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Abstract. We prove an inequality comparing the sum of areas of faces of a
parallelepiped to its the volume. Then we prove an inequality on a tetrahedron
analogous to Weitzenbock’s Inequality on a triangle using the inequality on a par-
allelepiped and Yetter’s Theorem. We also give a short proof of Yetter’s Theorem.
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1 Introduction

Suppose @ and b are three-dimensional vectors. Then, ||@||2 + ||b]|? > 2||@ x b]| since ||@||* +
162 > 2||@| - ||b]| and ||@ x b]| = ||| - ||b]| sin#, where @ is the angle between @ and b. So if
ABCD is a parallelogram, then AB? + BC? + CD? 4+ DA? > 4 A pcp, where Aapep is the
area of the parallelogram. The equality holds when ABCD is a rectangle. We will prove an
analogous result to a parallelepiped in Theorem 1.

Weitzenbock’s inequality states the following; if a, b, ¢ are the side lengths of a triangle
with area T, then a® + b% + ¢ > 44/3T, c. f. [1] and the references therein. We will obtain an
inequality on a tetrahedron in Theorem 2 that is analogous to Weitzenbock’s Inequality. In
order to prove Theorem 2, we will use Theorem 1 and Yetter’s Theorem (see Theorem 1 in
[2], and [4]). We will state Yetter’s theorem slightly differently from the one given in [2] and
give a concise proof.

2 Parallelepiped

Let us start by giving notations and a definition.

Definition 1. 1. The area of a triangle ABC' is denoted by Aspc. The area of a paral-
lelogram ABC'D is denoted by Aipcp.
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Figure 1: The parallelepiped [OABC| generated by vectors (74, (ﬁ, (ﬁ that embeds a
tetrahedron ABCF'.

— o
2. Let OA, @, O? be non-collinear vectors. We say the vectors OA, @, O? generate
the parallelepiped with new additional vertices D, F, F', G as in Figure 1.

Note that vertices O and D of the parallelepiped in Figure 1 are diagonally opposite. We
denote this parallelepiped by [OABC.

Theorem 1. Let [OABC] be a parallelepiped, and W be its volume. Then A% pp+Abpac+
A3 cpa > 3WA3. The equality holds only when the parallelepiped is a cube.

Proof. Without loss of generality, we assume the parallelepiped [OABC] to be generated by
vectors d = 0—121 = (a,0,0), b= O@ = (z,b,0),c= O? = (y, 2z, ¢), where a,b,c > 0 and z,y, z
are any real numbers. Then W = abc. On the other hand, we have @ = @ x b = (0,0, ab),
T=bxé= (,0,0) X (y,2,¢) = (bc, —xc,xz — yb), and W = ¢ x d = (y, z,¢) X (a,0,0) =
(0,ac,az). So

Abars + Adpao + Abcra = I@])* + 18] + [|&]®
= (ab)® + ((be)® + (we)? + (x2 — yb)*) + ((ac)® + (az)?)
= (ab)® + (bc)? + (ac)® + (zc)® + (zz — yb)? + (az)*.

By the Arithmetic Mean-Geometric Mean inequality (see Problem 49 on Page 978 of [3]),
we have (ab)? + (bc)? + (ac)* > 3\3/(ab)2(bc)2(ac)2 = 3(abc)*/? = 3W*3. The equality holds
only when ab = bc = ac or, equivalently, a = b = ¢. Because of the squared terms, we have
(zc)* + (zz — yb)? + (a2)* > 0, and (zc)* + (zz — yb)? + (az)? = 0 only when z =y = z = 0.
Therefore, we have shown that A2 45 + A3pae + Adcpa = 3W43. And the equality holds
only when a = b = cand 2 = y = z = 0, i.e., when the parallelepiped [OABC] is a cube.
This proves the theorem. O

