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Abstract. The aim of the present work is to study the configuration of two
n-sided polygons with cevians where the sides and cevians of the first polygon
enclose a constant angle with respective cevians and sides of the second polygon.
We prove the existence of such pairs of n-gons, where sides are exchanged with
cevians, and we call these polygons ‘entangled’. Among the findings, there are
generalizations of Miquel’s theorem and Simson lines.
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1. Introduction

In 1827, Jakob Steiner showed that for each triangle A1A2A3 with any point N outside the
sides there exists a triangle X1X2X3 with sides X1X2, X2X3, X3X1 respectively orthogonal to
the cevians A3N , A1N , A2N where the perpendiculars through A1, A2, A3 to the respective
sides X2X3, X3X1, X1X2, meet at a point M . Steiner called such triangles orthologic (see
[4, p. 55]). Obviously, the relation between orthologic triangles is symmetric.

In the following, we study a generalization, where <) PQXY denotes the measure of the
signed angle between the two lines PQ and XY , hence <)XY PQ = − <) PQXY modulo π.
In particular, 0 < φ :=<) PQXY < π means there is an anticlockwise rotation through the
angle φ which maps the line PQ to the line XY . Similarly, we use the symbol <) gh for the
measure of the signed angle between the two lines g and h. For triangles and also for polygons
we use the symbol Â for the measure of the interior angle at the vertex A.

Definition 1. Let A1A2 . . . An and X1X2 . . . Xn be two polygons and M,N two points where
N 6= A1, . . . , An and M 6= X1, . . . , Xn. Suppose that

φ = <) A1A2MX1 = <) A2A3MX2 = · · · = <) AnA1MXn

= <)NA1XnX1 = <)NA2X1X2 = · · · = <)NAnXn−1Xn,
(1)

or in other words, the sides of the first polygon enclose with respective cevians through M of
the second the same angle φ as well as the cevians through N of the first with the respective
sides of the second. Then the ordered pair of polygons is called entangled with the points M
and N as entanglement points and φ as the entanglement angle (see Figures 1 and 3).
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Figure 2. Entangled triangles

Figure 1: Entangled triangles A1A2A3 and X1X2X3 with entanglement
points M,N and entanglement angle φ.

In the case φ = 90◦, which shows up at Steiner’s orthologic triangles, the relation
between the two polygons is symmetric. Otherwise the exchange of the two polygons means
that the entanglement angle changes its sign.

The following lemma is a direct consequence of Definition 1.

Lemma 1. The entanglement of polygons and the entanglement angle φ are preserved if the
polygons with the respective points N and M are transformed independently by translations
or central dilations. A rotation of the second polygon and the point M through the angle α
preserves the entanglement but changes the entanglement angle to φ+ α modulo π.

A non orientation-preserving motion of one polygon destroys the entanglement.

2. Main theorem

Theorem 1. Let a polygon A1A2 . . . An together with an angle φ and two pointsM,N be given,
where N lies outside the sides of the first polygon. Then there exists a polygon X1X2 . . . Xn

such that the two polygons are entangled with entanglement points M,N and entanglement
angle φ.

For the proof, we recall the following lemma.

Lemma 2. The measure of the signed angle between two lines g, h remains unchanged if the
lines are replaced by two other lines g′, h′ where φ =<) gg′ =<) hh′.
Conversely if two angles with <) gh =<) g′h′ are given, then φ =<) gg′ =<) hh′.
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Proof. There is an orientation-preserving motion with g 7→ g′ and h 7→ h′ provided that g
and h are not parallel.

We split the proof and begin with triangles.

2.1. Entangled triangles

Proof. [Theorem 1 for n = 3] Let the triangle A1A2A3 together with the pointsM,N and any
angle φ with 0 ≤ φ < π be given. The numbering of the triangle is anticlockwise. We show
the existence of a second triangle X1X2X3 by construction (see Figure 1).
We draw the lines through M which enclose with the respective sides A1A2, A2A3, A3A1 the
given angle φ and denote there points of intersection with the respective sides with B1, B2,
B3. On MB1 we choose a point X1 6= M . Through X1 we draw the line which encloses with
NA2 at Y1 the angle φ. It intersects MB2 at the point X2.
Then, we draw through X1 the line which encloses with NA1 at Y3 the angle φ and intersect
it with MB3 at X3. We proceed by drawing through X3 the line which encloses with NA3 at
Y ′2 the angle φ and denote with X ′2 its point of intersection with MB2. It remains to prove
that X2 = X ′2:
Now we check the angles in the triangles A1A2A3, X1X2X3 and X1X

′
2X3 (going from Y1

clockwise to X1 → Y3 → X3 → Y ′2 → X ′2) and conclude due to Lemma 2:

