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Abstract. We study an abstract pentagon in planar projective geometry via its
unique circumscribing conic, associated to 15 diagonal lines and exagonal points,
and describe 12 beautifully inter-related conics. These are closely connected to a
distance-regular graph X which is a sister of the icosahedral graph, arising from
dihedral orderings of five objects.
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1 Introduction

There is an extensive literature on the remarkable configurations resulting from six points
on a conic, starting with Pascal’s theorem, and generally referred to as the Hexagrammum
Mysticum. Investigation of this rich phenomenon involved some of the greatest geometers of
the nineteenth century [10, page 172].

A Pascal line is determined by an ordering of the six points, and by considering all possible
orderings, it turns out that there are in total 60 Pascal lines. There are then an associated
60 Kirkman points each lying on three Pascal lines, with each Pascal line incident with three
Kirkman points. The Pascal lines also pass, three at a time, through 20 additional Steiner
points. There are 20 Cayley lines which pass through both a Steiner point and three Kirkman
points. The Steiner points also lie, four at a time, on 15 Pliicker lines. Furthermore, the 20
Cayley lines concur four at a time at 15 Salmon points.

See Levi’s text [6] for a systematic description of these classical lines and points, and Fig-
ure 6.14 of [3, p. 233] for a visualization of the 60 Pascal lines. This fascinating configuration
has also attracted recent interest [1], [2], as it turns out that the combinatorics of the number
six is intimately connected with the situation.

In this paper we want to show that with just five points in general position in the projective
plane, there is also a panorama of fascinating geometric and combinatorial structure, which
we might call the Pentagrammum Mysticum, which goes further in the direction set out
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by Kasner [5] and Hoffman [4]. We look in some detail at the projective geometry of five
general Points, by exploiting properties of the unique conic C' that passes through those five
points, and the five tangent Lines to C' at those points. These five Points and five Lines form a
configuration that yields ten Diagonal lines and ten Fxagonal points, which in turn determine
fifteen Diagonal points and fifteen Ezragonal lines. This is a more elementary configuration
than that obtained from six points on a conic, but it turns out to be quite interesting. There
are two classical theorems here which we call the Diagonal points on Exagonal lines theorem,
and the Ezagonal lines through Dihedral points theorem, and they are naturally dual. These
deserve to be more widely known.

Further we show that the twelve dihedral orderings of five points naturally index twelve
dihedral conics associated to the original five Points, and that the intersection data for these
conics is reflected in a distance transitive graph X which we call the twisted icosahedron.
We give some reasons why this is indeed a good name for this graph, describe some of its
geometry, and conclude with its adjacency matrix.

In [6, p. 213] Levi discusses also how the Pascal configuration reduces when two of the
points are identified, where a line between the original points becomes a tangent to the conic,
which breaks the symmetry of the original points. This symmetry can be reinstated by consid-
ering all six such Pascal pentagons, and the possible connections between this and the current
study seems to warrant further investigation. We would like to thank the reviewer /editor for
bringing this to our attention.

2 Some projective constructions from a pentagon

The projective plane P? can be viewed over a general field, typically for us the rational
numbers, but finite or other fields are also allowed. The projective pentagon in this situation
is important not only for its intrinsic interest, but also because it is connected to the study of
the rectangular spherical triangle and to Euclidean geometry, as pointed out by Motzkin [7].
We begin with some notational conventions and book-keeping with regard to five objects.

Points will generally be associated to square brackets [ ] and lines to round brackets
(). The polarity, or duality, between points and lines determined by a fixed conic C, goes
back to Apollonius. To define the dual of a point A with respect to a conic C, we may choose
any two lines which pass through A, and meet C' in two points each. The quadrangle so
determined has two other diagonal points and the dual line @ = A* is the join of these, and
is independent of the choices of initial lines through A. In the case of the point A lying on
the conic, the dual line @ = At is the tangent line to C through A. Additionally it turns out
that if B lies on the dual a of A, then A lies on the dual b of B. This allows us to define the
dual of a line as the meet of the duals of any two points on it.

Because we are interested in the combinatorics that arise, we will label objects just by
their indices. We also adopt a partial German convention of capitalizing objects that are
directly associated to the five original Points which will be denoted

[0, (1], [21, 3] [4]

and which we assume are in general position, so no three are collinear.
The Point Conic through these five Points is denoted C'. The tangent lines to C' at these
Points are the respective Lines

(0),(1),(2),(3),4)
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Figure 1: Five Points, the conic through them, and the associated five Lines

so that (0) denotes the tangent line to C' at the point [0], and so on. These five Lines will
also be in general position, so no three are concurrent.

