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1 Introduction

The theory of the tangent bundle of submanifolds is an interesting topic in the differential
geometry. There are three types of submanifolds concerning the almost complex structure of
the ambient manifold, namely, given as holomorphic submanifolds, totally real submanifolds,
and CR-(Cauchy-Riemannian) submanifolds. Bejancu [2] has studied CR-submanifold of a
Kählerian manifold in which a new class of submanifolds of the complex manifold was initi-
ated. Bejancu has introduced the concept of CR-submanifold and gave its basic properties.
Numerous investigators made valuable contributions to CR-submanifolds including Bejancu
[1], Blair and Chen [3], Chen [4], Dragomir at el [6] and Yao and Kon [9]. In this paper,
we study the integrability conditions and Nijenhuis tensor on CR-structures and the general
quadratic structure.

Let us consider the general quadratic equation x2 + αx + β = 0, α, β are integers. The
set of solutions denoted by x = 1

2(−α ±
√
α2 − 4β). In n-dimensional manifold M , suppose

a tensor field F (6= 0) of the type (1, 1) and of class C∞ on M such that

F 2 + αF + βI = 0 (1)
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such structure on M is called the general quadratic structure of rank r. If the rank of F is
constant and r = r(F ), then M is called the general quadratic manifold.

Let us introduce the operators as follows

l = −F
2 + αF

β
, m = I + F 2 + αF

β
(2)

where I denotes the identity operator on M .

Proposition 1.1. Let M be the general quadratic manifold. Then

l +m = I, l2 = l, and m2 = m. (3)

Proof. In the view of Equation (2), the proof is trivial.

For F 6= 0 satisfying Equation (1), there exist complementary distributions Dl and Dm

corresponding to the projection operators l and m respectively. If the rank(F ) = constant
and r = r(F ) on M , then dimDl = r and dimDm = n− r [5, 7].

Proposition 1.2. Let M be the general quadratic manifold. Then

Fl = lF = F, Fm = mF = 0 (4)
F 2 + αF

β
= −l, F 2 + αF

β
l = −l, F 2 + αF

β
m = 0. (5)

Thus
(
F 2+αF

β

) 1
2

acts on Dl as an almost complex structure and on Dm as a null operator.

Proof. In the view of Equation (1), the proof is trivial.

2 Nijenhuis tensor

Definition 2.1. If X, Y are two vector fields in M , then their Lie bracket [X, Y ] is given
by [5]

[X, Y ] = XY − Y X. (6)

The Nijenhuis tensor N(X, Y ) of F satisfying Equation (1) in M is expressed as follows

N(X, Y ) = [FX,FY ]− F [FX, Y ]− F [X,FY ] + F 2[X, Y ], (7)

for every vector field X, Y on M .
We state the following proposition [8]:

Proposition 2.2. A necessary and sufficient condition for the general quadratic structure F
to be integrable is that N(X, Y ) = 0 for any two vector fields X and Y on M .
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3 CR-structure

Let M be a differentiable manifold and TcM its complexified tangent bundle. A CR-structure
on M is a complex subbundle H of TcM such that Hp ∩ H̄p = 0 and H is involutive, i. e.,
for complex vector fields X and Y in H, [X, Y ] is in H. In this case we say M is a CR-
manifold. Let F be the general quadratic integrable structure satisfying Equation (1) of rank
r = 2m on M . We define complex subbundle H of TcM by Hp = {X−

√
−1FX,X ∈ χ(Dl)},

where χ(Dl) is the ℘(Dm) module of all differentiable sections of Dl. Then Re(H) = Dl and
Hp ∩ H̄p = 0, where H̄p denotes the complex conjugate of H [5].

Proposition 3.1. Let P,Q ∈ H, then we have

[P,Q] = [X, Y ]− [FX,FY ]−
√
−1([X,FY ] + [FX, Y ]), (8)

for every vector field X, Y on M .

Proof. Consider P = X −
√
−1FX and Q = Y −

√
−1FY . Then we have

[P,Q] = [X −
√
−1FX, Y −

√
−1FY ]

= [X, Y ]− [FX,FY ]−
√
−1([X,FY ] + [FX, Y ]).

Proposition 3.2. If the general quadratic structure satisfying Equation (1) is integrable, then
we have

(F + αI)([FX,FY ] + F 2[X, Y ]) = −βl([FX, Y ] + [X,FY ]), (9)
for every vector field X, Y on M .

