stones’ in turn might have been
used as healing devices.

In geometrical sense, in the paper [45] we studied congruent and non-congruent hyperball
(hypersphere) packings to the truncated regular cube and octahedron tilings. These are
derived from the Coxeter truncated orthoscheme tilings {4, 3, p} (6 < p ∈ N) and {3, 4, p}
(4 < p ∈ N), respectively, by their Coxeter reflection groups, in hyperbolic space H3. We
determined the densest hyperball packing arrangement and its density with congruent and
non-congruent hyperballs (see Figures 1 and 2).

We proved that the locally densest (non-congruent half) hyperball configuration belongs
to the truncated cube with density ≈ 0.86145, if we allow 6 < p ∈ R for the dihedral angle
2π/p. This local density is larger than the Böröczky–Florian density upper bound for balls
and horoballs. But our locally optimal non-congruent hyperball packing configuration cannot
be extended to the entire hyperbolic space H3. We determine the extendable densest non-
congruent hyperball packing arrangement to the truncated cube tiling {4, 3, p = 7} with
density ≈ 0.84931.

3.2. Horoball packings

In [17] we visualized the cases of optimal horoball arrangements. Four known packings of
hyperbolic 3-space give the optimal packing density of approximately 0.85328. They are
realized in the regular Coxeter honeycombs with Schläfli symbol {3, 3, 6} and {4, 3, 6}. These
honeycombs are totally asymptotic, and the packings involve horoballs (of different types)
centered at ideal vertices. In this paper we described a method to visualize regular horoball

packings of extended hyperbolic 3-space H
3
using the projective Cayley-Klein-Beltrami model

and the Coxeter symmetry group of the packing. Using our techniques we produced images
(different crowns) of the optimal horoball packings (see Figures 3, 4, 8, 9).

3.3. Football manifolds, fullerenes

The so-called football manifolds {5, 6, 6}, appearing in the Bolyai-Lobachevsky hyperbolic
space H3, can model “fullerenes” very probably. Recent extremal ball packing and covering
discoveries in H3 with systematic computations of the second author have convinced us that
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Figure 1: a,b) The optimal congruent and non-congruent hyperball packing arrange-
ments related to truncated octahedron tilings. c) The Scottish stone balls (3200 –2500
BC) (Photocredit: Johnbod https://commons.wikimedia.org/wiki/File:Kelvingrove_

Art_Gallery_and_MuseumDSCF0239_11.JPG, Kelvingrove Art Gallery and Museum)

non-Euclidean crystallography is and remain to be a timely research topic in the near future.
As an important principle, we mention that our football manifold seems to be minimal (left
for later publication), i.e., it does not cover a smaller manifold. But it is covered by a
hyperbolic dodecahedron manifold M1 = FD in Figure 5, described also by I. Prok [28]. The
classification of minimal compact 3-dimensional manifolds seems to be a very hard and timely
open problem. The 10 Euclidean 3-space forms are well-known from crystallography.

The inscribed ball into F̃G, and so the ball packing by the tiling under group G, symbolizes
the atomic (molecule) structure with the best known top density 0, 77147 . . . . Similarly, the

circumscribed ball of F̃G serves the best known loosest ball covering for hyperbolic space H3

[25] with density 1.36893 . . . . To this we need the generalization of the volume formula of N.I.

Lobachevsky for complete orthoscheme as we mention only by [25]. For other analogous
ball packing and covering problems, we refer to [25, 31, 32, 35, 39, 45], Figures 5, 8 and
Subsection 3.5.

https://commons.wikimedia.org/wiki/File:Kelvingrove_
Art_Gallery_and_MuseumDSCF0239_11.JPG
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Figure 2: a,b) The optimal congruent and non-congruent hyperball packing arrange-
ments related to truncated cube tilings. c) The Scottish stone balls (authors’ vector-
graphic reproduction of a photograph taken from https://www.ancient-origins.net/

artifacts-ancient-technology/geometric-stone-spheres-scotland-part-2-explana

tions-platonic-solids-021577)

3.4. Cobweb manifolds, nanotubes – the “Crystal Chainers” work

In [24] and [26] we have constructed a fixed point free group acting in hyperbolic space H3

with the given compact fundamental domain. In Figure 6 we have described the extended
reflection group G(6, 6, 6) = G(6) with fundamental domain W (6), as a half of the complete
Coxeter orthoscheme O(6), and glued together to the cobweb polyhedron Cw(6, 6, 6)=Cw(6)
as Dirichlet-Voronoi (in short D -V) cell of the kernel point Q by its orbit under the group
G(6). Now by Figure 6 we shall give the face identification of Cw(6), so that it will be

https://www.ancient-origins.net/
artifacts-ancient-technology/geometric-stone-spheres-scotland-part-2-explana
tions-platonic-solids-021577
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Figure 3: The optimal horoball packing related to regular ideal tetrahedron tiling in Beltrami-
Cayley-Klein model of H3

fundamental polyhedron of the fixed-point-free group, denoted also by Cw(6), generated just
by the face identifying isometries (as hyperbolic screw motions).

