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Abstract. The role of quadrics in Euclidean 3-space is similar to that of conics.
Therefore, it is natural to ask for thread constructions of quadrics, as spatial
analogues of the gardener’s construction or Graves’ construction of ellipses. The
first solution given in 1882 by O. Staude is based on an ellipse e and its focal
hyperbola h. A thread of given length, fixed with one end at a focal point of h, is
passed behind the nearest branch of h and in front of e and finally attached to the
vertex of the second branch of h. If the thread is stretched at a point P between,
then P traces a patch of an ellipsoid E confocal with e and h. Later, Staude
presented a second type of thread constructions where e and h are replaced by an
ellipsoid E0 and a confocal hyperboloid H0. Here, the thread follows at its ends
the two branches of the line of curvature E0∩H0. We provide a synthetic approach
to these constructions and discuss the case of paraboloids.
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1 Introduction

In 1882, Otto Staude [9] presented a thread construction for ellipsoids, based on a pair
of focal conics e and h (Fig. 1). It was proposed as a spatial analogue of the gardener’s
construction and Graves’s construction of ellipses (see, e.g., [4, Figs. 1.8 and 2.29]). Some
years later, Staude [10] came up with a second version: Instead of the pair of focal conics,
an ellipsoid E0 and a confocal hyperboloid H0 are used. A thread which is stretched at the
point P follows at its ends the two branches of the curve of intersection E0 ∩ H0, which are
lines of curvature for both quadrics. Then the thread continues along geodesics on E0 or H0,
while point P traces a portion of an ellipsoid E being confocal with E0 and H0.

Staude’s thread constructions of ellipsoids are subject of two models in Schilling’s
famous collection of mathematical models (listed in [8]), namely the models VII, no. 191 and
192 (see https://mathematical-models.org/index.php/models/view/345 and https:
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Figure 1: Staude’s first thread construction of the ellipsoid E uses its focal conics e and h.

//mathematical-models.org/index.php/models/view/279, Digitales Archiv Mathemati-
scher Modelle, TU Dresden). According to D. Hilbert, Staude’s thread constructions of
quadrics were one of the great mathematical results of the 19th century [1, p. 236].

We present a synthetic approach to these constructions, thus reducing the proof to unique-
ness theorems for the solutions of first order differential equations. Moreover, we discuss the
case of focal parabolas and, similar to the second version mentioned above, that of confo-
cal paraboloids. For historical remarks, generalizations, and additional references see [2], [3,
p. 11], [5, p. 19], [6, Sect. 3.3.5], or [9, Theorem 4.3]. Since the thread constructions result
from properties of quadrics in a confocal family, we start recalling a few of them.

2 Confocal central quadrics

Let E be a triaxial ellipsoid with semiaxes a, b, and c. The one-parameter family of quadrics
being confocal with E is given as

F (x, y, z; k) := x2

a2 + k
+ y2

b2 + k
+ z2

c2 + k
− 1 = 0, (1)

where k ∈ R \ {−a2,−b2,−c2} serves as a parameter within the family. In the case a > b >
c > 0, this family includes

for


−c2 < k <∞ triaxial ellipsoids,
−b2 < k < −c2 one-sheeted hyperboloids,
−a2 < k < −b2 two-sheeted hyperboloids.

(2)

Confocal quadrics intersect their common planes of symmetry along confocal conics. As
limits for k → −c2 and k → −b2 we obtain ‘flat’ quadrics, i.e., the focal ellipse e and the
focal hyperbola h, satisfying

e : x2

a2 − c2 + y2

b2 − c2 = 1, z = 0 , h : x2

a2 − b2 −
z2

b2 − c2 = 1, y = 0 . (3)

https://mathematical-models.org/index.php/models/view/279
https://mathematical-models.org/index.php/models/view/279
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Figure 2: Ellipsoid E with lines of curvature, focal conics e, h, and an umbilic point U .

