Journal for Geometry and Graphics Volume 24 (2020), No. 1, 73–77.

Relations Between Ceva's Theorem and the Concurrency of Midlines of Quadrilaterals in a Triangle

Victor Oxman¹, Avi Sigler²

¹Western Galilee College, Acre 24121, Israel email: victor.oxman@gmail.com

> ²Shaanan College, Haifa, Israel email: avibsigler@gmail.com

Abstract. We consider two triangles, one of which is inscribed in another, and conditions for the concurrency of the midlines of quadrilaterals formed by these triangles.

Key Words: Triangle, concurrent lines, cevians *MSC 2010:* 51M04, 51N10

1. Introduction

Let three arbitrary points A_1 , B_1 and C_1 on the sides of any triangle ABC form a triangle $A_1B_1C_1$. Denote the midpoints of the two triangles' sides by D, F, E and D_1 , F_1 , E_1 , respectively (see Figure 1). What is the condition for the concurrency of the midlines DD_1 , FF_1 and EE_1 of the obtained quadrilaterals BC_1B_1C , BA_1B_1A and CA_1C_1A ? What properties does the common point of these lines have in the case of their concurrency? The following results answer these questions.

2. Main results

Theorem 1. Given any triangle ABC with three cevians AA_1 , BB_1 , CC_1 . The points D, F, E are the midpoints of the sides BC, AB and AC of the triangle ABC, and D_1 , F_1 , E_1 are the midpoints of the sides B_1C_1 , A_1B_1 and A_1C_1 of the triangle $A_1B_1C_1$ (see Figure 1). Then the lines DD_1 , FF_1 and EE_1 are concurrent if and only if the cevians AA_1 , BB_1 and CC_1 are concurrent.

Proof. Without loss of generality we can prove the theorem for a right angle isosceles triangle (see Figure 2) because any other triangle can be obtained from such a triangle by an affine transformation.

ISSN 1433-8157/\$ 2.50 \bigodot 2020 Heldermann Verlag

Figure 1: DD_1 , FF_1 , EE_1 are concurrent $\iff AA_1$, BB_1 , CC_1 are concurrent.

Suppose that coordinates of the points A, B, C are A(0,1), B(0,0), C(1,0). Then the coordinates of D, F, E are D(0.5, 0), F(0, 0.5), E(0.5, 0.5). Denote coordinates of C_1, A_1, B_1 by $C_1(0, \alpha), A_1(\beta, 0), B_1(\gamma, 1 - \gamma)$. Then

$$D_1\left(\frac{\gamma}{2}, \frac{\alpha+1-\gamma}{2}\right), \quad F_1\left(\frac{\beta+\gamma}{2}, \frac{1-\gamma}{2}\right), \quad E_1\left(\frac{\beta}{2}, \frac{\alpha}{2}\right).$$

So the equations of lines DD_1 , FF_1 and EE_1 are:

$$DD_1: \ \frac{x-0.5}{y} = \frac{\gamma-1}{\alpha+1-\gamma}; \quad FF_1: \ \frac{x}{y-0.5} = \frac{\beta+\gamma}{-\gamma}; \quad EE_1: \ \frac{x-0.5}{y-0.5} = \frac{\beta-1}{\alpha-1}$$

Figure 2: ABC is a right angle isosceles triangle.

or

$$\begin{aligned} DD_1: & (\gamma - 1)y - (\alpha + 1 - \gamma)x + 0.5(\alpha + 1 - \gamma) = 0; \\ FF_1: & (\beta + \gamma)y + \gamma x - 0.5(\beta + \gamma) = 0; \\ EE_1: & (\beta - 1)y - (\alpha - 1)x + 0.5(\alpha - \beta) = 0. \end{aligned}$$

The three lines DD_1 , FF_1 and EE_1 are concurrent if and only if

$$\begin{vmatrix} \gamma - 1 & \beta - 1 & \beta + \gamma \\ \gamma - \alpha - 1 & 1 - \alpha & \gamma \\ 0.5(\alpha + 1 - \gamma) & 0.5(\alpha - \beta) & -0.5(\beta + \gamma) \end{vmatrix} = 0.$$

By calculating the determinant we obtain

$$\beta + 2\alpha\beta\gamma - \beta\gamma - \alpha\beta - \alpha\gamma = 0,$$

i.e., three lines DD_1 , FF_1 and EE_1 are concurrent if and only if this equality holds.

On the other hand according to Ceva's theorem [1, pp. 4–5], the cevians AA_1 , BB_1 and CC_1 are concurrent if and only if

$$\frac{1-\alpha}{\alpha} \cdot \frac{\beta}{1-\beta} \cdot \frac{1-\gamma}{\gamma} = 1 \iff \beta + 2\alpha\beta\gamma - \beta\gamma - \alpha\beta - \alpha\gamma = 0,$$

and so we obtain the above equality. Thus the theorem is proved.

