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Abstract. We prove an inequality comparing the sum of areas of faces of a
parallelepiped to its the volume. Then we prove an inequality on a tetrahedron
analogous to Weitzenböck’s Inequality on a triangle using the inequality on a par-
allelepiped and Yetter’s Theorem. We also give a short proof of Yetter’s Theorem.
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1 Introduction

Suppose ~a and ~b are three-dimensional vectors. Then, ‖~a‖2 + ‖~b‖2 ≥ 2‖~a ×~b‖ since ‖~a‖2 +
‖~b‖2 ≥ 2‖~a‖ · ‖~b‖ and ‖~a ×~b‖ = ‖~a‖ · ‖~b‖ sin θ, where θ is the angle between ~a and ~b. So if
ABCD is a parallelogram, then AB2 +BC2 + CD2 +DA2 ≥ 4AABCD, where AABCD is the
area of the parallelogram. The equality holds when ABCD is a rectangle. We will prove an
analogous result to a parallelepiped in Theorem 1.

Weitzenböck’s inequality states the following; if a, b, c are the side lengths of a triangle
with area T , then a2 + b2 + c2 ≥ 4

√
3T , c. f. [1] and the references therein. We will obtain an

inequality on a tetrahedron in Theorem 2 that is analogous to Weitzenböck’s Inequality. In
order to prove Theorem 2, we will use Theorem 1 and Yetter’s Theorem (see Theorem 1 in
[2], and [4]). We will state Yetter’s theorem slightly differently from the one given in [2] and
give a concise proof.

2 Parallelepiped

Let us start by giving notations and a definition.

Definition 1. 1. The area of a triangle ABC is denoted by AABC . The area of a paral-
lelogram ABCD is denoted by AABCD.
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Figure 1: The parallelepiped [OABC] generated by vectors −→OA, −−→OB, −→OC that embeds a
tetrahedron ABCF .

2. Let −→OA, −−→OB, −→OC be non-collinear vectors. We say the vectors −→OA, −−→OB, −→OC generate
the parallelepiped with new additional vertices D, E, F , G as in Figure 1.

Note that vertices O and D of the parallelepiped in Figure 1 are diagonally opposite. We
denote this parallelepiped by [OABC].

Theorem 1. Let [OABC] be a parallelepiped, and W be its volume. Then A2
OAF B +A2

OBGC +
A2

OCEA ≥ 3W 4/3. The equality holds only when the parallelepiped is a cube.

Proof. Without loss of generality, we assume the parallelepiped [OABC] to be generated by
vectors ~a = −→OA = (a, 0, 0), ~b = −−→OB = (x, b, 0), ~c = −→OC = (y, z, c), where a, b, c > 0 and x, y, z
are any real numbers. Then W = abc. On the other hand, we have ~u = ~a ×~b = (0, 0, ab),
~v = ~b × ~c = (x, b, 0) × (y, z, c) = (bc,−xc, xz − yb), and ~w = ~c × ~a = (y, z, c) × (a, 0, 0) =
(0, ac, az). So

A2
OAF B +A2

OBGC +A2
OCEA = ‖~u‖2 + ‖~v‖2 + ‖~w‖2

= (ab)2 + ((bc)2 + (xc)2 + (xz − yb)2) + ((ac)2 + (az)2)
= (ab)2 + (bc)2 + (ac)2 + (xc)2 + (xz − yb)2 + (az)2.

By the Arithmetic Mean-Geometric Mean inequality (see Problem 49 on Page 978 of [3]),
we have (ab)2 + (bc)2 + (ac)2 ≥ 3 3

√
(ab)2(bc)2(ac)2 = 3(abc)4/3 = 3W 4/3. The equality holds

only when ab = bc = ac or, equivalently, a = b = c. Because of the squared terms, we have
(xc)2 + (xz − yb)2 + (az)2 ≥ 0, and (xc)2 + (xz − yb)2 + (az)2 = 0 only when x = y = z = 0.
Therefore, we have shown that A2

OAF B +A2
OBGC +A2

OCEA ≥ 3W 4/3. And the equality holds
only when a = b = c and x = y = z = 0, i.e., when the parallelepiped [OABC] is a cube.
This proves the theorem.