Proof. Since N(X, Y ) = 0, from (7) we obtain

[FX,FY ] + F 2[X, Y ] = F ([FX, Y ] + [X,FY ]). (10)

Operating Equation (10) by F+αI
β

, we get

(F + αI)
β

([FX,FY ] + F 2[X, Y ]) = (F 2 + αF )
β

([FX, Y ] + [X,FY ]). (11)

Making use of Equation (2), we obtain

(F + αI)([FX,FY ] + F 2[X, Y ]) = −βl([FX, Y ] + [X,FY ]). (12)

This completes the proof.

Theorem 3.3. The following conditions are equivalent

(i) mN(X, Y ) = 0,
(ii) m[FX,FY ] = 0,

(iii) mN

(
F 2 + αF

β
X, Y

)
= 0,

(iv) m

[
F 2 + αF

β
FX,FY

]
= 0,

(v) m

[
F 2 + αF

β
lFX, FY

]
= 0,

where X and Y are vector fields.
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Proof. We have to show that (i) ⇐⇒ (ii). Let mN(X, Y ) = 0. Then in the view of
Equation (7), we have

mN(X, Y ) = m[FX,FY ]−mF [FX, Y ]−mF [X,FY ] +mF 2[X, Y ].

Since mF = 0, we have mN(X, Y ) = m[FX,FY ]. Since mN(X, Y ) = 0, then m[FX,FY ] =
0. Thus, mN(X, Y ) = 0 if and only if m[FX,FY ] = 0.

(ii) ⇐⇒ (iii): Let m[FX,FY ] = 0. Then in the view of Equation (7), we have

mN
(
F 2 + αF

β
X, Y

)
= m

[
F 2 + αF

β
FX,FY

]
−mF

[
F 2 + αF

β
FX, Y

]

−mF
[
F 2 + αF

β
X,FY

]
+mF 2

[
F 2 + αF

β
X, Y

]
.

Since, F 2+αF
β

= −l, mF = 0, then above equation becomes

mN
(
F 2 + αF

β
X, Y

)
= m[−lFX, FY ] = −m[FX,FY ] as lF = F.

Since m[FX,FY ] = 0, then we have

mN
(
F 2 + αF

β
X, Y

)
= 0.

Thus, m[FX,FY ] = 0 if and only if mN(F 2+αF
β

X, Y ) = 0.
(iii) ⇐⇒ (iv): Let mN(F 2+αF

β
X, Y ) = 0. Using mF = 0, then we have

mN
(
F 2 + αF

β
X, Y

)
= m

[
F 2 + αF

β
FX,FY

]
= 0,

whence mN(F 2+αF
β

X, Y ) = 0 indeed implies m[F 2+αF
β

FX,FY ] = 0.
(iv) ⇐⇒ (v): Let m[F 2+αF

β
FX,FY ] = 0. Using lF = F , Fm = 0, then we have

mN
(
F 2 + αF

β
lX, Y

)
= m

[
F 2 + αF

β
lFX, FY

]
= m

[
F 2 + αF

β
FX,FY

]
, as lF = F.

So

m
[
F 2 + αF

β
lFX, FY

]
= m

[
F 2 + αF

β
FX,FY

]
, as m

[
F 2 + αF

β
FX,FY

]
= 0

and
m
[
F 2 + αF

β
FX,FY

]
= 0 implies m

[
F 2 + αF

β
lFX, FY

]
= 0.

(v) ⇐⇒ (i): Let m[F 2+αF
β

lFX, FY ] = 0. Making use of (2) and (3), we obtain

m[−l2FX,FY ] = 0, −m[lFX, FY ] = 0′, m[FX,FY ] = 0, as lF = F.

Since mN(X, Y ) = m[FX,FY ] = 0, we have mN(X, Y ) = 0. Thus, m[F 2+αF
β

lFX, FY ] = 0
implies mN(X, Y ) = 0. This completes the proof.
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Proposition 3.4. If
(
F 2+αF

β

) 1
2 acts on Dl as an almost complex structure, then

m

[
F 2 + αF

β
lX, FY

]
= m[−X,FY ] = 0 (13)

for every vector field X, Y on M .