Remark. The one-sided statement of Theorem 1, "if three cevians AA_1 , BB_1 and CC_1 are concurrent, then the lines DD_1 , FF_1 and EE_1 are concurrent", is given in the book [5, p. 120] as problem no. 1113. The book offers only a way to solve the problem. This is a very complicated and multi-stage way that refers to other, rather complex problems from the book.

Let the coordinates of the vertices of an arbitrary triangle ABC be $A(x_A, y_A)$, $B(x_B, y_B)$, $C(x_C, y_C)$ and let the three cevians AA_1 , BB_1 and CC_1 be concurrent with the common point $M(x_M, y_M)$. Then three lines DD_1 , FF_1 and EE_1 are concurrent. Denote their common point by $N(x_N, y_N)$. What are the coordinates of the point N? The following theorem answers this question.

Theorem 2. If three cevians AA_1 , BB_1 and CC_1 of a triangle ABC are concurrent with the common point M, then the coordinates of the common point N of the lines DD_1 , FF_1 and EE_1 are the averages of the corresponding coordinates of the points A, B, C, M.

Proof. Denote the midpoint of segment AM by K and the midpoint of segment CM by L (see Figure 3). Then in the complete quadrilateral based on AB_1MC_1 the three points D, D_1 and K are collinear [3, p. 62]. Similarly, the points F, F_1 and L are collinear. FD and KL are the midlines of triangles ABC and AMC, respectively. Then FD and KL are equal and parallel. Thus FDLK is a parallelogram and N is the midpoint of DK. The coordinates of the point K are

$$x_K = \frac{x_A + x_M}{2}, \quad y_K = \frac{y_A + y_M}{2}.$$

The coordinates of the point D are

$$x_D = \frac{x_C + x_B}{2}, \quad y_D = \frac{y_C + y_B}{2}$$

Figure 3: The coordinates of N are the averages of the corresponding coordinates of A, B, C, M.

Then the coordinates of the point N are

$$x_N = \frac{x_D + x_K}{2} = \frac{x_A + x_B + x_C + x_M}{4}, \quad y_N = \frac{y_D + y_K}{2} = \frac{y_A + y_B + y_C + y_M}{4}.$$

Corollary 1. Since the coordinates of centroid G of the triangle ABC are $x_G = (x_A + x_B + x_C)/3$, $y_G = (y_A + y_B + y_C)/3$, the coordinates of the point N are $x_N = (3x_G + x_M)/4$ and $y_N = (3y_G + y_M)/4$. Thus point N lies on segment MG and divides it in the ratio 3:1, i.e., MN : NG = 3 : 1.

Corollary 2. If point M is the centroid of the triangle ABC, then M coincides with N.

Corollary 3. The convex hexagon (see Figure 4) with the vertices at the midpoints of the sides of the triangle ABC and at the midpoints of the segments AM, BM, CM, is a parallelogon (its opposite sides are equal and parallel). Point N is the centroid of the parallelogon's vertices. The area of the parallelogon is equal to half the area of triangle ABC. The perimeteof the parallelogon is equal to 2(AM + BM + CM). Therefore if all the angles of triangle ABC are less than 120° , then the minimal value of the perimeter of the parallelogon is reached when M coincides with the Fermat-Torricelli point [2, pp. 24–34].

Corollary 4. If M is the circumcenter of the triangle ABC, then all sides of the parallelogon are equal to the half circumradius of the triangle ABC.

Corollary 5. If all the angles of the triangle ABC are less than 120° and M is the Fermat-Torricelli point of the triangle ABC, then all angles of the parallelogon are equal to 120° .

Corollary 6. If M is the orthocenter H of the triangle ABC, then N is the nine-point center of the triangle ABC, because the nine-point center lies on the segment HG and divides it in the ratio 1:3, i.e., HN : NG = 1 : 3 [4, p. 153].

Figure 4: A parallelogon *FKELDP*.

References

- H.S.M. COXETER, S.L. GREITZER: Geometry Revisited. Math. Assoc. Amer., Washington DC, 1967.
- [2] R. HONSBERGER: Mathematical Gems I. Math. Assoc. Amer., Washington DC, 1973.
- [3] R.A. JOHNSON: Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Houghton Mifflin, Boston MA, 1929.
- [4] A.S. POSAMENTIER, I. LEHMANN: The Secrets of Triangles. Prometheus Books, 2012.
- [5] G. TITEICA: Culegere de Probleme de Geometrie [Romanian]. Editura Technica, Bucuresti 1965.

Received January 27, 2020; final form April 3, 2020