They form a pair of focal conics.1
The confocal family sends through each point P = (ξ, η, ζ) outside the coordinate planes,

i.e., with ξηζ 6= 0, exactly one ellipsoid, one one-sheeted hyperboloid, and one two-sheeted
hyperboloid. The respective parameters (k1, k2, k3) define the three elliptic coordinates of P ,
where

− a2 < k3 < −b2 < k2 < −c2 < k1 . (4)
For given Cartesian coordinates (ξ, η, ζ) of any point P , we obtain the elliptic coordinates by
solving F (ξ, η, ζ; k) = 0 in (1) for k. Conversely, if the tripel (k1, k2, k3) of elliptic coordinates
is given, then the Cartesian coordinates (ξ, η, ζ) of the corresponding points P ∈ E satisfy

ξ2 = (a2+ k1)(a2+ k2)(a2+ k3)
(a2 − b2)(a2 − c2) , η2 = (b2+ k1)(b2+ k2)(b2+ k3)

(b2 − c2)(b2 − a2) ,

ζ2 = (c2+ k1)(c2+ k2)(c2+ k3)
(c2 − a2)(c2 − b2) .

(5)

There exist eight such points, symmetric w.r.t. the coordinate planes.
At each point P outside the coordinate planes, the surface normals

vi :=
(

ξ

a2 + ki

,
η

b2 + ki

,
ζ

c2 + ki

)
, i = 1, 2, 3 , (6)

to the three quadrics through P are mutually orthogonal. Therefore, confocal quadrics form a
triply orthogonal system of surfaces. Due to a classical theorem of Ch. Dupin, they intersect
each other along lines of curvature. Fig. 2 shows the net of lines of curvature on a triaxial
ellipsoid E with singularities at the umbilic points.

Lemma 1. The tangent cones from any point P to the quadrics of a confocal family are con-
focal with the cones connecting P with the focal conics. Their common planes of symmetry are

1The conics of a pair of focal conics lie in orthogonal planes and share the principal axis. The focal points
of one conic coincide with vertices of the other (see Fig. 2 and, e.g., [4, Sect. 4.2]).
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tangent to the quadrics passing through P . The tangent cones are coaxial cones of revolution
if and only if P is a point of a focal conic.

For the definition of confocal quadratic cones see, e.g., [7, p. 284]. A proof of Lemma 1
can be found in [7, p. 286]

Given a confocal family, each line other than a generator of any contained ruled quadric
contacts exactly two surfaces of the family, and the tangent planes at the corresponding
points of contact are orthogonal. This results in the lemma below, which dates back to
Jacobi (1839) and Chasles.

Lemma 2. On each quadric Q, the geodesics are curves with tangents contacting another
fixed quadric Q′ that is confocal with Q (see [7, Fig. 7.7]).

For a proof, see [7, p. 291].

3 Thread constructions of central quadrics

3.1 Staude’s first thread construction
Theorem 3. Let e be an ellipse with the focal hyperbola h. Let F1 denote a vertex of e and
focal point of h and F2 the focal point of e and vertex of h at a greater distance to F1. A
thread of a given length, fixed with one end at F1, is passed behind the nearest branch of h
and in front of e and finally attached to F2 (see Fig. 1).
If the thread is stretched at a point P such that it forms a spatial polygon with vertices F1,
G1 ∈ h, P , G2 ∈ e, and F2, then P traces a patch of an ellipsoid E confocal with e and h.

The presented proof is based on two lemmas.

Lemma 4. Let a thread with fixed endpoints F1 and F2 be stretched over a given curve c.
Then, the corner-point G ∈ c of the thread satisfies two conditions:
(i) The tangent tG to c at G encloses congruent angles with the straight segments F1G and
F2G, and
(ii) the normal plane to c at G either passes through both endpoints or separates F1 and F2.
In the latter case, the lines [F1, G] and [F2, G] are generators of a cone of revolution with apex
G and axis tG (Fig. 3).