Â11 :=<) A1A2A1N = <)X1M X1X3 =: X̂12, Â12 :=<) A1N A1A3 = <)X3X1X3M =: X̂31,

Â21 :=<) A2A3A2N = <)X2M X2X1 =: X̂22, Â22 :=<) A2N A2A1 = <)X1X2X1M =: X̂11,

Â31 :=<) A3A1A3N = <)X3M X3X
′
2 =: X̂32, Â32 :=<) A3N A3A2 = <)X ′2X3X

′
2M =: X̂21,

We notice that A11 +A12 =<) A1A2A1A3 (mod π), whether the cevian A1N is disjoint to the
interior of the triangle A3A1A2 or not. Since similar equations hold for all other angles, we
conclude

Â11 + Â12 + Â21 + Â22 + Â31 + Â32 = X̂11 + X̂12 + X̂21 + X̂22 + X̂31 + X̂32 = π (mod π).

This implies

<)X ′2X3X
′
2M =<)X2X3X2X1− <)X2M X2X1 =<)X2X3X2M (mod π),

and therefore X ′2 = X2.

H. Stachel proposed an alternative proof: Due to Lemma 1, it means no restriction of
generality to specify φ = 0. Then the cevians of one triangle are parallel to the sides of the
other (Figure 2). For given A1A2A3, M and N , the construction presented above yields, on
the respective cevians through M , for a chosen X1 the points X2 and X3. Since the points
A1, A2, A3, N are supposed as a quadrangle, we can apply Desargues’ involution theorem: the
points at infinity of the sides and the cevians yield three pairs of an involution. According to
the construction of the second triangle so far, the corresponding involution is already fixed
by the ideal points of the pairs (MX3, X1X2) and (MX2, X1X3) and thus identical with the
first one. Therefore, also the ideal points of MX1 and X2X3 belong to this involution, which
proves that X2X3 must be parallel to the cevian NA1.
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Figure 2: Entangled triangles for φ = 0 (mod π).

2.2. Entangled polygons

Now we try to apply the previous construction in a case where an n-gon A1A2 . . . An is given
together with two points M,N and an angle φ (Figure 3). The point N lies outside the sides
of A1A2 . . . An.
Proof. [Theorem 1 for n > 3] The sides A1A2, A2A3, . . . define the cevians MX1, MX2,
. . . of the requested n-gon X1X2 . . . Xn satisfying (1). In the same way as for triangles,
we specify any point X1 on the respective cevian and draw X1X2 enclosing φ with NA2.
Then we go the other way round and draw XnX1 with φ =<)NA1XnX1, then Xn−1Xn

with φ =<)NAnXn−1Xn and so on, until side X ′2X3 with φ =<)NA3X
′
2X3. This yields the

following equalities of angles:

Â11 := <) A1A2A1N = <)X1M X1Xn =: X̂12,

Â12 := <) A1N A1An = <)XnX1XnM =: X̂n1,

Â21 := <) A2A3A2N = <)X2M X2X1 =: X̂22,

Â22 := <) A2N A2A1 = <)X1X2X1M =: X̂11,

Â31 := <) A3A2A3N = <)X3M X3X2 =: X̂32,

Â32 := <) A3N A3A2 = <)X ′2X3X
′
2M =: X̂21,

· · · · · ·
Ân−1 1 := <) An−1AnAn−1N = <)Xn−1M Xn−1Xn−2 =: X̂n−1 2,

Ân−1 2 := <) An−1N An−1An−2 = <)Xn−2Xn−1Xn−1M =: X̂n−2 1,

Ân1 := <) AnA1AnN = <)XnM XnXn−1 =: X̂n2,

Ân2 := <) AnN AnAn−1 = <)Xn−1XnXn−1M =: X̂n−1 1.

We proceed like in the proof for triangles: In the system of equations above, the sum of the
angles on the left-hand side equals (n − 2)π (mod π) and also the sum of the angles on the
right-hand side, which leads to the conclusion X ′2 = X2, and thus, to the existence on the
n-gon X1X2 . . . Xn.

Figure 3 shows the case of entangled pentagons, with the special characteristics that
A1A2A3A4A5 is cyclic and M is on the circumcircle, in order to illustrate Theorem 2. In the
coming section, some of the properties of entangled polygons are presented. In Section 3,
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Figure 3: Entangled pentagons A1A2 . . . A5 and X1X2 . . . X5 with entanglement angle φ.

we examine the extension of the Simson line related to a combination of concave and cyclic
entangled polygons and M = N and on the relevant polygon circle.

3. Some properties of entangled polygons

In Figure 1 two entangles triangles are displayed with an entanglement angle φ 6= 0 (mod π).
Here, M is the Miquel point of the triangle A1A2A3 with respect to the points B1, B2, B3 on
the sides, and N is the Miquel point of X1X2X3 with respect to Y1, Y2, Y3 (see [1, 5]).