This fundamental association between five generic Points and five generic Lines which
are incident to them distinguishes the number five in projective geometry. The symmetry
between the five Points and Lines can also be viewed as given by the duality induced by C.

An example of five Points, the associated Point Conic, and the five Lines are shown in
Figure 1. The five Points join to form ten Diagonal lines

(01),(02),(03),(04),(12),(13),(14),(23),(24),(34)

where for example (01) = [0] [1] is the join of the Points [0] and [1]. Two such Diagonal lines
pass through the same Point precisely when they share an index, so that for example (03) and
(13) both pass through the Point [3]. Note that while these labels are intrinsically unordered,
we present them in lexicographical order for convenience of identification, and begin ordering
with 0.

The five Lines meet at ten Exagonal points

[01],[02],[03],[04],[12],[13],[14],[23],[24] , [34]

where for example [01] = (0) (1) is the meet of the Lines (0) and (1). Two such Exagonal
points lie on the same Line precisely when they share an index, so that for example [02] and
[24] both lie on the Line (2).

The obvious correspondence between Exagonal points and Diagonal lines is again given
by the duality induced by the conic C' so that for example the Exagonal point [14] is the
pole of the Diagonal line (14), while (14) is the polar of [14] . We will use the word ”dual” to
express both notions. Some Exagonal points and Diagonal lines are shown in Figure 2, while
others will be off the viewing page.

The meet of two Diagonal lines which do not share a common Point is a Diagonal point,
and there are fifteen, namely

(01) (23) (04) (12) (02) (14) (13) (24) (()3) (24)
(02)(13)  (12)(34)  (03)(14)  (01)(34)  (04)(23)
03)(12)  (01)(24)  (04)(13)  (02)(34)  (14)(23)

)
Here we express the meet of the lines (01) and (23) as the point (01) (23) etc. instead of
introducing new terminology.
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Figure 2: Some Exagonal points and Diagonal lines
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Figure 3: Fifteen Exagonal lines and Diagonal points

The join of two Exagonal points which do not lie on a common Line is an Exagonal line,
and there are fifteen such, namely

[01] [23] [04] [12] [02] [14] [13] [24] (03] [24]
[02] [13] [12] [34] (03] [14] [01] [34] [04] [23]
(03] [12] [01] [24] [04] [13] [02] [34] [14] [23]

Exagonal lines and Diagonal points are also related in the obvious way via the duality
of C, so for example in Figure 3 we see Exagonal lines (in brown) and Diagonal points (in
yellow), with both the Diagonal point (03) (14) and its dual Exagonal line [03][14] labelled
and highlighted.

Any four of the five original Points, such as [0],[1],[3] and [4], determine a complete
quadrangle, which has six lines, each of which is a Diagonal line, such as (03) or (14). Such a
quadrangle is determined by the unique Point which is not included, in this example [2]. The
six Diagonal lines determined by such a quadrangle meet also at three Diagonal points, which
in this case are exactly those not involving the excluded index, namely (03) (14), (01) (34)
and (04) (13).

Correspondingly, any four of the five original Lines, such as (0), (1), (3) and (4), deter-
mine a complete quadrilateral, which has six points, each of which is an Exagonal point,
such as [03] or [14]. Such a quadrilateral is also determined by the unique Line which is not
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included, in this example (2). The six Exagonal points determined by such a quadrilateral
join also to form three Exagonal lines, which in this case are exactly those not involving the
excluded index, such as [03] [14], [01] [34] and [04] [13].

Figure 3 shows some unexpected concurrences and collinearities, which are well-known
and described in the following pair of dual theorems.

Theorem (Diagonal points on Exagonal lines) The Eragonal line [ij] [mn] passes
through the Diagonal points (im) (jn) and (in) (ym).

Theorem (Exagonal lines through Diagonal points) The Diagonal point (ij) (mn)
lies on the Ezxagonal lines [im][jn] and [in] [jm].

3 Dihedral orderings of five objects

We now make some general comments on the combinatorics associated to the number five,
and connect with the symmetries between a pentagon and its associated pentagram, see also
[8] and [9]. A dihedral ordering of five objects indexed by 0,1,2,3 and 4 is a (linear)
ordering, with the convention that two such orderings are equal if they can be obtained by
cyclic shifts as well as reflections. So for example all the following dihedral orderings are
equal:

01234 = 12340 = 23401 = 34012 = 40123 =
43210 = 04321 = 10432 = 21043 = 32104.