The densities of packing and covering are

δ(6, 6, 6) = Vol (B(r))/Vol (Cw) = 0.10503,

∆(6, 6, 6) = Vol (B(R))/Vol (Cw) = 6.05670,

respectively, and play relevant roles for our manifold.
The cobweb manifold as pictured in the Beltrami-Cayley-Klein model recalls the fantastic
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Figure 4: The optimal horoball packing related to regular ideal cube tiling in Beltrami-Cayley-
Klein model of H3

crystal worlds depicted by early 20th century artist, in our examples those that united for a
short period in 1919 –1920 in an intellectual exchange in Germany that is known to architec-
tural history as the Crystal Chain Correspondence. The turn of the 19th and 20th century
witnessed a triumphant march of technology, breaking through boundaries that were formerly
believed to be beyond the reach of humanity. The railway penetrated into hitherto hard to
access territories, facilitating an unprecedentedly intense removal of their natural resources
while linking them into the global current. Aviation technology made its most significant con-
quests of the sky and with the development of electric power transmission and distribution
technology arc lights replaced gas lamps in the city and streetcars stepped in the place of
horse-powered carriages.

Artists dedicated themselves to conceptualise a society that harmoniously coexisted with
these new unleashed forces for its own betterment. The ills of the industrialized society were
clearly seen and the awareness was there that the magnified power thus gained was equally
capable for the destruction as well as for the redemption of humanity. Writers, painters,
sculptors, architects all took up an almost apostolic mission to put forth ideas and visions
that demonstrated a spiritual wakening of humanity as a whole, aided by technology. With
our present mindset, it is almost impossible to interpret this activity as anything realistic.



K. Máthé, J. Szirmai: Optimal Cells in Crystallography and Arts 115

Figure 5: a,b) The hyperbolic football manifold (fullerene), realized by face pairing isometries
of the Archimedean solid {5, 6, 6}. c) Bobby Jaber’s porcelain buckminsterfullerene (see
description of artwork under Subsection 3.6) (authors’ vectorgraphic reproduction of image
taken from documentary ‘Porcelainia’, by Dave Maze https://vimeo.com/71474416)

Today the literary output of this period is considered to be the forerunner of science fiction
literature and the architectural projects are seen as mere fantasies, of which only the cinematic
arts may gain inspiration.

This revelation was very prompt, the initiator of the Crystal Chain Correspondence and

https://vimeo.com/71474416
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Figure 6: a,b) The cobweb (tube) manifold Cw(6) with its symbolic face pairing isome-
tries. Edge and vertex equivalence classes are indicated. Any point has a ball-like neigh-
bourhood (nanotube). A picture of its animation in Beltrami-Cayley-Klein model. c)
Wenzel Hablik: Freitragende Kuppel mit fünf Bergspitzen als Basis (1918/23/24), c©
Wenzel-Hablik-Foundation, Itzehoe. d) Bruno Taut: Glass Pavilion interior (1914)
https://hu.wikipedia.org/wiki/Fájl:Taut_Glass_Pavilion_interior_1914.jpg, pub-
lic domain because of age

the head of the Arbeitsrat für Kunst, the architect Bruno Taut (1880 –1938), and the Bo-
hemian painter and craftsman Wenzel Hablik (1881–1934) — whose works are shown in
Figure 6 — recognized during their correspondence the unfeasibility of their visions and
concluded that for the time being they record them in movie scripts and approach their ac-
quaintances in the motion picture industries for prospects of realization. This soon led to the
dissolution of the Crystal Chain Correspondence by the end of 1920 with Taut’s declaring:
“I am now finished with intuitive works, I almost hope forever” [23, p. 354] and went on to
take commissions for the design of low cost housing estates, accepted a city architect position
in Magdeburg before migrating to Japan and from there to Istanbul.

3.5. Hyperbolic dodecahedra – Roman dodecahedra and icosahedra

In [28] I. Prok investigated the dodecahedron tilings and proved that the dodecahedron has
12 essentially different face identifications which generate fixed point free orientation preserv-

Taut_Glass_Pavilion_interior_1914.jpg
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ing transformation groups acting simply transitively on the {5, 3, 5} tiling of the hyperbolic
space. These face identifications determine compact orientable hyperbolic manifolds. More-
over, he proved, considering their first homology groups that there are at least 7 different ones
among them. His algorithm also shows that compact non-orientable hyperbolic dodecahedron
manifolds do not exist. The first compact hyperbolic dodecahedron manifold was discovered
by C. Weber and H. Seifert. Then L.A. Best listed 7 more ones, however 3 of them
were not different. If we consider the hyperbolic dodecahedron tiling {5, 3, 6} then its vertices
are ideal points. In this case in [13] we investigated the horoball packings and we obtained:
The density of the optimally dense horoball arrangement for the dodecahedral Coxeter tiling
{5, 3, 6} is δ(5, 3, 6) ≈ 0.787251 (see Figure 7).