Proof. When the thread has reached its equilibrium at G ∈ c, the stress along the thread
induces two forces of equal quantity which act along the segments GF1 and GF2 and result
in a force orthogonal to c. Therefore, the components of the two forces in direction of the
tangent tG must be opposite in order to compensate each other (see Fig. 3). This implies
congruent angles between tG and the two segments of the strengthened thread.

It is noteworthy that G needs not be unique on c. If, for example, the curve c is an ellipse
with focal points F1 and F2, then each point G ∈ c satisfies the claimed equilibrium condition,
since the sum of distances GF1 and GF2 is stationary. Other examples can be found below
in Fig. 11 (where c = o) or in [4, p. 143, Fig. 4.17]).

Lemma 5. Let a strengthened thread of a given length with one fixed endpoint F1 be bent
over a curve c while the second endpoint P traces a smooth curve p. Then, at each pose P ,
the curve p is orthogonal to the final segment of the thread.
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Figure 3: A thread with fixed endpoints F1, F2
and stretched over the curve c makes
equal angles with the tangent tG to c
at the point G (Lemma 4).
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Figure 4: Decomposition of the veloc-
ity vector vP at P , while
the length of the strength-
ened thread F1G1PG2F2 is kept
fixed.

Proof. With respect to F1 as the origin of a coordinate frame, the curve c can be parametrized
as c(t) = λ(t)e1(t) with ‖e1(t)‖ = 1 for t in some interval J . After being bent over c, the
remaining segments of the thread form a ruled surface, and the position vector of the trajectory
of P can be written as

f(t) = c(t) + (k − λ(t)) e2(t) with ‖e2(t)‖ = 1 and k = const.

The angle condition claimed in Lemma 4 implies for all t ∈ J

〈 ċ, e2〉 = 〈 ċ, e1〉, and hence 〈λ̇e1 + λė1, e2〉 = 〈λ̇e1 + λė1, e1〉 = λ̇

if the dot indicates differentiation by t and 〈 , 〉 denotes the standard dot product in R3.
Consequently, we obtain

〈 ḟ , e2〉 = 〈ċ− λ̇e2 + (k − λ) ė2, e2〉 = λ̇+ 〈−λ̇e2 + (k − λ) ė2, e2〉 = λ̇− λ̇ = 0.

This proves Lem. 5.

Theorem 3. By virtue of Lemma 4, point G1 ∈ h is the apex of a cone of revolution which
passes through F1 and P and has the tangent tG1 to h as its axis (Fig. 1). We learned in
Lemma 1 that both conics e and h are the locus of apices of cones of revolution which pass
through the other focal conic, and the axes of these cones are tangents to the conic. Therefore,
since the segment G1F1 meets the focal ellipse e, the same must hold for the extension of the
segment G1P .
Lines through the point P meeting e and h are common generators of two confocal cones
(Lemma 1). Thus, if there exists one transversal, then there are four that are mutually
symmetric w.r.t. the tangent planes to the three confocal quadrics through P . A 180◦ rotation
about the surface normal nP of the ellipsoid E through P takes the line [P,G1] to a line [P,G2]
which again meets the two focal conics e and h. The traces of the plane [P,G1, G2] in the
planes of e and h reveal (note Fig. 1) that, starting from P , the line [P,G2] meets first e and
then h. Due to the properties of a pair of focal conics, the bent portion PG2F2 of the thread
is in equilibrium because of Lemma 4.
Let point P move in such a way that the thread remains strengthened. We are going to prove
that in this case the tangents to all possible trajectories of P are orthogonal to nP .
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Figure 5: Two thread constructions of the same ellipsoid E using the focal conics e, h.