If we place M on the circumcircle of A1A2A3, as stated in [5], then the centers W0, W1,
W2, W3 of the four circumcircles (the first related to the triangle and the 3 others, called
Miquel circles, are related to the three subtriangles) lie on a circle which passes throughM as
well. The points B1, B2, B3 are collinear and form the Simson line of A1A2A3 in a generalized
sense, since the lines from point M form congruent angles equal to φ with the sides of the
triangle (see [6]).

The whole concept of a Miquel point on the circumcircle and the relevant Miquel cir-
cumcircles centres of a given triangle, as stated in [1, 5], can be extended to cyclic n-gons.
A method for the first part of this extension can be found in [7] where it is stated that the
author could not find any reference for such a generalization.

For the second part (Miquel circumcircles), the proof is as follows: In Figure 3, we have
a cyclic pentagon A1A2A3A4A5 with centre W0. The point M is the Miquel point with the
property that

φ =<) A1A2MB1 =<) A2A3MB2 = · · · =<) A5A1MB5.
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Figure 4: For the given triangle A1A2A3, the point M is the Miquel point w.r.t. B1, B2, B3,
and W1,W2,W3 are the centers of the Miquel circles. The points N and U0, . . . , U3 play the
analogue role for X1X2X3.

The points W1, W2, . . . , W5 are the centers of the five Miquel circles related to the five
pentagon’s vertices.

The case of the triangle A1A2A5 with pointM is equivalent to that of the triangle A1A2A3

and M on its circumcircle (Figure 4), as mentioned in the previous paragraph. Therefore the
points A2, B25 and A5 are collinear (where B25 is the intersection of the circumcircles with
respective centres W2 and W5) and W0, W1, W2, W5, and M are cyclic. The line passing
through B1, B5 and B25 is the Simson line of the triangle A1A2A5, and M , B5, B25, B35,
A5, and B4 are cyclic for obvious reasons based on A2A3A5 and A3A4A5. Similarly follows
from the triangle A2A3A5 that M , A5, B35 and A3 are collinear, and W3 belongs to the circle
mentioned before. From A3A4A5 and point M follows that also W4 lies on this circle.

Additionally, A1A2 . . . A5 ∼ W1W2 . . .W5 holds also when A1A2 . . . An is not cyclic (Fig-
ure 5). If angle φ becomes π/2, then <) A1B1B1M becomes π/2, too, and the distance
W1W2 = 0.5 ·A1A2. Similarly we handle the remaining sides WiWi+1 and AiAi+1 in order to
prove that A1A2 . . . A5 ∼ W1W2 . . .W5 for any value of φ, since the shape is preserved when
φ varies.

Following the same approach, a chain of proofs can be easily made for n-sided polygons,
starting with the first triangle consisting of the first two vertices A1, A2 and the last vertex An,
moving on to a series of triangles keeping the last vertex constant and changing one vertex,
such as A2A3An, A3A4An, . . . , An−2An−1An and applying the method described above for
each triangle of the chain.
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Figure 5: Also for a non-cyclic pentagon A1A2 . . . A5 we obtain a similarity A1A2 . . . A5 ∼
W1W2 . . .W5.

From all the above, we can obtain the following theorem.

Theorem 2. Let A1A2 . . . An be a cyclic n-gon and M a relevant Miquel point M on the
circumcircle, such that the lines MB1, MB2, . . . , MBn enclose a given angle φ 6= 0 (mod π)
with the n sides A1A2, A2A3, . . . , A5A1 of the given polygon at B1, B2, . . . , Bn. The point M
and the centres of the circumcircle and the n Miquel circles (= circumcircles of the quadrangles
A1B1BnM , A2B2B1M , . . . , AnBnBn−1M) lie on a circle, while the n centres of the Miquel
circles form a polygon similar to the given one. The similarity of the two polygons is also
valid when the polygon A1A2 . . . An is not cyclic.

In entangled triangles and n-gons, there are four particular cases related to the point N :

Case 1. Point N on the circumcircle of A1A2A3 (Figure 4). From Lemma 2 we get:

<)X1X3X1X2 = <)NY3NY1 = <)NA1NA2 = <) A3A1A3A2,

<)X2X1X2X3 = <)NY1NY2 = <)NA2NA3 = <) A1A2A1A3,

and therefore X1X2X3 ∼ A1A2A3. The numbering of the triangle X1X2X3 is clockwise (note
Lemma 5, which is valid only for n = 3).

Case 2. In the case n = 3 and N = M , the points where the sides enclose the fixed
angle φ 6= 0 (mod π) with the respective cevians, form similiar triangles B1B2B3 ∼ Y2Y3Y1
(Figure 6). This holds only for n = 3. For a proof, see the Appendix.