3 Tetrahedron

Alsina and Nelson restated Weitzenböck’s Inequality in [1] as follows; if a triangle of three
sides a, b, c has the area T , and if Ts denotes the area of an equilateral triangle with side
length s, then we have Ta + Tb + Tc ≥ 3T . They proved this inequality by raising three
equilateral triangles having edges a, b, and c, respectively, outside of the given triangles.
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Thus, it is tempting to prove our Theorem 2 in a similar way by raising four equifacial
tetrahedra outside of the given tetrahedra. An equifacial tetrahedron is a tetrahedron with
four congruent triangular faces, and it is a three-dimesional analog to an equilateral triangle.
However, this does not seems to work. There is no equifacial tetrahedron having obtuse
triangular faces. We will prove Theorem 3 as an application of Theorem 1 and Yetter’s
Theorem.

Definition 2. Let [OABC] be a parallelepiped with labelings as in Figure 1. The tetrahedra
ABCD and OFEG are said to be embedded-tetrahedra of a parallelepiped [OABC]. (The
tetrahedra ABD and OFEG are congruent but not identical. They are mirror images.) On
the other hand, if ABCD is a tetrahedron, then there are two parallel planes ΓAB and ΓCD,
ΓAB containing the edge AB, and ΓCD containing the edge CD. Similarly, we can construct
planes (ΓAC and ΓBF ), and (ΓAF and ΓCB). Then the solid enclosed by these six planes form
a parallelepiped [OABC] as in Figure 1. Thus, we also say that the parallelepiped [OABC]
embeds the tetrahedron ABCD. Note that the statement of our Yetter’s theorem is
slightly different from one stated in [2], but they are equivalent. We give a short proof of this
theorem.

Theorem 2 (Yetter’s Theorem). Suppose [OABC] is the parallelepiped that embeds a tetrahe-
dron ABCD as in Figure 1. Then, A2

ABC+A2
DAB+A2

DBC+A2
DCA = A2

OAF B+A2
OBGC+A2

OCEA.

Proof. Let ~a = −→OA, ~b = −−→OB, ~c = −→OC, and ~u = ~a × ~b, ~v = ~b × ~c, ~w = ~c × ~a. Then
A2

OAF B +A2
OBGC +A2

OCEA = ‖~u‖2 + ‖~v‖2 + ‖~w‖2. On the other hand, we have

A2
ABC = 1

4‖(
~b− ~a)× (−~a+ ~c)‖2

= 1
4‖~u+ ~v + ~w‖2 = 1

4(‖~u‖2 + ‖~v‖2 + ‖~w‖2 + 2(~u · ~v + ~u · ~w + ~v · ~w)),

A2
DAB = 1

4‖(
~b− ~a)× (~b+ ~c)‖2

= 1
4‖~v − ~u+ ~w‖2 = 1

4(‖~u‖2 + ‖~v‖2 + ‖~w‖2 + 2(−~u · ~v − ~u · ~w + ~v · ~w)),

A2
DBC = 1

4‖(~a+~b)× (~b− ~c)‖2

= 1
4‖~u− ~v + ~w‖2 = 1

4(‖~u‖2 + ‖~v‖2 + ‖~w‖2 + 2(−~u · ~v − ~v · ~w + ~w · ~u)),

A2
DCA = 1

4‖(~a+~b)× (~a− ~c)‖2

= 1
4‖ − ~u− ~v + ~w‖2 = 1

4(‖~u‖2 + ‖~v‖2 + ‖~w‖2 + 2(~u · ~v − ~v · ~w − ~w · ~u)).

Hence, we have A2
ABC +A2

DAB +A2
DBC +A2

DCA = ‖~u‖2 + ‖~v‖2 + ‖~w‖2. Therefore, we have
shown that A2

ABC +A2
DAB +A2

DBC +A2
DCA = A2

OAF B +A2
OBGC +A2

OCEA.

Now we are ready to state and prove Theorem 3.

Theorem 3. Suppose the volume of a tetrahedron ABCD is V . Then A2
ABC + A2

DAB +
A2

DBC +A2
DCA ≥ 9 3

√
3V 4/3. The equality holds only when the tetrahedron ABCD is regular.

Proof. Let [OABC] be the parallelepiped that embeds the tetrahedron ABCD. Let W be the
volume of [OABC]. Then, since we know that W = 3V , we have A2

OADB +A2
OBGC +A2

OCEA ≥
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3W 4/3 = 3(3V )4/3 = 9 3
√

3V 4/3 by Theorem 1. Therefore, A2
ABC +A2

DAB +A2
DBC +A2

DCA =
A2

OADB +A2
OBGC +A2

OCEA ≥ 9 3
√

3V 4/3 by Yetter’s Theorem. Note that a regular tetrahedron
is the only tetrahedron that can be embedded in a cube. Hence, the equality holds only when
the tetrahedron is regular.
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