If the point P is fixed on the moving thread with the endpoint F1, then, by Lemma 5, the
tangent vector vt1 of the point P is orthogonal to PG1. Similarly, for the point P being
fixed on the final portion of the thread, the velocity vector vt2 would be orthogonal to PG2.
Because of the constant total length of the thread, the relative velocities of P with respect
to the two parts of the thread must be equal; when the length of the initial part increases,
that of the final part must decrease about the same rate, and vice versa. This implies for the
vector vP of the absolute velocity of P

vP = vt1 + vr1 = vt2 + vr2 (7)

that the vectors vr1 and −vr2 are symmetric w.r.t. nP . The orthogonal projection of the
involved vectors into the plane [P,G1, G2] reveals, as shown in Fig. 4, that vP must be
orthogonal to nP .
Consequently, at all poses in some neighbourhood, the point P moves tangentially to the
confocal ellipsoid through P . In other words, if in elliptic coordinates the parametrization of
the requested trajectory of P is assumed as

k(u, v) = (k1(u, v), k2(u, v), k3(u, v)) ,

then the partial derivatives ku and kv, which span the tangent plane, satisfy the conditions

∂k1

∂u
= ∂k1

∂v
= 0.

This implies k1(u, v) = const. and confirms that the trajectory is a patch of an ellipsoid.
Conversely, if P remains on the ellipsoid E , then vP is orthogonal to nP . This implies

equal relative velocities ‖vr1‖ = ‖vr2‖ in appropriate directions (see Fig. 4), and therefore, a
constant length of the thread.
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Figure 6: The fixed points F1 and F2 can be replaced by F ′1 ∈ e and F ′2 ∈ h.

We find the total length L of the thread by specifying the point P at one of the vertices
of the ellipsoid E . This yields

L = 2a+ ae − ah,

where a, ae, and ah are the respective principal semiaxes of the ellipsoid E , the focal ellipse
e, and the focal hyperbola h. It should be noted that W. Böhm [2] used Ivory’s Theorem to
prove that, for all poses of P , the sum of distances equals L.
Remark 1. (i) One cannot obtain the complete ellipsoid with the thread construction described
in Theorem 3, since the thread, starting at F1 and coming from behind, has to be bent around
the hyperbola h. This does not work if point P lies behind the plane spanned by h. With
regard to the other end of the thread, the point P cannot lie under the plane of the ellipse e.
(ii) The same ellipsoid can be generated by using the remaining two common generators
of the confocal cones which connect P with the pair of confocal conics (Fig. 5). The two
strengthened threads could even be bound together at P by a small ring through which the
two threads can glide independently from each other, while P remains on the quadric.

Corollary 6. The thread construction of Theorem 3 for the triaxial ellipsoid E remains valid
if the fixed endpoints F1 and F2 are replaced by two other sufficiently close points on the
respective conics (Fig. 6). This variation affects only the total length L of the thread and the
domain, that is traced by the point P on the ellipsoid E.

Proof. The condition stated in Lemma 4 remains valid when F1 is replaced by a sufficiently
close point F ′1 ∈ e (Fig. 6). On the other hand, since tG1 encloses congruent angles with
G1F1 and G1F

′
1, while F1 and F ′1 lie on the same side of the normal plane to tG1 at G1, the

difference of distances
d := G1F ′1 −G1F1

remains constant. Therefore, the difference d must be added to the total length L of the
thread in order to keep P on the same ellipsoid. The same is valid for the replacement of the
other fixed endpoint F2 ∈ h by a sufficiently close point F ′2 ∈ h (Fig. 6).

3.2 Staude’s second thread construction
In [10], Staude presented another thread construction, which is also documented as a his-
torical model in [8, p. 139] (note also [6, Sect. 3.3.5]). It generalizes the version of Graves’s
construction on an ellipsoid E0, as displayed in [7, Fig. 7.14].
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Figure 7: According to Staude’s second thread construction, the two ends of the thread have
to be attached to two antipodal lines of curvature e1, e2 of an ellipsoid E0, while the
point P , which keeps the thread taut, moves on a confocal ellipsoid E .

Theorem 7. Let a thread of appropriate length with both ends be attached to a pair of an-
tipodal lines of curvature e1, e2 of an ellipsoid E0 and kept taut so that it follows a geodesic
crossing from e1 to e2. If we keep the ends as they are, but elongate this thread to a fixed
length and keep it taut at a point P between the two curves e1 and e2, then P traces a patch
of an ellipsoid E confocal with E0 (Fig. 7).
Conversely, for a point P moving locally on E, the length of the described taut thread con-
necting e1 via P with e2 remains fixed.