Proof. From Equation (5), we know that (F 2+αF
β

) 1
2 acts on Dl as an almost complex structure

then Equation (13) follows in an obvious manner. To prove that m[F 2+αF
β

lX, FY ] = 0, by
using the formula [X, Y ] = XY − Y X where X, Y are C∞ vector fields and Equation (5), we
obtain Equation (13).

Proposition 3.5. For X, Y ∈ χ(Dl), we have

l([X,FY ] + [FX, Y ]) = [X,FY ] + [FX, Y ].

Proof. By Definition 2.1, we have

[X, Y ] = XY − Y X.

Now,
l[X,FY ] = l(XFY − FY X) = X(lFY )− (lF )Y X

= XFY − FY X, as lF = F, using Equation (4),
= [X,FY ].

Similarly, l[FX, Y ] = [FX, Y ]. Hence,

l([X,FY ] + [FX, Y ]) = [X,FY ] + [FX, Y ].

Theorem 3.6. The integrable general quadratic structure satisfying Equation (1) on M de-
fines a CR-structure H on it such that ReH ≡ Dl.

Proof. To prove the general quadratic equation satisfies Equation (1) defines CR-structure
on M it suffices to prove [P,Q] ∈ χ(Dl).

From Equation (8), we have

[P,Q] = [X, Y ]− [FX,FY ]−
√
−1([X,FY ] + [FX, Y ]). (14)

Now,

[P,Q]−
√
−1F [P,Q] = [X, Y ]− [FX,FY ]−

√
−1([X,FY ] + [FX, Y ])

−
√
−1F ([X, Y ]− [FX,FY ])− F ([X,FY ] + [FX, Y ]).

Making use of Theorem (3.5) and Equation (9), we obtain

[P,Q]−
√
−1F [P,Q] = [X, Y ]− [FX,FY ]−

√
−1

(
F + αI

−β

)
([FX,FY ] + F 2[X, Y ])

−
√
−1F ([X, Y ]− [FX,FY ]−

√
−1

(
F + αI

−β

)
([FX,FY ] + F 2[X, Y ])).

By definition of CR-structure, we have [P,Q] ∈ χ(Dl). This completes the proof.
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Definition 3.7. Let K̃ be the complementary distribution of Re(H) to TM . We define a
morphism of vector bundles F : TM → TM given by F (X) = 0 for all X ∈ χ(K̃), such that

F (X) = 1
2
√
−1(P − P̄ ) (15)

where P = X +
√
−1Y ∈ χ(Hp) and P̄ is a complex conjugate of P [5].

Corollary 3.8. If P = X+
√
−1Y and P̄ = X−

√
−1Y belong to Hp and F (X) = 1

2
√
−1(P−

P̄ ), F (Y ) = 1
2(P + P̄ ) and F (−Y ) = −1

2(P + P̄ ), then F (X) = −Y, F 2(X) = −X and
F (−Y ) = −X.

Proof. On using Definition 3.7, we have

F (X) = 1
2
√
−1(X +

√
−1Y − (X −

√
−1Y )) = 1

2
√
−1(2

√
−1Y ),

F (X) = −Y.
(16)

Applying F to both sides of Equation (16), we obtain

F (F (X)) = F (−Y ). (17)

But
F (Y ) = 1

2(X +
√
−1Y +X −

√
−1Y ),

which on simplifying gives F (Y ) = X. Also,

F (−Y ) = −1
2(X −

√
−1Y +X +

√
−1Y ) = −X. (18)

Combining Equations (17) and (18), we get F 2(X) = −X.

Theorem 3.9. If M has a CR-structure H, then we have F 2 +αF +βI = 0 and consequently
the general quadratic structure is defined on M such that the distributions Dl and Dm coincide
with Re(H) and K̃ respectively.

Proof. Suppose M has a CR-structure on M . Then in view of Definition 3.7 and Corollary 3.8
we can write [5]

F (X) = −Y. (19)
Operating Equation (19) by F+αI

β
, we get

F + αI

β
F (X) = F + αI

β
(−Y ) = F (−Y ) + α(−Y )

β

= −X − αY
β

= −X + αF (X)
β

, as FX = −Y,

= F 2(X) + αF (X)
β

, as F 2X = −X,

= −βX
β

, as F 2 + αF + βI = 0,

F + αI

β
F (X) = −X,

(F + αI)F = −βI.

Hence, F 2 + αF + βI = 0.
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