Our artistic examples for the hyperbolic dodecahedron, so-called Roman dodecahedra (see
Figure 7c) induce very similar speculations to those of the Scottish stones. About a hundred
have been found on sites across Rome’s northern provinces (today France, Germany, Wales,
and Hungary) and a single icosahedron, all dating back to 200–300 AD. The size of these
artefacts is similar to, although not as uniform in dimensions as that of the stone balls. Each
face of these hollow copper alloy polyhedra have different sized circular holes, in some cases
surrounded by incised pentagonal lines, and the vertices are accentuated with large spherical
projections. Measuring devices for calculating the trajectories of projectiles or that of celestial
motions to identify the ideal day for sowing, surveying tools are all candidates for the possible
uses of a Roman dodecahedron, without plausible demonstrations of its exact functioning.

The dodecahedral arrangement of these objects hints at their relatedness to the celestial
realm, a connection Plato alluded in his Timaeus. Here, drawing on Empedocles (∼494 –
∼434 BC), he equated the four elements and their variously proportioned mixtures as the
basis of all material manifestation in the cosmos. But Plato went further to develop his
own abstract-geometric version by linking each element to a regular solid. The fifth regular
solid, the dodecahedron was identified by him with the world as a whole. Many attributes
the declaration of the dodecahedron as the symbol of heaven to Plato, but it came from
Luca Pacioli (1445 –1517) in his Divina Proportione (1509), a short treatise on the sacred
meanings of the Golden Mean, that he assembled during his service in the Sforzas’ court,
where at the same time Leonardo was employed to realize military and artistic projects.

Leonardo was seeking help in order to master linear perspective for the design of the
Last Supper to the convent of Santa Maria della Grazie. In exchange for tuition, he sup-
plied Pacioli’s book with exquisite illustrations. Centuries later, the Romanian prince,
mathematician and philosopher Matila Ghyka (1881–1965) was a prime proponent of sacred
geometry, a cryptic body of knowledge whose mysteries are believed to have transmitted from
Pythagorean brotherhoods through the medieval guilds to the secret societies of 18th century
Europe. Ghyka claimed that old masters, especially Leonardo, had a mathematical key for
achieving beauty in art and included layout diagrams as an aid for the successful realization
of similar artistic goals. Salvador Dalí (1904 –1989) fell under the spell of these teachings,
went on to read Pacioli’s book and paid tribute to Leonardo with his The Sacrament of
the Last Supper (1955) (Figure 7d). In the composition, he applied Ghyka’s diagrams to
position his figures and painted a dodecahedron in the background to symbolize the cosmos.

Richard Buckminster Fuller (1895–1983) was one of the most charismatic figures in
the 20th century who ardently campaigned for a unified intellectual basis of the entire human
experience. His theoretic work consisted of a compilation of universal laws primarily of geo-
metric nature that he called Synergetic Energetic Geometry, or Synergetics. His philosophy
was partially Platonic, postulating that the universe or space had an underlying geometric
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Figure 7: a,b) Hyperbolic dodecahedra in different models and the optimal horoball related
to {5, 3, 6} tiling. c) Roman dodecahedra and icosahedron (3rd century AD). Two an-
cient Roman bronze dodecahedrons and an icosahedron (3rd century AD) in the Rheinis-
ches Landesmuseum in Bonn, Germany. The dodecahedrons were excavated in Bonn and
Frechen-Bachem; the icosahedron in Arloff. 6 May 2018, Kleon3 (Wikimedia Commons
user) https://commons.wikimedia.org/wiki/File:2018RheinischesLandesmuseumBonn,
Dodekaeder. d) Salvador Dalí: The Sacrament of the Last Supper, 1955, c©Fundació Gala-
Salvador Dalí / Bildrecht, Wien 2020

https://commons.wikimedia.org/wiki/File:2018 Rheinisches Landesmuseum Bonn
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Figure 8: Richard Buckminster Fuller’s Oval Intention tent (authors’ vectorgraphic re-
production of photographic image)

structure, but he condemned the Platonic and the generic mathematical approach that fol-
lowed from it, that the senses lead to a misperception of the world and the realm of pure
forms can be understood only through abstract rational cognition. Instead, he gave primacy
to a hands-on approach and advised model building exercises as the golden way to truly get
acquainted with the “shape of space”.