If the thread is sufficiently short, then it continues, from the two antipodal lines of curva-
ture e1, e2 ⊂ E0 on, along geodesic arcs on E0 and furtheron along respective tangents. They
meet at the point P , which keeps the thread taut (see Fig. 7). By virtue of Lemma 2, the
two tangents [P, T1] and [P, T2] contact E0 and a confocal hyperboloid H0, which is the sec-
ond confocal quadric through e1 and e2. Due to Lemma 1, the two tangents are common to
two confocal tangent cones with apex P , and consequently, in symmetric position w.r.t. the
normal at P to one of the three confocal quadrics through P . In order to prove Theorem 7,
we need a statement similar to Lemma 5.

Lemma 8. Let one end of a strengthened thread of given length be attached to the line of
curvature e, which is the intersection of an ellipsoid E0 with a confocal hyperboloid H0. Suppose
that, in each pose, the thread is a C1-composition of three arcs. It begins along the curved
edge e, continues from a point C ∈ e on along a geodesic c of E0 until a point T . Finally,
there is a straight segment on the tangent to c at T . Then, in which way ever the second
endpoint P of the thread moves smoothly in space, its trajectory p is orthogonal to the straight
segment TP .

Proof. Any point Q which is attached to the thread between the points C and T runs on an
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orthogonal trajectory of the geodesic c. There is a local parametrization x(u, v), (u, v) ∈ I×J ,
of E0 with geodesics tangent to c as u-lines and its orthogonal trajectories as v-lines. By virtue
of a theorem by Gauss, u can be assumed as common arc length along the geodesics. This
implies for the partial derivatives

〈xu,xv〉 = 0, 〈xu,xu〉 = 1, 〈xu,xuu〉 = 〈xu,xuv〉 = 〈xv,xuu〉 = 0

for all (u, v) ∈ I × J . The equations 〈xu,xuu〉 = 〈xv,xuu〉 = 0 confirm that the osculating
planes of the u-lines are orthogonal to the tangent plane.

Now we distinguish between two cases:
(i) If, under the motion of the thread’s endpoint P in space, the point C and the geodesic c
remain fixed, i.e., T runs along c, then the point P traces an involute, which is an orthogonal
trajectory of the generators on the tangent surface of c and also a line of curvature on the
developable.
(ii) Otherwise, the v-coordinate of T varies. Let T trace the curve p(t) on E0 given by u = u(t)
and v = t for t ∈ J . If the point P is supposed to be attached to the thread, then we obtain
for its path the parametrization

p(t) = x (u(t), t) + (k − u(t)) xu(t) with k = const.

From
ṗ(t) := d p(t)

dt = u̇xu + xv − u̇xu + (k − u)(u̇xuu + xuv)

follows the stated orthogonality, since

〈xu, ṗ〉 = 〈xu, xv〉+ (k − u)〈xu, u̇xuu〉+ (k − u)〈xu, xuv〉 = 0.

The same holds when we replace the ellipsoid E0 by the hyperboloid H0.

Theorem 7. Based on Lemma 8, the proof is similar to that of Theorem 3. With respect to
the part of the thread attached to the line of curvature ei, i ∈ {1, 2}, a point P which is fixed
on the moving thread has a tangent vector vti

orthogonal to the segment PTi. If, additionally,
the point P is moving relative to the thread with velocity vector vri

in direction of PTi, we
obtain the vector of absolute velocity of P as a sum of two orthogonal components. This
holds for i = 1, 2 and yields (7).
When the total length of the thread remains constant, the relative velocities ‖vr1‖ and ‖vr2‖
must be equal. This implies, as depicted in Fig. 4, that vP is orthogonal to the interior angle
bisector of ∠T1P T2 and tangent to the confocal ellipsoid E passing through P .
Conversely, if P remains on the ellipsoid E , then we obtain equal relative velocities in appro-
priate directions, and therefore, a constant length of the thread.