Case 3. If N is the orthocentre of A1A2A3 (see Figure 6), whether N = M or N 6= M , we
have the following: Since A1A3 ⊥ NA2 and A2A3 ⊥ NA1 we have

Â3 =<) A3A1A3A2 =<)NA2NA1 =<)X1X2X1X3 = X̂1.
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Similarly, we get Â1 =<) A1A2A1A3 =<)X2X3X2X1 = X̂2, so that A1A2A3 ∼ X2X3X1. Since
by (1) <) A2A3MX2 = φ =<)NA1X3X1, the orthogonality NA1 ⊥ A2A3 implies X3X1 ⊥MX2

etc., so that M is the orthocentre of X1X2X3 as well (only for n = 3).1

Figure 6: Case 2: If N is the orthocenter of A1A2A3, then the triangles A1A2A3 and X2X3X1

are similar and M is the orthocenter X1X2X3.

Case 4. If the triangle A1A2A3 is isosceles with Â1 = Â2, then the height through A3 is an
axis of symmetry. Suppose that N is placed on this axis. Then we have

Â12 :=<) A1N A1A3 = − <) A2N A2A3 = Â21 and Â31 = −Â32.

Since Â31 + Â21 = X̂2 and Â12 + Â31 = X̂3, we get X̂2 = X̂3. Therefore, also the triangle
X1X2X3 is isosceles.
This property can be generalized to entangled n-gons: When the given polygon has an axis
of symmetry on which N is placed, then the other polygon is also symmetric with respect to
an axis passing through M . For the proof choose φ = 0◦.

Case 5. If Y1 is kept fixed while the angle φ varies, then we notice in the case N = M ,
that the triangle X1X2X3 rotates about N = M (Figure 6) and either reduces or increases

1 The latter follows also from the fact that the Desargues involution induced by the quadrangle A1A2A3N
on the line at infinity is the right-angle involution.
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its size (it coincides with M when φ = 0), while also the vertices Y2 and Y3 are fixed (the
angles <) Y1N Y1Yi and YiN YiY1 remain constant, as in the Appendix) and all the above can
be extended in exactly the same way for n-gons. If N 6= M , then all angles <) Y1N Y1Yi and
<) YiN YiY1 vary (contrary to the case of the Appendix), so apart from Y1 all Yi change their
positions along NAi, while the n-gon X1X2 . . . Xn keeps its shape and reduces or increases its
sidelengths (it coincides with M when <) Y1M Y1N = φ).

From the above, we obtain the following two Lemmas.

Lemma 3. For two entangled triangles A1A2A3 and X1X2X3 with φ 6= 0 (mod π), the fol-
lowing holds:
• If N is on the circumcircle of A1A2A3 (Figure 4), we get similar triangles A1A2A3 ∼
X2X3X1 and a clockwise numbering of X1X2X3 (Lemma 5).
• If N = M , the triangles formed by pairs of lines which enclose the entanglement angle
φ are similar (Figure 6), i.e., B1B2B3 ∼ Y2Y3Y1).
• If N is the orthocentre of A1A2A3, then M is the orthocentre of X1X2X3 as well and
A1A2A3 ∼ X2X3X1.

Lemma 4. For two entangled n-gons A1A2 . . . An and X1X2 . . . Xn, n ≥ 3 with φ 6= 0 (mod π),
the following holds:
• If we vary φ, the second polygon performs a stretch-rotation about M . If we fix Y1, then
in the case N = M all points Y1, Y2, . . . , Yn can remain fixed, while under N 6= M all
other Yi change their positions on the cevians NAi. They can even coincide with M
when <) Y1M Y1N = φ.
• If one polygon has an axis of symmetry on which N is placed, then the other polygon is
symmetric as well with respect to an axis passing through M .

4. Generalized Simson line at entangled polygons

Theorem 3. Let two entangled polygons A1A2 . . . An and X1X2 . . . Xn be given, where the
first is cyclic and M = N lies on its circumference. Then,

a) the polygon X1X2 . . . Xn is concave at one of its vertices,
b) the points Y1, Y2, . . . , Yn are collinear, forming the Entangled Polygons Simson Line

(EPSL),
c) the lines spanned by the sides of X1X2 . . . Xn define triangles which have collinear or-

thocentres.

Proof. [Theorem 3a)] If the first polygon is convex, then each side AiAi+1 defines two half-
planes. The one which contains the remaining vertices is called in-half-plane of AiAi+1 and
the other the ex-half-plane. If N is inside the convex polygon, then it belongs to all in-half-
planes of the sides of the polygon. Taking the example of entangled pentagons in Figure 3,
as stated in Section 1.2, we notice that

X̂5 = X̂51 + X̂52 = Â52 + Â12 =<) A5N A5A1+ <) A1N A5A1.