Since there are 5! = 120 permutations of five objects, and 10 are equal in one dihedral
order, there are altogether 12 distinct dihedral orderings. When we write a dihedral order,
our convention is to choose the permutation which begins with 0, which is possible due to
the assumed cyclic symmetry, and whose next element is the smaller of 0’s two neighbouring
entries, which is possible by the reflection symmetry. So the primary name of the dihedral
order above would be F' = 01234.

Two dihedral orderings are opposite precisely when one of them is obtained by taking
every second, or alternating, element from the other. We denote this by a bar. So for
example the orderings F' = 01234 and F' = (02413 are opposite, and the correspondence
can be visualized as the dual relation between a pentagon and its associated pentagram, as
in Figure 4. By choosing every second entry (again either forwards of backwards) in the
pentagram, we recover the original pentagon. So this is an involution, which we denote by o,
on dihedral orderings, so we write o (F) = F.

Here are the twelve dihedral orderings written using these conventions:

A = 01432 B = 01342 C' =01243 D = 01423 E =01324 F =01234

A =03124 B = 03214 C = 02314 D = 02134 E = 02143 F = 02413.

Two dihedral orderings are adjacent precisely when they differ by swapping a (cyclically)
neighbouring pair of points, so that for example the dihedral orderings adjacent to 01234 are

01243 01324 02134 01432 03214.

With this notion of adjacency, the 12 dihedral orderings form a regular graph X of degree
5 which we call the twisted icosahedron—the reason for the name will be justified as we
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A 01432 B
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Figure 4: A pentagon and its associated pen-  Figure 5: The pentagon dihedral ordering
tagram graph

proceed. We may view X as in Figure 5, consisting of two hexagons with opposing vertices,
such as A and D, connected, and which lie in parallel planes and are connected by edges in an
alternating up and down fashion: each vertex on one hexagon is joined also to the vertices in
the other hexagon which are directly above or below its two nearest non-opposing neighbours.
Here the shading of the hexagons is just for illustrative purposes. The number of edges of this
graph is 9 + 9 + 12 = 30. This is however not the graph of an icosahedron, since for example
two adjacent vertices have no common neighbours, while in an icosahedron graph they have
two.

Recall that a hyperboloid of one sheet in three-dimensional space may be obtained by
taking two parallel circles, one directly above the other, and joining each point on the top
circle with the two points on the bottom circle which are a fixed turn, or angle, from the
vertical projection of the given point. This makes a ruled surface with two rulings. The
twisted icosahedron can thus be viewed as a discretization of such a hyperboloid, and as
such one could readily investigate generalizations where the hexagon is replaced by another

polygon.
In Figure 5 the top shaded hexagon consists exactly of the dihedral orderings

01432 01342 01243 01423 01324 01234

characterized by containing the adjacent pair 01, and so we could denote it by Fp;. The op-
posite bottom shaded hexagon consists of the dihedral orderings characterized by not having
0,1 as neighbours, and we could denote it by Gg;. There are

5
2 =2
X (2) 0

such hexagonal "faces” of the twisted icosahedron.

Each edge occurs in three such faces of both kinds; for example the edge between A =
01432 and B = 01342, which is determined by the adjacent pair 34, is contained in the faces
Fo1, Foe and F34 as well as Gy, Goz and G152, and these can be easily read off from the overlap
of the two dihedral orderings: 01,02, 34 are common adjacencies, while 04, 03, 12 are common
non-adjacencies.
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So if we loosen our definition of "face” of a graph to include the kind of hexagons we are
here discussing (in the context of simplicial complexes), then both the icosahedron graph I
obtained from the vertices and edges of a regular icosahedron and the twisted icosahedron
X have 12 vertices, 30 edges and 20 faces. It is well known that the icosahedron graph
is distance transitive, meaning that the symmetry group of graph automorphisms acts
transitively on the set of pairs of vertices a distance k apart, for any k£ from 2 to the diameter
of the graph.

Both X and the icosahedron graph I have automorphism groups that active transitively
on the vertices; X has symmetry group S5 acting in the obvious way on dihedral orders, while
the automorphism group of the icosahedral graph is also of order 120, but it is rather the
Coxeter group Hs = As X Zs. Less obvious is that the graph X shares the stronger property
of being distance transitive.

Theorem 1. The twisted icosahedron X is a distance transitive graph.