Remark 2. After extending PT1 and PT2 from their tangency points with E0 to their second
intersection with the ellipsoid E , we obtain two adjacent sides of a billiard in E . More about
billiards in ellipsoids can be found in [11, p. 62 ff.].

4 Paraboloids

All quadrics which are confocal with a given paraboloid can be represented as

x2

a2 + k
+ y2

b2 + k
− 2z − k = 0 for k ∈ R \ {−a2,−b2}. (8)
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Figure 8: Hyperbolic paraboloid Ph with lines of curvature and focal parabolas p1, p2.

In the case a > b > 0, this one-parameter family contains

for


−b2 < k <∞ elliptic paraboloids,
−a2 < k < −b2 hyperbolic paraboloids,
−∞ < k < −a2 elliptic paraboloids.

(9)

For each k, the vertex of the corresponding paraboloid has the coordinates (0, 0,−k/2). The
point (0, 0, b2/2) is the common focal point of the principal sections in the plane x = 0, and
(0, 0, a2/2) is the focus for y = 0.

It is not hard to prove that most of the properties of confocal central quadrics, in particular
those reported in Lemmas 1 and 2 are also valid for confocal paraboloids.

In the family (8) of confocal paraboloids, the limits for k → −a2 or k → −b2 define the
pair of focal parabolas

p1 : y2

a2 − b2 + 2z − a2 = 0, x = 0 , p2 : x2

a2 − b2 − 2z + b2 = 0, y = 0 (10)

within the family of confocal quadrics (Fig. 8). The vertex of each focal parabola coincides
with the focal point of the other parabola. Therefore, this pair is the same as shown in [4,
Fig. 4.15]: each parabola is the locus of apices of cones of revolution passing through the
other parabola.

4.1 First thread construction fails for parabolas
Now we discuss thread constructions for paraboloids. An analogue of the first construction
according to Theorem 3 should be based on the two focal parabolas p1 and p2. By virtue of
Lem. 4, we need to find lines which meet both parabolas simultaneously.

From Lemma 1 follows that through each point P outside the planes of symmetry there
pass four lines t0, . . . , t3 meeting both focal parabolas p1 and p2. One of them, say t0, is parallel
to the common axis of the parabolas. Therefore, the remaining transversals t1, t2, t3 can be
obtained respectively by reflecting t0 in the tangent planes of the three confocal paraboloids



H. Stachel: Recalling Thread Constructions of Quadrics 153

P

G1

G2

F1

F2

p1

p2

nP

Pe

Figure 9: A thread construction based on a pair (p1, p2) of focal parabolas fails for the elliptic
paraboloid Pe , since Lemma 4,(ii) is not satisfied at the point G2.

through P , the elliptic paraboloid P1 (k = k1), the hyperbolic paraboloid P2 (k = k2), and
the elliptic paraboloid P3 (k = k3), where (k1, k2, k3) are the elliptic coordinates of P with
k3 < −a2 < k2 < −b2 < k1. The normal lines ni, i = 1, 2, 3 , to the three paraboloids at P
are the common axes of symmetry of the cones connecting P with the two focal parabolas p1
and p2.
Theorem 9. The first thread construction fails for paraboloids. In the case of an elliptic
paraboloid Pe (k = k1 or k = k3, see Fig. 9), the strengthened thread F1G1PG2F2 with
F2, G1 ∈ p1 and F1, G2 ∈ p2 does not satisfy the second condition of Lemma 4, i.e., the
normal plane of p2 at G2 does not separate the two adjacent segments G2F2 and G2P .
At a hyperbolic paraboloid (see Fig. 11), the surface normal nP to Ph at P is the exterior
angle bisector of ∠G1PG2.