Therefore, as the interior point N approaches the segment A5A1, we obtain X̂5 → 0. If N
moves out of the polygon, as in Figure 7, and more specifically to the ex-half-plane2 of A5A1,

2 since N lies on the circumcircle of the first polygon, it can belong only to the ex-half-plane of one side.
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Figure 7: Two entangled pentagons where A1A2 . . . A5 is cyclic with M = N placed on the
circumcircle. The points Y1, . . . , Y5 are located on the generalized Simson line.

the angles Â52 and Â12 acquire a clockwise rotation and, as a result, the angles X̂4, X̂5, X̂1,
and vertex X5 have clockwise rotation too. Due to the vertex X5, we get X3 → X4 → X5,
X4 → X5 → X1, and X5 → X1 → X2 have a clockwise rotations. The other angles X̂2

and X̂3 remain anticlockwise, so X1X2X3X4X5 becomes concave due to vertex X5. If n = 3
(Figure 4), the numbering of the vertices in the second triangle becomes clockwise.

From the above we can generalize and obtain the following Lemma.

Lemma 5. Given two entangled n-gons A1A2 . . . An and X1X2 . . . Xn. If the first is convex
with N in the interior, then the second is convex as well with M in the interior. If N moves
out of the first polygon into the ex-half-plane of AiAi+1, then X1X2 . . . Xn becomes concave
(for n > 3) at the vertex Xi ∈MBi with a clockwise rotation.

In Figure 7 with M = N on the circumcircle of the first pentagon, the pentagon
X1X2 . . . X5 becomes concave at the vertex X5. So, the sides X1X2 and X2X3 intersect
the side X5X4 at points F1,2 and F2,3, respectively, and the sides X2X3 and X3X4 intersect
the side X5X1 at E2,3 and E3,4. When we have two entangled hexagons and, similarly to
Figure 7, the hexagon X1X2 . . . X6 becomes concave at the vertex X5, we have on the side
X5X4 the points F2,3, F1,2 and F6,1, and on the side X5X6 the points E1,2, E2,3 and E3,4.
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Table 1: Types of triangles in the case of the pentagon in Figure 7.

Triangle Type Simson line Triangle Type Simson line

1. 4E2,3X1X2 A Y5, Y2, Y1 2. 4F2,3X4X3 A Y4, Y3, Y2
3. 4E2,3E3,4X3 C Y5, Y3, Y2 4. 4F2,3F1,2X2 C Y4, Y1, Y2
5. 4E3,4X5X4 B Y5, Y4, Y3 6. 4F1,2X1X5 B Y1, Y5, Y4
7. 4E2,3X5F2,3 D Y5, Y4, Y2

Going from pentagons to hexagons increases the points on the two sides connected to the
concave vertex by one per side. Following this reasoning, in the concave quadrangle case we
get just one point per side connected with the concave vertex. The above gives rise to the
following Remark:
Remark 1. Given two entangled n-gons, where due to Theorem 3 X1X2 . . . Xn is concave at
Xi, then we have n− 3 intersection points on each of the sides Xi−1Xi and XiXi+1 with the
remaining ones, as shown in Figure 7.

In Figure 7, the number of triangles formed by points of intersection between sides of
X1X2 . . . X5 is seven, following the rule that in each triangle at least one of the sides X5X4

and X5X1 must be involved. This allows to choose pairs of triangles with two of their sides
on two common lines, thus sharing the Simson line. There are always four types of triangles
obeying the above rule for entangled n-gons:
• Type A, with one point of intersection on one of the two sides connecting the concave vertex
of the polygon but not the concave vertex (4E2,3X1X2 and 4F2,3X4X3)
• Type B, with one point of intersection on one of the two sides connecting the concave vertex
of the polygon and the concave vertex (4E3,4X5X4 and 4F1,2X1X5)
• Type C, with two points of intersection on one of the two sides connecting the concave
vertex but not the concave vertex (4E2,3E3,4X3 and 4F2,3F1,2X2)
• Type D, with two points of intersection, one on each of the two sides connecting the concave
vertex and the concave vertex (4E2,3X5F2,3)

Due to this generalization, only n− 2 triangles are needed at any application of the chain
of proofs for entangled n polygons and the extended Simson line. It is simpler to use only
triangles of type A, B, C, D (Table 1 and Figure 7), because of use of angles equalities related
to quadrangles which have been proven cyclic in previous steps of the chain of proof (case
g) and also because of exactly similar approach in the proof of equivalent types of triangles
(cases a,b and c,d).