Proof. Because of the transitivity of the automorphism group S; on vertices, the distance
transitivity follows from showing that S; permutes the vertices of some fixed distance from
a given fixed vertex, say D = 01432. The adjacent orderings to D are 01432, 01243, 03214,
01324 and 02413. If 7 denotes the permutation (01423), which sends 0 to 1, 1 to 4, 4 to 2, 2
to 3 and 3 to 0, then 7 (D) = D, but

7(01432) = 14203 = 02413 7(03214) = 10342 = 01243
7(02413) = 13240 = 01324 7 (01243) = 14320 = 01432
7(01324) = 14032 = 03214

so powers of 7 permute these five adjacent dihedral orders cyclically, and in particular tran-
sitively.

Similarly the orderings of distance two to D, which are the orderings we will say are
distant to D, are 01234, 01342, 03124, 02143 and 02314. The action of 7 = (01423) on these
is

7(01234) = 14302 = 02143 7(02314) = 13042 = 03124
7(02143) = 13420 = 01342 7(03124) = 10432 = 01234
7(01342) = 14023 = 02314

and so this also generates a cyclic, and therefore transitive, action. Since there is only one
vertex of distance 3 from D, namely the opposite vertex, the automorphism group permutes
all the sets of vertices a fixed distance D, and hence X is distance transitive. O

The diameter of both graphs is three; but the adjacencies are different. In the twisted
icosahedron X, adjacent vertices have no common neighbours, while in the icosahedron graph
adjacent vertices have two common neighbours. In X if z and y are vertices of distance 2,
then they have exactly 3 common neighbours, while for the icosahedron such vertices have
only 2 common neighbours. For example in X the vertices F' = 01234 and B = 01342 are of
distance two apart, and have 3 common neighbours, namely

A =01432 E=01324 D = 02134.

In both graphs each vertex has a single opposite vertex of distance three from it, and two
vertices of distance 3 must have no common neighbours. On X the opposite map o sends a
vertex v to the vertex directly above or below the opposing vertex of v in its hexagon.
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One important difference between the two graphs is that only X is bipartite; given by
the division of its vertices into disjoint subsets {A CEBDF } and the opposite subset

{E CEBDF } Each vertex in one subset is joined to all the vertices in the opposite
set except for its opposite vertex. So the twisted icosahedron can be regarded as a slight
modification of the complete bipartite graph K (6,6), with edges missing from vertices to
their opposites.

4 Dihedral conics

A given dihedral order such as D = 01423 determines five Diagonal points, obtained by
choosing distinct pairs of cyclically adjacent indices in that order, namely

14][23]  [03][24]  [01][23]  [03][14]  [01][24].

These have been listed so that the excluded points follow the same order as in D. We
refer to them as the Diagonal points of the dihedral order D. The same dihedral order
D also determines five Exagonal lines, namely those obtained by choosing distinct pairs of
non-adjacent pairs. In the case of D = 01423, that would be

(12)(34)  (02)(34)  (02)(13)  (04)(13)  (04)(12).

It is worth noting that equivalently these correspond to distinct pairs of cyclically adjacent
indices in the opposite dihedral order D = 02134. We refer to them as the Exagonal lines
of the dihedral order D.

We can record both the Diagonal points and Exagonal lines of a dihedral order, by putting
them together as a column vector, so that every vector only involves four of the five indices
0,1,2,3 and 4. Thus for the order D = 01423 above we get the five pairs:

() (S) () (e (R o

More generally the dihedral order ¢jklm with opposite order ikmjl determines the five
Diagonal points

(k) (Am) — (im) (kD) (ij) (Im)  (im) (jk)  (i]) (kL)
along with the five respectively corresponding Exagonal lines
Gl km] [ [km] [l [jm]  [ik}[jm]  [sk][5].

It is well known that five points in general position determine a unique conic passing
through them, and that five lines in general position determine a unique conic tangent to
them. Here is our main theorem.

Theorem 2 (Dihedral conics). The unique conic ¢ which passes through the Diagonal points
of a given dihedral order is tangent at those Diagonal points to the corresponding Eragonal
lines of that dihedral order.
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Figure 6: The dihedral conic ¢ (D) = ¢(01423)

In Figure 6 we see the conic ¢ = ¢ (D) = ¢(01423) , which for example passes through the
Diagonal point (14) (23) and has tangent there the Exagonal line [12] [34] . The reader should
verify that this conic does pass through the Diagonal points of (1) and is tangent at those
points to the associated Exagonal lines.

More generally if the dihedral order is ijkim, then the unique conic ¢ (ijklm) through the
Diagonal points (jk) (Im), (im) (kl), (ij) (Im), (¢m) (jk), (ij) (kl) of that dihedral order has
respective tangents [jl| [km], [il] [km], [il] [jm], [ik] [jm],[ik] [jI] at those Diagonal points.