Proof. We focus on the plane σ : y = 0 containing the focal parabola p2. The images of points
and lines under the orthogonal projection into σ are called front views and indicated by a
prime. Hence, the point P = (ξ, η, ζ) has the front view P ′ = (ξ, 0, ζ) ∈ σ. We assume that
P is outside of the symmetry planes of the confocal parabolas; because of the symmetries of
paraboloids, we may confine us to the case ξ, η > 0. The other focal parabola in the plane
x = 0 appears in the front view as a half-line p′1 (Fig. 10).
The common transversals t0, . . . , t3 from P to p1 and p2 intersect σ at the points T0, . . . , T3 ∈
p2, where T0 is the ideal point of the z-axis. The diagonal triangle N1N2N3 of the quadran-
gle T0 . . . T3 consists of the trace points of the surface normals n1, n2, n3 to the paraboloids
P1,P2,P3 through P . Therefore for each i ∈ {1, 2, 3}, the points Ti ∈ p2 and Ni in σ have
the same x-coordinate (Fig. 10). The meeting points Si of ti with the focal parabola p1 in the
plane x = 0 have their front views S ′i on the connections [P ′, Ti], where P ′ is the orthocenter
of the triangle N1N2N3.
For each i ∈ {1, 2, 3}, the surface normal ni at P to the paraboloid Pi with the elliptic
coordinate k = ki has the direction of the vector

ni =
(

ξ

a2 + ki

,
η

b2 + ki

, −1
)
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Figure 10: The transversals t1, t2, t3 through P to the pair of focal parabolas meet p1 at
S1, S2, S3 and p2 at T1, T2, T3, respectively. The points N1, N2, N3 in the plane
x = 0 of p2 are the trace points of the surface normals at P to the three paraboloids
P1,P2,P3.

and intersects the plane σ : y = 0 at

Ni =
(
ξ
a2 − b2

a2 + ki

, 0, ζ + b2 + ki

)
, k3 < −a2 < k2 < −b2 < k1.

This confirms that for each i there is an affine transformation P ′ 7→ Ni (see [7, p. 70]). We
obtain the common x-coordinate of Ni and Ti from the x-coordinate of P ′ by multiplication
with a constant factor λi, where

0 < λ1 = a2 − b2

a2 + k1
< 1, λ2 = a2 − b2

a2 + k2
> 1, λ3 = a2 − b2

a2 + k3
< 0.

Therefore, T3 has a negative x-coordinate, while that of T1 lies between 0 and ξ and that of
T2 is > ξ (note Fig. 10).
For a thread construction of the elliptic paraboloid P1 through P , the middle part, i.e.,
the two segments terminated by P , must end on two different focal parabolas and span a
plane through the surface normal n1 of P1. Moreover, it is forbidden that the segment with
endpoint on pi hits the other parabola in between, and the meeting point with pi must be
finite. Consequently, the middle part for P1 is T2PS3, where T2 is left of P ′ (Fig. 10). The
segment T2S2 ⊂ t2 as well as the final segment connecting T2 with any point F2 ∈ p1 lies
on the cone of revolution connecting T2 with p1. However, there is no point F2 ∈ p1 which
is separated from P by the normal plane ν to p2 at T2. This follows since in the plane σ
the normal lines of p2 meet the z-axis at points with z-coordinates bigger than that of the
focus of p2 and vertex of p1 (note [4, p. 145]). Thus, the strengthened thread for the elliptic
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p1
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nP

o P
h

Figure 11: The difference of the threads’ lengths (PG1 +G1F1)− (PG2 +G2F2) remains con-
stant while point P moves locally on the hyperbolic paraboloid Ph (Corollary 10).
For P running on the orthogonal trajectory o (dotted green line) of the confocal
hyperbolic paraboloids, the total length of the strenghtened thread F1G1PG2F2
with fixed endpoints F1 ∈ p1 and F2 ∈ p2 remains constant (Remark 3).

paraboloid P1 cannot satisfy the condition Lemma 4,(ii) at the point T2. In the notation used
in Figs. 1, 5, and 6, T2 stands for the point G2 sliding on p2 (note Fig. 9).