Let the number of these triangles be Nt, depending on the number of sides of the entangled
n-gon X1X2 . . . Xn, which is concave at Xi, according to the rule that all sides of each triangle
belongs to a side or extension of a side of the polygon from which one or two are XiXi+1 or
Xi−1Xi line, with or without the concave vertex Xi. In the case of pentagons (Figure 7) we
have Nt = 7 (2 Type A, 2 Type B, 2 Type C, 1 Type D), in the case of hexagons Nt is equal
to 10 (2 A, 2 B, 4 C, 2 D) and it is obvious that for quadrangles holds Nt = 4 (2 A, 2 B);
for heptagons holds Nt = 13 (2 A, 2 B, 6 C, 3 D). Since we have n − 3 intersection points
on each of the two sides connecting the concave vertex with the other sides (Remark 1), we
deduce for the numbers of triangles belonging to types A, B, C, D that

Nt = 4 + 3(n− 4), NA = 2, NB = 2, NC = 2(n− 4), ND = n− 4. (2)
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Proof. [Theorem 3b)] We could study all the triangles formed by the sides or extensions of
sides of the concave pentagon, but this selection of triangles makes the proof of the extension
of the Simson theorem. The collinearity of the points Y1, Y2, Y3, Y4, Y5 can be proven as
follows:

Case a. If we prove that the triangle E34X5X4 (Type B triangle 5 in Table 1) together with
M = N form a cyclic quadrangle, then Y5, Y4, Y3 are collinear because Y5Y4Y3 is the Simson
line of the triangle, so :
• E3,4Y5Y3M is cyclic since <) E34X5E34X4 =<)NY5NY3 by Lemma 2
• Â5 =<)NY5NY3 since A1A2 . . . A5 is cyclic and N is on the circumcircle,
• Â5 =<)MX5MX4 by Lemma 2,
Thus <) E34X5E34X4 =<)MX5MX4, so the quadrangle E34X5X4M is cyclic and the points
Y5, Y4, and Y3 collinear.

Case b. In exactly the same way, we can prove that the quadrangle F12X1X5M (Type B
triangle 6 of Table 1) is cyclic and Y1, Y5, Y4 are collinear. The triangles E34X5X4 and
F12X1X5 are equivalent in view of the proof of collinearity of their Simson lines.

Case c. If we prove that the quadrangle F23X4MX3 (Type A triangle 2 of Table 1) is cyclic,
then Y4, Y3, and Y2 are collinear. From angle relations of entangled n-gons in Section 1.2 and
Figure 7 we have:
• <)X3M X3E23 =<)X3M X3X2 = X̂32 = Â31 =<) A3A4A3N ,
• <)X4M X4X5 = X̂41 = π − Â52 = π− <) A5N A5A4 (X̂4 has acquired clockwise orientation,
the quadrangle A5B4X4Y is cyclic, since <) A4B4B4X4 =<) A5Y4 Y4X4),
• the quadrangle A3A4A5N is cyclic,
thus <)X3M X3E23 =<)X4M X4X5, so the quadrangle F23X4MX3 is cyclic and Y4, Y3, and
Y2 are collinear.

From the three cases above we deduce that the points Y1, Y2, Y3, Y4, and Y5 are collinear.
Also other combinations of triangles can be used for this proof, such as:

Case d. As in case c, since the quadrangle E23X2MX1 (Type A triangle 1 of Table 1) is
cyclic, Y5, Y2, and Y1 are collinear (the triangles E23X2X1 and F23X3X4 are equivalent).

Case e. In order to prove that the quadrangle E23E34X3M (Type C triangle 3 of Ta-
ble 1) is cyclic, we have: the quadrangle E34X5X4M is cyclic (case a), so <)X4M X4E34 =
<)X5M X5E34 and <) E34M E34E23 =<)X4M X4X5. Since the quadrangle F23X4MX3 is cyclic
(case c), we get: <) E34M E34E23 =<)X3M X3E23. Thus, the quadrangle E23E34X3M is cyclic
and Y5, Y3, Y2 are collinear.

Case f. As in case e, since the quadrangle F12F23MX2 (Type C triangle 4 of Table 1) is
cyclic, Y4, Y1, and Y2 are collinear (the triangles E23E34X3 and F12F23X2 are equivalent).

Case g. In order to prove that the quadrangle F23X5E23M (Type D triangle 7 of Table 1)
is cyclic, we have: <) F23E23E23M =<)X3E23E23M =<)X3E34E34M =<)X4E34E34M =
<)X4X5X5M =<) F23X5X5M (as shown previously, the quadrangles E23E34X3M and
E34X5X4M are cyclic), therefore the quadrangle F23X5E23M is cyclic and Y5, Y4, and Y2
are collinear.