We call the conic ¢ (ijklm) a dihedral conic. There are then twelve dihedral conics
associated to our original pentagon, and we list them along with their respective Diagonal
points and Exagonal line pairs. In the diagrams that follow, they are referred to by the colors

c(01432): [light green], ¢(01342): [dark green|, ¢(01243): [light blue],

¢(01423): [light brown], ¢(01324): [dark blue], c(01234): [dark gray],

c(03124): [light purple], ¢(03214): [orange], c(02314): [pink],

c(02134): [dark brown], ¢(02143): [dark purple], ¢(02413): [black].
First we have the six conics associated to A, B,C, D, E and F.

e =ecou (). (G 0) - (el ) (o) (ol )
- (960 (512) (3 (2. (10
oo (0 S 1) (). )
- (158 (250 (550 (822 (1)
o (10 (52 (251 (50 (3
oo (350 (550 () B2 (2
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[04]

oz AN

oo (B0 (252 (2] (320 ()
o(8) =ewsmn (6 ). (foladd ) (st ) (4 (216
o(©) =ewmn: (G ) (s ) (o) (ol ) (5162
- (116, (B19). (@120, (R102) (1.5
o(2) =ctomem: (G560)- (i) (i) (o o) - (oo
o(F) = e (G 57) - (s ) %[ ) (o)) ()

5 Adjacency of dihedral conics and the twisted icosahedron

If we study the list of Diagonal point and Exagonal line pairs associated to each dihedral
order, we observe three possible relations between any two given dihedral conics. Without
loss of generality, by the obvious S5 symmetry we will illustrate the situation with respect
to the fixed dihedral conic ¢ (D) = ¢(01423). Then there are exactly 5 other dihedral conics
that share two Diagonal points and two (non-associated) Exagonal lines, these are ¢ (C),

c(E), c(A), c <€) and c( ) We will say that two dihedral conics that have this relation
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Figure 8: Dihedral conics adjacent to ¢(D) (light brown)

are adjacent, and note that this corresponds exactly to adjacency in the twisted icosahedral
graph X whose vertex labels are the corresponding dihedral orderings.

Let us make some observations about this adjacency in more detail for the case of ¢ (D)
(light brown) and ¢ (C') (light blue), and by symmetry these remarks hold more generally for
any two adjacent dihedral conics. The respective Diagonal points and Exagonal lines pairs
for ¢ (C) and ¢ (D) are as follows:

_ C((12)(34)) ((03)(24)) [(01)(34)) ((03)(12)) ((01)(24)
c(C) = c(01243) - <[14] [23]>’<[04] [23])?([04] [13]>’<[02] [13])7([02] [14])

_ C((14)(23)) ((03)(24)\ [(01)(23)\ ((03)(14)\ [(01)(24)
¢(D) = c(01423) : ([12] [34])7([02] [34])7([02] [13])’([04] [13])7([04] [12])'

Both dihedral conics pass through the Diagonal points (03) (24) and (01) (24), and are
tangent to the Exagonal lines [04] [13] and [02][13]. Four of the five column vectors are
involved here, all except

(12) (34) (14) (23)
( (14] 23] ) for  ¢(C), and ( 12 [34] ) for c(D).

We may note the symmetry between these two, both excluding the point [0], which is the
only point in the dihedral orders ¢ (D) = ¢(01423) and ¢ (C) = ¢(01243) which have the same
neighbours in both orders.

There is another important relation between dihedral conics: we say two such are distant
when they share a Diagonal point /Exagonal line pair. The conics distant to ¢ (D) are shown in
the Figure, they are ¢ (6) = ¢(02314) in pink, ¢ (Z) = ¢(03124) in purple, ¢ (F) = ¢(01234)
in gray, ¢ (F) = ¢(01234) in green and ¢ (E) = ¢(02143) in magenta. The respective Diagonal

points and Exagonal lines pairs for ¢ (D) and ¢ (6) are as follows:

c(D) = c(01423) : <(14) (23)> ((03> E24)> | ((%1) (23)> | <(03)

[12] [34] ) 1
e C((14)(23)) ((04) (13)) ((02) (14)) ((04)(23)) ((02)(13)
¢(C) = e(02314) ([12] [34]) ’ ([01] 34 )’([01] [24]) ’ ([03] 24]) ’ ([03] [12])'

—_
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These share exactly the same pair associated to the vertex 0 which was not overlapping in
the case of the adjacent dihedral conics ¢ (D) and ¢ (C). Geometrically the distant relation
corresponds to two conics being tangent at two points, but in a strong sense with regard to
the original Points and Lines, with the common points and common tangents being Diagonal
points and Exagonal lines respectively.

