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Abstract. We consider two triangles, one of which is inscribed in another, and
conditions for the concurrency of the midlines of quadrilaterals formed by these
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1. Introduction

Let three arbitrary points A1, B1 and C1 on the sides of any triangle ABC form a triangle
A1B1C1. Denote the midpoints of the two triangles’ sides by D, F , E and D1, F1, E1, respec-
tively (see Figure 1). What is the condition for the concurrency of the midlines DD1, FF1

and EE1 of the obtained quadrilaterals BC1B1C, BA1B1A and CA1C1A? What properties
does the common point of these lines have in the case of their concurrency? The following
results answer these questions.

2. Main results

Theorem 1. Given any triangle ABC with three cevians AA1, BB1, CC1. The points D,
F , E are the midpoints of the sides BC, AB and AC of the triangle ABC, and D1, F1, E1

are the midpoints of the sides B1C1, A1B1 and A1C1 of the triangle A1B1C1 (see Figure 1).
Then the lines DD1, FF1 and EE1 are concurrent if and only if the cevians AA1, BB1 and
CC1 are concurrent.

Proof. Without loss of generality we can prove the theorem for a right angle isosceles triangle
(see Figure 2) because any other triangle can be obtained from such a triangle by an affine
transformation.
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Figure 1: DD1, FF1, EE1 are concurrent ⇐⇒ AA1, BB1, CC1 are concurrent.

Suppose that coordinates of the points A, B, C are A(0, 1), B(0, 0), C(1, 0). Then the
coordinates of D, F , E are D(0.5, 0), F (0, 0.5), E(0.5, 0.5). Denote coordinates of C1, A1,
B1 by C1(0, α), A1(β, 0), B1(γ, 1− γ). Then
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So the equations of lines DD1, FF1 and EE1 are:
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x− 0.5
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Figure 2: ABC is a right angle isosceles triangle.
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or
DD1 : (γ − 1)y − (α + 1− γ)x + 0.5(α + 1− γ) = 0 ;

FF1 : (β + γ)y + γx − 0.5(β + γ) = 0 ;

EE1 : (β − 1)y − (α− 1)x + 0.5(α− β) = 0 .

The three lines DD1, FF1 and EE1 are concurrent if and only if∣∣∣∣∣∣
γ − 1 β − 1 β + γ

γ − α− 1 1− α γ

0.5(α + 1− γ) 0.5(α− β) −0.5(β + γ)

∣∣∣∣∣∣ = 0.

By calculating the determinant we obtain

β + 2αβγ − βγ − αβ − αγ = 0,

i.e., three lines DD1, FF1 and EE1 are concurrent if and only if this equality holds.
On the other hand according to Ceva’s theorem [1, pp. 4–5], the cevians AA1, BB1 and

CC1 are concurrent if and only if

1− α
α
· β

1− β
· 1− γ

γ
= 1 ⇐⇒ β + 2αβγ − βγ − αβ − αγ = 0,

and so we obtain the above equality. Thus the theorem is proved.

Remark. The one-sided statement of Theorem 1, “if three cevians AA1, BB1 and CC1 are
concurrent, then the lines DD1, FF1 and EE1 are concurrent”, is given in the book [5,
p. 120] as problem no. 1113. The book offers only a way to solve the problem. This is a
very complicated and multi-stage way that refers to other, rather complex problems from the
book.

Let the coordinates of the vertices of an arbitrary triangle ABC be A(xA, yA), B(xB, yB),
C(xC , yC) and let the three cevians AA1 , BB1 and CC1 be concurrent with the common point
M(xM , yM). Then three lines DD1, FF1 and EE1 are concurrent. Denote their common point
by N(xN , yN). What are the coordinates of the point N? The following theorem answers this
question.

Theorem 2. If three cevians AA1, BB1 and CC1 of a triangle ABC are concurrent with the
common point M , then the coordinates of the common point N of the lines DD1, FF1 and
EE1 are the averages of the corresponding coordinates of the points A, B, C, M .

Proof. Denote the midpoint of segment AM by K and the midpoint of segment CM by L
(see Figure 3). Then in the complete quadrilateral based on AB1MC1 the three points D, D1

and K are collinear [3, p. 62]. Similarly, the points F , F1 and L are collinear. FD and KL
are the midlines of triangles ABC and AMC, respectively. Then FD and KL are equal and
parallel. Thus FDLK is a parallelogram and N is the midpoint of DK . The coordinates of
the point K are

xK =
xA + xM

2
, yK =

yA + yM
2

.

The coordinates of the point D are

xD =
xC + xB

2
, yD =

yC + yB
2

.
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Figure 3: The coordinates of N are the averages of the corresponding
coordinates of A,B,C,M .

Then the coordinates of the point N are

xN =
xD + xK

2
=
xA + xB + xC + xM

4
, yN =

yD + yK
2

=
yA + yB + yC + yM

4
.

Corollary 1. Since the coordinates of centroid G of the triangle ABC are xG = (xA + xB +
xC)/3, yG = (yA + yB + yC)/3, the coordinates of the point N are xN = (3xG + xM)/4 and
yN = (3yG + yM)/4. Thus point N lies on segment MG and divides it in the ratio 3:1, i.e.,
MN : NG = 3 : 1.

Corollary 2. If point M is the centroid of the triangle ABC, then M coincides with N .

Corollary 3. The convex hexagon (see Figure 4) with the vertices at the midpoints of the sides
of the triangle ABC and at the midpoints of the segments AM , BM , CM , is a parallelogon
(its opposite sides are equal and parallel). Point N is the centroid of the parallelogon’s vertices.
The area of the parallelogon is equal to half the area of triangle ABC. The perimeteof the
parallelogon is equal to 2(AM +BM +CM). Therefore if all the angles of triangle ABC are
less than 120◦, then the minimal value of the perimeter of the parallelogon is reached when M
coincides with the Fermat-Torricelli point [2, pp. 24–34].

Corollary 4. If M is the circumcenter of the triangle ABC, then all sides of the parallelogon
are equal to the half circumradius of the triangle ABC.

Corollary 5. If all the angles of the triangle ABC are less than 120◦ and M is the Fermat-
Torricelli point of the triangle ABC, then all angles of the parallelogon are equal to 120◦.

Corollary 6. If M is the orthocenter H of the triangle ABC, then N is the nine-point center
of the triangle ABC, because the nine-point center lies on the segment HG and divides it in
the ratio 1:3, i.e., HN : NG = 1 : 3 [4, p. 153].
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Figure 4: A parallelogon FKELDP .
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