In order to prove that the five points Y1, Y2, . . . , Y5 of the concave pentagon are collinear,
three triangles out of seven of Table 1 are needed. Also, in the case of entangled hexagons,
exactly the same process can be used by proving that four triangles of types A, B, C, and D
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form cyclic quadrangles with the points M = N , thus showing that this process holds for any
number of vertices.

The above method of proof can be extended using exactly the same process of chain proofs
for two entangled polygons A1A2 . . . An and X1X2 . . . An, where the first is cyclic, andM = N
on the circumcircle of the first polygon in order to prove that the points Y1, Y2, . . . , Yn are
always collinear. This is because the proof that each triangle belonging to one of the four
types of triangles stated above and the point M = N form a cyclic quadrangle does not
depend on the number of vertices of the entangled polygons, but on the following types of
relations, valid for entangled n-gons:
• Equality of angles Âkl = X̂ij such as those in Section 1.3
• Equality of angles <) Ai−1AiAiAi+1 = π− <) Ai+1MMAi−1 = π− <) Ai+1N NAi−1, since
A1A2 . . . An is cyclic and the point M = N is placed on the circumcircle.
• Angle equalities of cyclic quadrangles as found in previous steps of the proofs.
• Equivalence of types of triangles (triangles 1 and 2, 3 and 4, 5 and 6 of Table 1).

Proof. [Theorem 3c)] As can be seen in Figure 7, M = N is Miquel point ([3, Theorem 3.34,
p. 62]), for the circumcircles of the triangles E23E34X3, E34X5X4, X3F23X4, F23X5E23 created
by the intersections of four lines: E23X5, E23F23, E34X4, and X5X4, forming a complete
quadrilateral. Also the triangles E23E34X3, E34X5X4, etc. have common Simson line passing
through the points Y2, Y3, Y4, Y5 which are collinear (taking two appropriate triangles which
have two sides on the same lines, hance the two triangles have the same Simson line).

Let us assume that just the above mentioned four lines and angle φ were initially given
and N was defined as above, creating a concave quadrangle (such as E23X3X4X5 of Figure 7,
ignoring the displayed pentagon A1A2A3A4A5). We construct the Simson line Y2Y3Y4Y5 for
φ, of the triangles formed by the intersections of the given lines. Let us construct a fifth line
which creates triangles by intersecting the other lines. We choose X1 on E23X5 and F12 on
X5X4. So, the line X1F12 intersects the Simson line at the point Y1 (it also intersects E23F23

at the point X2). If we keep X1 fixed while F12 moves along X5X4, then the angle <) Y1N Y1X1

can vary from 0 to π until <) Y1N Y1X1 = φ in order to allow that the triangles E23X1X2,
F23F12X2 and F12X1X5 have the Simson line Y1Y2Y3Y4Y5.

All seven triangles mentioned above are those of Table 1. The first four triangles
(E23E34X3, E34X5X4, X3F23X4, and F23X5E23) have collinear orthocentres (line K1K2K3K4)
as stated in [1, 5], based on the property of the Simson line of a complete quadrilateral ac-
cording to which, the segments joining the Miquel point with the orthocentres of the four
triangles are bisected by their common Simson line Y2Y3Y4Y5 which is parallel to the line of
orthocentres when φ = π/2. This construction of the fifth line X1F12 allows the other three
triangles mentioned above to have the same Simson line which becomes Y1Y2Y3Y4Y5. So, tak-
ing the quadrilateral formed by the lines E23X5, E23F23, E34X4 and X1F12, we get that the
Simson line bisects the segments joining K1 and K5 with the Miquel point when φ = π/2,
so K5 is collinear with K1, K2, etc. Similarly, we can use any other combinations forming
quadrilaterals of the five lines in order to deduce that all Ki are collinear, and this is valid
for any value of φ when it varies, since the shape of the pentagon does not change. Another
property is related to the sum of the angles formed by the line of orthocentres and the Simson
line plus the angle φ and more specifically,

<)K1K2 Y1Y2 + φ = π/2, (3)

because the line of orthocentres and the Simson line are parallel when φ = π/2 and, since the
shape of the pentagon does not change and also M = N remains constant when φ changes,
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this sum of angles remains constant.
In Figure 7, we draw the lineMU orthogonal to Y1Y2 and we have <)RM RF1 = φ because

of (3). Moreover, when φ changes, R remains constant, since <) F1RF1Y5 =<)MRRY5. If
φ = π/2, then K5M is bisected by Y1Y2 . . . (as shown in [5], since M is the Miquel point
of the triangle X1E23X2) and also all segments KiM are bisected, so the line Y1Y2 . . . is the
perpendicular bisector of RM (MU = UR) (when φ varies, point R remains constant and
the line K1K2 . . . rotates about R).