Besides his broad publishing activity, he travelled around the world in responding to in-
vitations from teaching institutions that organized public lectures and construction courses
under his guidance. It is hard to overestimate the continuing impact Bucky had on gen-
erations of architects, designers and artists. Among them was Bruce Hamilton, a product
developer at The North Face outdoor gear company between 1970 and 1989 who invited
Buckminster Fuller as an advisor to the design of a tent that exploited the sturdiness
of Bucky’s tensegrity structures and geodesic domes. The result of this collaboration, the
‘Oval Intention’ tent became available to public in 1975. The structural considerations live
on in all of The North Face ’s “lightweight, back-packable environment controlling devices” as
Fuller termed tents.

Another distant disciple of Bucky is Bobby Jaber, a retired high school science teacher,
who after 35 years of educational practice decided to base his work on his passion for the
capturing of nature’s symmetries in porcelain vessels, inspired both by his Arabic heritage and
by his fascination with Fuller’s geometric system, most of all with the buckminsterfullerene
C60 (Figure 5c), which he calls “supposedly the most beautiful molecule in existence”. Over
the decades Jaber refined a sculptural method to accomplish his pieces, starting from a solid
sphere that is gradually truncated with the carving of holes into it to arrive at the final hollow
shape. This painstaking method takes about a year to complete due to the slow evaporation
of water when aiming to maintain a state of equilibrium of moisture in the clay at every stage
of sculpting. Jaber has been employing a scientific rigour throughout the development and
perfection of this process. He can be regarded as a contemporary paraphrase of the Neolithic
craftsman who fashioned the stone balls or the Roman age coppersmiths who created the
Roman dodecahedra.
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Figure 9: a) Pineapple, porcelain bowl by Guy van Leemput, 2013, photography: Dirk
Theys. b) Guy van Leemput using an inflated balloon base to sculpt a vessel, photography:
Dirk Theys. c) Solar system, porcelain bowl by Guy van Leemput, 2016, photography:
Dirk Theys. d) Clay bubble bowl, Edit Bukrán, photography: Edit Bukrán. e,f) Con-
struction of a cob building by stacking mud balls in contemporary Transylvania, photography:
Egyed Ufo Zoltán.

3.6. Clay “ball packings” in art and architecture resembling some locally optimal
ball and horoball packings

For the same problem of how nature builds a sturdy structure with as little material as possible
that resulted in the ‘Oval Intention’ tent from the collaboration of Buckminster Fuller

and The North Face, mathematician and ceramist Guy van Leemput produces sculpted
porcelain bowls as answers, in his own words in a “search for the origin of all things”. This
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quest takes place both in intuited and in more mathematized forms (Leemput’s research
interest while a mathematician was ‘the monohedral and isohedral tilings of the plane’). For
his Pineapple-series (Figures 9a, 3, 4), he uses inflated balloon bases onto which he adds
minute porcelain slip balls which he flattens to achieve a continuous surface (Figure 9b). In
the context where spatial structures are to be expressed in materials that have their own
specific physical behaviour, in this case clay, spatial considerations are adapted to these
constraints and the visual outcome is less obvious of the concept itself — although strongly
sensible — to which Leemput’s other shown work, the Solar System (Figures 9c, 3, 4) is an
outstanding example.

Leemput’s technique for the making of the bowls is a refined version of a coarser archaic
way of creating pots of clay balls (which in most cases is mixed with coils). Formerly working
on large plane murals, in recent decades ceramist Edit Bukrán bends her tilings into curved,
mostly hyperbolic surfaces (Figure 9d). The reason for the bending is to allow the clayballs to
organise themselves into a self-supporting structure, where the individual spherical elements
are only glued with the final glazing of the plates. In a larger scale the similarly old earthen
building technique of cob wall construction employs the same principle to achieve a structure
in which the even division of clay particles and moisture, thus a balanced drying and weight
distribution is ensured (Figure 9e, f).

3.7. Concluding remarks

Space is a curious phenomenon that imposes challenges upon human cognition. The ability to
create an internal spatial map in order to navigate in it is an attribute in the animal kingdom
already due to the evolutionary pressure of survival. But when it comes to humans, and their
unique quality of a participatory approach in their own evolution, the question of the nature of
space is more of a dialogue with it rather than a passive response to its constraints. Although
our quest in finding parallels of visualizations of space — or records of spatial information — in
the worlds of arts and sciences is confined to superficial appearances, we find it a valuable path
to be followed. Optimal sphere packings in other homogeneous Thurston geometries represent
another huge class of open mathematical problems. For these non-Euclidean geometries only
very few results are known (e.g., [37]). Therefore, we find in the analysis of the optimal cells
of other Thurston geometries and their relationship to the arts a challenge worth to respond
to.
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