There are two other possible relations between Dihedral conics: that they are actually
identical, and also that they are opposite. Opposite dihedral conics are illustrated by the case
of ¢(D) and ¢ (E), here are the respective Diagonal points and Exagonal lines pairs:

(D) = e(01423) ((14) f23)> | <<03> EM)) | ((m) 2 >> | <<03> 113})) | (([%Z %4]))
1 (

(

12] [34] [ 1

— ' (12) (34) (04) (13) (02) (34) (04) (12) (02) (13)
(D) =c02139): ([14] [23]) ’ ([03] [24}) ’ ([os] [24]) ’ ([01] [24]) ’ ([01] [23])

We see that these share neither Diagonal points nor Exagonal lines. But nevertheless
there is an obvious symmetry between these pairs: if we replace a Diagonal point/Exagonal
line pair for one of these dihedral conics with the dual objects coming from the original Conic
C, then we get a Diagonal point/Exagonal line pair for the opposite dihedral Conic.

W

6 Main theorems and proofs

To prove the various assertions, we resort to the familiar strategy of choosing suitable coor-
dinates and making computations to verify claims. Since we explicitly give all the relevant
formulas for points, lines and conics, the reader can check our computations directly. To help
further investigations in this direction, we follow exactly the labelling used by E. Kasner in
[5], this helps us in keeping the necessary book-keeping down to a manageable level. This
also minimizes, in a reasonably simple way, the complexity of the formulas that occur.

Without loss of generality, we may apply a projective linear transformation to place a set
of five generic points into a standard position. Using the usual homogeneous coordinates for
the projective plane over a field (which we do not specify), and the Fundamental theorem
which allows us to place four points where we like, we may assume our five basic Points to
be:

0]=[1:0:0,[1]=[0:1:0],[2]=[0:0:1],[3]=[1:1:1],[4 =[a:b:1].

We now proceed to make computations, whose results we summarize.
The conic through these five Points is:

(ab—a)yz + (b—ab)zz+ (a —b)zy = 0.
The tangent lines to the conic at the Points are the Lines:

(0)=(0:a—">b:b—ab) (3)=(ab—a:b—ab:a—10)
(1)=(a—b:0:ab—a) (4)=®b1—->b):a(a—1):ab(b—a))
(2)=(b—ab:ab—a:0)
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The five Lines meet at the ten Exagonal points:

01 =[a(1—=0):b(a—1):a—1] [13]=Ja(b—1):b—2a+ab:b—da
02 =[a(b—1):b(a—1):a—1] [14] =[a(1=b):b(a—2b+1):a—1
03] =]a—2b+ab:b(a—1):a—10 23] =Ja(b—1):b(a—1): —a— b+ 2ab]
04 =[—a(b—2a+1):b(a—1):a—1] 24 =[a(b—1):b(a—1):a+b—2]
[12]=Ja(b—1):b(a—1):a(b—a)] B4 =[a(b+1):b(a+1):a+Db.
The five Points join at the ten Diagonal lines:

(01)=(0:0:1) (12) =(1:0:0) (23) =(1:-1:0)

(02) =(0:1:0) (13) =(1:0:-1) (24) =(=b:a:0)

(03) =(0:—=1:1) (14) =(-=1:0:a) 34)=(b—-1:1—a:a-0).

(04) =(0: —1:b)

The join of two Exagonal points which do not lie on a common Tangent is an Exagonal
line, and there are fifteen:

[01][23] = (1:1: —1) [03][14] = (b—1:1—a:ab—2b+1)
(01][24] = (b: a: —ab) 03] [24] = (b(b—1): 2b—a —b*: b(a—b))
01][34] =(b—1:a—1:1— ab) [04][12] = (=b(a+1) : a(2a — b+ 1) : 2ab)
02][13] = (1: —1:1) 04][13] = (1 —b:a—1:(—2a+ab+ 1))
[02][14] = (b: —a : ab) [04] [23) = (b(b—1) : b* = 2ab+a: b(a — b))
02][34] = (b(b—1):a—b*:b(b—a))  [13][24] = (a® —2a+b:a(l —a):a(a—b))
03] [12] = (=b(a+1):a(b+1): 2b) [14] (23] = (a> = 2ba+b:a(a—1):a(b—a)),
as well as

[12] [34] = <b(a+b+a26—2a2—a3) ca(a—1) (a—l—b+ab—62):2ab(a—b)>.