The case of the elliptic paraboloid P3 can be reduced to the previous case, because the
isometry

(x, y, z) 7→ (x′, y′, z′) = (y, x,−z) together with k′ := −k − a2 − b2

exchanges the elliptic paraboloids for k < −a2 with those for k′ > −b2.
For obtaining a thread construction of type 1 for the hyperbolic paraboloid P2, the middle

part of the strengthened thread consists of the segments T1P and PS3 in the plane with the
trace [T1, T3] through N2 in σ (Fig. 10). Obviously, the segment PN2 lies on the exterior
angle bisector of ∠T1PS3, since N2 is outside of T1T3, while the interior angle bisector meets
the trace [T1, T3] at the fourth harmonic conjugate B of N2 w.r.t. T1 and T3. This implies
that, for P varying locally on P2, the difference of thread lengths F1T1P and F2S3P remains
constant, wherever the fixed end points F1 ∈ p1 and F2 ∈ p2 are specified (compare with
Fig. 6). Conversely, a constant difference implies a tangent vector of P along the interior
angle bisecting plane of ∠T1PS3, which contacts P2 (Fig. 11, where G1 stands for T1, G2 for
S3, and Ph for P2).

Corollary 10. Let P0 be a point of a hyperbolic paraboloid Ph with focal parabolas p1 and
p2. If two strengthed threads FiGiP0, i = 1, 2 , are fixed at any Fi ∈ pi and passed around the
other parabola pj (j 6= i), at the point Gi, then for all points P ∈ Ph sufficiently close to P0
the difference of lengths of the two threads, i.e.,

(PG1 +G1F1)− (PG2 +G2F2)
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remains constant (Fig. 11). Conversely, if this difference of lengths is kept constant, then the
point P moves on Ph.

Remark 3. If point P varies on the orthogonal trajectory o of the confocal hyperbolic parabolas
(note Fig. 11), then the interior angle bisector [P,B] (Fig. 10) of ∠T1PS3 is orthogonal to
o, which yields a constant length of the strengthened thread. However, the thread of fixed
length does not define a constrained motion of P but admits two degrees of freedom; at P
the tangent plane to the trajectory is orthogonal to [P,B]. Notice that o is a line of curvature
on confocal elliptic paraboloids.

4.2 Second thread construction for paraboloids

P

Pe

Ph

P

e1
e2

C1

T1

T2

C
2

C′

1

T
′

1

T′

2

C′

2

Figure 12: Thread construction of the elliptic paraboloid P .
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On the other hand, Staude’s second thread construction remains valid for paraboloids.
Fig. 12 shows a thread of fixed length with both ends attached to the two connected compo-
nents e1, e2 of the line of curvature that is shared by the confocal paraboloids Pe and Ph. If
this thread is strengthened at the point P , then P is movable on an elliptic paraboloid P that
is confocal with Pe and Ph. The proof is the same as that for Theorem 7 when, for i = 1, 2,
the points Ci on the thread denote the endpoints of the subarcs along the lines of curvature,
while TiP are the straight segments tangent to the geodesics at Ti.

If conversely point P moves locally on the elliptic paraboloid P , then the thread remains
strengthened, because nP is the interior angle bisector of ∠T1P T2. There are even two
possibilities for this thread (Fig. 12) since the four common tangents from P to Pe and Ph

consist of two pairs of lines which are symmetric w.r.t. the surface normal nP of P at P (note
Lemma 1). We summarize:
Theorem 11. Staude’s second thread construction, as explained in Theorem 7 for triax-
ial ellipsoids, works similar for elliptic paraboloids, when the two ends of the thread are
attached to different components of the intersection curve between confocal elliptic and hyper-
bolic paraboloids (Fig. 12).

References

[1] M. Berger: Geometry Revealed: A Jacob’s Ladder to Modern Higher Geometry.
Springer, Berlin, Heidelberg, 2010.
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