We have <) A1A5A1M =<)X5M X5F1 due to isogonal sides, <) F1RF1X5 =<) F1F2 F1X5 =
<)MRMY5 =<)MRMA1, and <)MY4MR =<) F2Y4 F2R =<) F2F1 F2X5 (sides isogonal), so
from the triangles X5F1F2 and A1MA5 we get respectively:

<)X5M X5F1+ <)X5F2X5M+ <) F1F2 F1X5+ <) F2F1 F2X5 = π (mod π) and
<) A1A5A1M+ <)MRMA1+ <)MY4MR+ <) A5A1A5M = π (mod π),

therefore <)X5F2X5M =<) A5M A5A1.
Given that F is the intersection of MU and the circumcircle of A1A2 . . . An, we have

<) FM FA1 =<) A5M A5A1, therefore <) FM FA1 =<)X5F2X5M =<) Y5Y4 Y5M and since
<) Y5Y4 Y5M+ <)MY5MF = π/2, we get <) A1F A1M = π/2. From all the above we deduce
that MR passes through W , the circumcentre of A1A2 . . . A5.

This construction gives us the concave pentagonX1X2X3X4X5. It has always one solution
and can be repeated for m = n− 4 lines in order to give us an n-gon.

The above process for a given concave quadrangle with a Simson line for the φ, enables
us to construct a family of entangled n-sided polygons following Theorem 3 and based on
Theorem 1. Therefore:

Lemma 6. Given four lines forming a complete quadrilateral, any three of them form four
triangles whose circumcircles pass through a common point N and define a common Simson
line for these triangles at the angle φ. Therefore this line has four collinear points. The four
lines define a concave quadrangle (such as E23X3X4X5 of Figure 7).
We can define m = n − 4 additional lines which form, together with the previous four lines,
triangles having a common Simson line (EPSL) with n collinear points Y1, Y2, . . . , also hav-
ing their orthocentres collinear (K1, K2, . . . ) and forming a concave n-gon related with its
entangled convex and cyclic polygon, following Theorems 1 and 3.
Moreover, the equation (3) holds, and the line Y1Y2 . . . is the perpendicular bisector of MR.
When φ varies, the line K1K2 . . . rotates about R, and the line MR always passes through
the circumcenter W of the entangled cyclic polygon.

The case of Figure 7 with two pentagons following Theorem 3 can be extended to include
hexagons which are convex as follows: Z0 is placed on the line X5X4 and Z1 on the line X5X1.
If we keep one of the two points constant and we move the other along its line, then we can
find a position where we have <) YZZ0 YZM = φ (within the limits of these parameters) where
YZ is the intersection point of the two lines going through points Z0, Z1 and Y1, Y2 (the
remaining points Yi are collinear). This gives us a new convex hexagon X1X2X3X4Z0Z1 for
which the extended Simson line has the collinear points Y1, Y2, Y3, Y4, Y5, and YZ (Figure 8).
The above process can be generalized for n-gons following Theorem 3.
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Figure 8: A convex hexagon X1X2X3X4Z0Z1 with generalized Simson line passing through
Y1, Y2, Y3, Y4, Y5, and YZ .
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A. Appendix

From Figure 6 (special case of Figure 1 with N = M) and the triangles A1A2A3, X1X2X3,
B1B2B3, Y1Y2Y3, based on the Miquel circles applied to the entangled triangles (the quadran-
gles A1B1MB3, . . . , X1Y1NY3, . . . are cyclic), we have the following relations (see also the
construction of the X1X2X3 of Figure 1 in Section 1.1). Below we use the symbol <) ABC for
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the measure of the interior angle at B in the triangle ABC.

Â11 =<) A3A1N =<)MX3X1 = X̂32 =<)B3B1M = B̂11 =<)NY2Y3 = Ŷ22,

Â12 =<)NA1A2 =<)X3X1M = X̂11 =<)MB3B1 = B̂32 =<) Y3Y1N = Ŷ11,

Â21 =<) A1A2N =<)MX1X2 = X̂12 =<)B1B2M = B̂21 =<)NY3Y1 = Ŷ32,

Â22 =<)NA2A3 =<)X1X2M = X̂21 =<)MB1B2 = B̂12 =<) Y1Y2N = Ŷ21,

Â31 =<) A2A3N =<)MX2X3 = X̂22 =<)B2B3M = B̂31 =<)NY1Y2 = Ŷ12,

Â32 =<)NA3A1 =<)X2X3M = X̂31 =<)MB2B3 = B̂22 =<) Y2Y3N = Ŷ31.

From the above follows

B̂11 = Ŷ22, B̂12 = Ŷ21, B̂21 = Ŷ32, B̂22 = Ŷ31, B̂31 = Ŷ12, B̂32 = Ŷ11,

therefore we obtain similar triangles B1B2B3 ∼ Y1Y2Y3.
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