The join of two Diagonal lines which do not share a common initial Point is a Diagonal
point, and there are fifteen:

(01)(23) =[1:1:0] (02) (14) =[a:0: 1]
(01)(24) =[a:b:0] (02)(34)=[a—b:0:1—10]
01)(34) =[a—1:b—1:0 (03)(12)=[0:1:1]
(02) (13) =[1:0:1] (03)(14) =[a:1:1]
and
(03)(24) =[a:b: 0] (12)(34)=[0:b—a:1—q]
(04) (12) =1[0:b: 1] (13)(24) =[a:b: d
(04) (13) =[1:b:1] (14)(23) =[a:a: 1]
(04)(23) =1[b:b:1]

We may now verify the two well-known theorems in this situation that we began our
discussion with.
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Theorem 3. The Exagonal line [ij] [mn] passes through the Diagonal points (im) (jn) and
(in) (5m) -

Proof. The proof is straightforward, as we have the equations of the Exagonal lines and the
Diagonal points. [l

Theorem 4. The Diagonal point (ij) (mn) lies on the Exagonal lines [im] [jn] and [in] [jm].

Proof. The proof is straightforward, as we have the equations of the Diagonal points and the
Exagonal lines. O

And then here is our main result, using our earlier definition of the twelve dihedral conics
associated to the twelve dihedral orderings.

Theorem 5 (Dihedral conics). For any dihedral order ijklm, the dihedral conic ¢ = ¢ (ijkim)
passes through the Diagonal points

(i) (k1) (k) (m) — Gm) (kD) (@ig) (Im) — (im) (k)
and is tangent at those points to the Exagonal lines
ekt gl [km] Ll [km] [d] [gm] k] [jm)]
respectively.
Proof. The equations of the six dihedral conics

c(A) = ¢ (01432) ¢(B) =c(01342) c(C) =c(01243)
c(D) = c(01423) c(E) =c(01324) c(F) =c(01234)

are

c(A): 1=b)2*+(1—a)y*+ala—0b)z*+a(l—b)yz+ (b+ab— 2a)zx
+(a+b—-2)zy=0
C(B):b(b—1)x2—|—a(a—1)y2+b(b—a)z2+a(b—1)yz—|—(b+ab—2b2)zx
+ (a4 b—2ab)zy =0
c(C’):b(b—1)x2+a(a—1)y2—|—a(a—b)z2—|—<a+ab—2a2)yz+b(a—1)zx
+(a+b—2ab)zy =0
c(D): —br? —ay*+alb—a)z* +a(l—b)yz+bla—1)zz+ (a+b)zy =0
c(B): —bx* —ay* +bla—0b) 22 +a(b—1)yz+b(l—a)zr+ (a+b)ay=0
c(F): 1-b)a2*+(1—a)y* +b(b—a)2*>+ (a—2b+ab)yz +b (1l —a) zx
+(@a+b—-2)zy=0

and the equations of the six dihedral conics

c(A) =c(04213)  ¢(B)=c(03214)  ¢(C) =c(02314)
¢(D) =c(04312)  ¢(E) =c(03412)  ¢(F) = c(02413)
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are

c(ﬂ):b(b—1)x2+ay2—|—abz2—a(b+1)yz+b(1—a)zx+(a—b):cy:0
) (b—1)a2*>—ay®*—abz*+a(b+1)yz+b(l —a)zx+ (a—b)xy =0
):bx2+(1—a)y2+ab22+a(b—1)yz+b(—a—1)zx+(a—b)xy:0
c(b):b(l—b)x2—|—(a—1)y2+b(a—b)22+(2b—a—ab)yz+b(2b—1—a)zx
+(a—b)zy=0
): (1-b)z*+ala—1)y*+a(a—b)z* +a(l+b—2a)yz+ (b—2a+ ab) zx
+(a—b)zy=0
): —br*+a(l—a)y* —abz* +a(b—1)yz+b(l+a)zr+ (a—b)ry =0.