3 Tetrahedron

Alsina and Nelson restated Weitzenbock’s Inequality in [1] as follows; if a triangle of three
sides a, b, ¢ has the area T, and if T, denotes the area of an equilateral triangle with side
length s, then we have T, + T, + 1. > 3T. They proved this inequality by raising three
equilateral triangles having edges a, b, and ¢, respectively, outside of the given triangles.
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Thus, it is tempting to prove our Theorem 2 in a similar way by raising four equifacial
tetrahedra outside of the given tetrahedra. An equifacial tetrahedron is a tetrahedron with
four congruent triangular faces, and it is a three-dimesional analog to an equilateral triangle.
However, this does not seems to work. There is no equifacial tetrahedron having obtuse
triangular faces. We will prove Theorem 3 as an application of Theorem 1 and Yetter’s
Theorem.

Definition 2. Let [OABC] be a parallelepiped with labelings as in Figure 1. The tetrahedra
ABCD and OFEG are said to be embedded-tetrahedra of a parallelepiped [OABC]. (The
tetrahedra ABD and OF EG are congruent but not identical. They are mirror images.) On
the other hand, if ABCD is a tetrahedron, then there are two parallel planes I'ygz and I'cp,
I'4p containing the edge AB, and I'cp containing the edge C'D. Similarly, we can construct
planes (I'y¢ and I'gr), and (I'ar and I'cp). Then the solid enclosed by these six planes form
a parallelepiped [OABC] as in Figure 1. Thus, we also say that the parallelepiped [OABC]|
embeds the tetrahedron ABCD. Note that the statement of our Yetter’s theorem is
slightly different from one stated in [2], but they are equivalent. We give a short proof of this
theorem.

Theorem 2 (Yetter’s Theorem). Suppose [OABC] is the parallelepiped that embeds a tetrahe-
dron ABCD as in Figure 1. Then, A% pc+AHap+ AbpctAbos = Ab urpt+ Ab ot Abcpa-

— = o
Proof. Let @ — OA, b — OB, @ = OC, and @ — @ x b, # = bx & @ = &x d Then
A2 5+ Abpae + Abcpa = |lT)]? + ||17])* + [|@]]2. On the other hand, we have

.- -
Alpe = 7100 —a) x (=a+ )|

1 1, B ) S
:Z||u+v+w”2:Z(HUHQ+HUH2+||w||2+2(u'v+u-w+v-w»7

1 b _ —
Apap = 7100 =) x (b+ )"
1 1
= L= a | = LR+ [+l + 25— i@+ 7)),
1

Abpe = Z1@+0) x (b -2

1. o 2 1,2 . - e o
= Zla—=v+a|* = (@l + |9 + [0l + 2=t - T = 7 & + & - @),
1 »

Ayoa = S+ x @)
1 L 1, . N . L L L L
= 7l == d+a|* = (@l + 181" + @] + 2@ - ¢ = 7 & — - 7)),
Hence, we have A% 50 + A% 45 + A pe + Aboa = |@l* + ||7))* + ||w]|?. Therefore, we have
shown that A% po + Abap + Ahpe + Apoa = Abars + Absec + Abcpa: 0

Now we are ready to state and prove Theorem 3.

Theorem 3. Suppose the volume of a tetrahedron ABCD is V. Then A%po + Abap +
2 o+ Ao > 9V/3VA3. The equality holds only when the tetrahedron ABCD is regular.

Proof. Let [OABC] be the parallelepiped that embeds the tetrahedron ABC'D. Let W be the
volume of [OABC)]. Then, since we know that W = 3V, we have A2, pz +ASpcc+Adbcpa =
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3W4/3 = 3(3V)3 = 9y/3V*3 by Theorem 1. Therefore, A% + Abup + Abpo + ALps =
A2 s F AL poe + Abcpa > 9v/3V Y3 by Yetter’s Theorem. Note that a regular tetrahedron
is the only tetrahedron that can be embedded in a cube. Hence, the equality holds only when
the tetrahedron is regular. O]
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