The general homogeneous equation of the second degree in z, y, z has the form
ax? 4 By* + 22 + 20yz + 2 zx + 2uay = 0

and if [z : y; : z1] is a point on the conic then the equation of the tangent line at [z1 : y; : 2]
is

(g + pyr + Azy ey + Byr + 021 2 Axy + 0y +y21) (2)

So we may now verify that each of the twelve dihedral conics does pass through the stated
Diagonal points and is tangent at those points to the stated Exagonal lines. This is made
simpler by utilizing the inherent symmetry in the situation: because S5 acts as a symmetry
group on the dihedral orderings, it is sufficient to verify the above claim for any one dihedral
conic, as the others are obtained from that one by a suitable permutation of the indices. [J

7 Spheres in the twisted icosahedron and icosahedron

We can visualize the combinatorics of the adjacent and distant relations between dihedral
conics with the twisted icosahedron. If we fix a vertex in this graph, such as A, then we
can consider partitioning X into distance sets from A. Let S; denote those vertices of graph
distance ¢ from A, so that

So={4}  S$={BDFCE} $={BDFCE} S={4}

So Sy is A itself, S; consists of adjacent points of A, Sy consists of distant points from A,
and S5 consists of the opposite point A of A.

We call S; the adjacent sphere around A, and S, the distant sphere around A. Clearly
S is also the distant sphere around A, while S is also the adjacent sphere around A. In Figure
9 we see the adjacent sphere around A in blue, the distant sphere around A in green, as well
as the opposite point A (in orange).

It is useful to compare this graph with that of the regular icosahedron I, showing also a
point A, its adjacent sphere and distant sphere, and the unique opposite point A.
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A 01432 B

Figure 9: Circles centred at A in the twisted  Figure 10: Circles centred at A in the icosa-
icosahedron X hedral graph

8 Adjacency matrix of the twisted icosahedral graph X

With respect to the ordering A, B,C, D, E, F, A, B,C, D, E, F of the vertices, the adjacency
matrix of X is

010101001010
010101O001O010
1010100O00O0T1CO0T1
010101100010
1010100100 O0T1
010101101000
M=|110101001O01O0O0
001010O01O01O0°1
000101101010
10001001O01O0T1
010001101010
10100001O01CO0T1
010100101010

with characteristic polynomial
(X =5 (X+5)(X-1)"(X+1)°.
For comparison, the characteristic polynomial of the icosahedral graph I is

(X —5) (X +1)° (X2 - 5)".

References

[1] D. BARALIC and I. SPASOJEVIC: [llumination of Pascal’s Hexagrammum and Oc-
tagrammum Mysticum.  Discrete Comput. Geom. 53(2), 414-427, 2015. DOI:
https: / /dx.doi.org/10.1007 /s00454-014-9658-6.

2] J. ConwAY and A. RYBA: Eztending the Pascal Mysticum. Math. Intelligencer 35(2),
44-51, 2013. DOL: https://dx.doi.org/10.1007/500283-012-9351-7.


https://dx.doi.org/10.1007/s00454-014-9658-6
https://dx.doi.org/10.1007/s00454-014-9658-6
https://dx.doi.org/10.1007/s00283-012-9351-7

N. Le, N. J. Wildberger: The Pentagrammum Mysticum . .. 191

[3] G. GLAESER, H. STACHEL, and B. ODEHNAL: The Universe of Conics. Springer-Verlag,
2016.

[4] L. HOFMANN: Synthetic Proof Of Professor Kasner’s Pentagon Theorem. Amer. Math.
Monthly 35(7), 356-358, 1928.

[5] E. KASNER: A Projective Theorem on the Plane Pentagon. Amer. Math. Monthly 35(7),
352-356, 1928.

[6] F. LEVL: Geometrische Konfigurationen. Verlag S. Hirzel, Leipzig, 1929.

[7] T. MOTZKIN: The Pentagon in the Projective Plane, with a comment on Napier’s Rules.
Bull. Amer. Math. Soc. 51(12), 985-989, 1945.

[8] R. E. ScHWARTZ: The Pentagram Map. Exp. Math. 1(1), 71-81, 1992.

9] R. E. SCHWARTZ and S. TABACHNIKOV: Elementary Surprises in Projective Geometry.
Math. Intelligencer 32(3), 31-34, 2010. DOI: https://dx.doi.org/10.1007/s00283-010-
9137-8.

[10] D. WELLS: The Penguin Dictionary of Curious and Interesting Geometry. Penguin
Books, London, 1991.

Received February 20, 2020; final from August 28, 2020.


https://dx.doi.org/10.1007/s00283-010-9137-8
https://dx.doi.org/10.1007/s00283-010-9137-8

	Introduction
	Some projective constructions from a pentagon
	Dihedral orderings of five objects
	Dihedral conics
	Adjacency of dihedral conics and the twisted icosahedron
	Main theorems and proofs
	Spheres in the twisted icosahedron and icosahedron
	Adjacency matrix of the twisted icosahedral graph X

