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Abstract. Beginning with a point P in the plane of a triangle ABC, reflections
and circumcircle-inversions are used to define a triangle X ′Y ′Z ′ that is perspective
to ABC. The perspector, denoted by Cip(P ), defines a transform, Cip, that is
applied to selected curves; e.g., Cip maps the Euler line to itself in a manner well
represented by Shinagawa coefficients, and in general Cip maps lines to conics.
Barycentric coordinates are used to determine properties of Cip and related points
and mappings. Four new equilateral triangles are presented.
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1 Introduction

In the plane of a triangle ABC, let P be a point that is not on one of the sidelines,
BC,CA,AB. Let Γ be the circumcircle of ABC, and let DEF be the circumcevian tri-
angle of P (as in ([3], p. 221)); that is, D is the point, other than A, in which the line AP
meets Γ, and likewise for the vertices E and F . Let X, Y, Z be the reflections of P in D,E, F ,
respectively, and let X ′, Y ′, Z ′ be the Γ-inverses of X, Y, Z, respectively. Let

P ′ = BY ′ ∩ CZ ′.

In Section 2, we prove that P ′ also lies on AX ′, so that ABC and X ′Y ′Z ′ are perspective
triangles, and P ′ is their perspector, which we call the circumcevian-inversion perspector of
X ′Y ′Z ′ and ABC.
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The rest of this section gives basics to be used in the remaining sections. Details can be
found in Paul Yiu’s excellent online book [8].

Homogeneous barycentric coordinates (henceforth simply barycentrics) of a point P are
written p : q : r, whereas normalised, or absolute, barycentrics are written in standard
ordered-triple notation: (p, q, r). Thus p : q : r represents (kp, kq, kr) for some (usually
unspecified) symmetric function k = k(a, b, c). Barycentrics for many triangle centers are
given in the Encyclopedia of Triangle Centers (henceforth ETC) [6]. Among those to appear
in this paper are

X(1) = incenter = a : b : c
X(2) = centroid = 1 : 1 : 1
X(3) = circumcenter = sin 2A : sin 2B : sin 2C

= a2(b2 + c2 − a2) : b2(c2 + a2 − b2) : c2(a2 + b2 − c2),

this being the center of Γ. The classical symbols for these points are also useful: I,G,O,
respectively. Also to appear in the sequel is H = X(4), the orthocenter. Since triangle
centers necessarily have the form

f(a, b, c) : f(b, c, a) : f(c, a, b) or g(A,B,C) : g(B,C,A) : g(C,A,B),

as typified by the barycentrics for X(3) shown above, it is convenient to reduce the notation
to

f(a, b, c) : : or g(A,B,C) : : .

We shall also use Conway triangle notation [7]:

S = 2(area of ABC);
SA = bc cosA = (b2 + c2 − a2)/2, SB = ca cosB, SC = ab cosC;

Sω = S cotω = a2 + b2 + c2

2S ,where ω = Brocard angle of ABC.

For P = p : q : r not on a sideline BC,CA,AB, the cevians of P are the lines AP,BP,CP .

Several theorems and examples in this paper, discovered and investigated with the help
of Mathematica, and have lengthy results —too lengthy to be fully reproduced here.

2 Main Theorem

Continuing the discussion in the first paragraph of Section 1, we have the following theorem,
which is fundamental to the rest of the article.

Theorem 1. Let P be a point that is not on a sideline of ABC. The triangle X ′Y ′Z ′ formed
by the circumcircle-inverses of the reflections X, Y, Z, of P in the vertices of the circumcevian
triangle of P is perspective to ABC. The perspector is the circumcevian-inversion perspector
of the triangles X ′Y ′Z ′ and ABC (Figure 1).
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Figure 1: P ′ = Cip(P )

Proof. Referring to the definition of circumcevian-inversion and the associated notation in
Section 1, let OX , OY , OZ be the circumcircles of triangles AOX,BOY,COZ, respectively,
and let ΛX(P ),ΛY (P ),ΛZ(P ),Λ(P ) be the powers of P with respect to OX , OY , OZ ,Γ, re-
spectively. Then

ΛX(P ) = AP · PX = AP · 2PD = 2Λ(P ).

Likewise,
ΛY (P ) = ΛZ(P ) = 2Λ(P ),

so that the circles OX , OY , OZ are coaxal with the line OP as radical axis. The three circles
meet in two points, one of which is O, and the other we denote by Q. Let I denote inversion
in Γ, and note that the inverse of the three circles are lines:

I(OX) = AI(X), I(OY ) = BI(Y ), I(OZ) = CI(Z).

The lines AX ′, BY ′, CZ ′ concur in the point I(Q); i.e., this point is the perspector of X ′Y ′Z ′

and ABC.

Henceforth, we refer to the point I(Q) as P ′ or Cip(P ), depending on context.
Example 2. Here we choose P = I, the incenter of ABC, with barycentric coordinates a : b : c.
The circumcevian triangle of I is known as the 2nd circumperp triangle ([3], p. 164), and the
triangle XY Z, as the excentral triangle ([3], p. 157); indeed, its vertices are the excenters of
ABC, given by

X = −a : b : c, Y = a : −b : c, Z = a : b : −c.
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The A-vertex of the circumcevian-inversion triangle X ′Y ′Z ′ is given by

X ′ = a2(a2 − b2 − c2 + bc) : b2(b2 − c2 − a2 − ca) : c2(c2 − a2 − b2 − ab),

and Cip(I) by

X(35) = a2(a2 − b2 − c2 − bc) : b2(b2 − c2 − a2 − ca) : c2(c2 − a2 − b2 − ab)
= sinA+ sin 2A : sinB + sin 2B : sinC + sin 2C.

It can be shown that the locus of a point Q such that the cevian triangle of Q is perspective
to X ′Y ′Z ′ is the pivotal isocubic having pole X(35192) and pivot X(21); this cubic passes
through X(i) for

i = 1, 3, 21, 35, 3467, 11107, 35193, 35194, 35195, 35196.

(The pivotal isocubic pK(U, P ) with pole U and pivot P is given by

ux(ry2 − qz2) + vy(pz2 − rx2) + wz(qx2 − py2) = 0.

See [5], especially pages 7 and 31.)

The locus of a point Q such that the anticevian triangle of Q is perspective to X ′Y ′Z ′ is
the pivotal isocubic having pole X(50) and pivot X(1); this cubic passes through X(i) for

i = 1, 35, 36, 1094, 1095, 2169, 5353, 5357, 35198, 35199, 35200, 35201.

Theorem 3. Let d be the directed length of segment PO and R the radius of Γ. Then P ′ is
the point on line PO that satisfies

P ′P

P ′O
= 1− d2

R2 .

Proof.

Λ(P ) = R2 − d2 = AP · PD;
ΛX(P ) = AP · PX = 2AP · PD = 2(R2 − d2) = OP · PQ;

PQ = 2(R2 − d2)
d

, so that OQ = 2R2 − d2

d
.

Then

OQ ·OP ′ = R2, so that OP ′ = R2d

2R2 − d2 ;

OP

OP ′ = 2R2 − d2

R2 , so that P
′P

P ′O
= 1− d2

R2 .

Theorem 4. P ′ is the {O,P}-harmonic conjugate of I(P ).
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Proof. Let Q′ = I(P ). Then

OP ·OQ′ = R2, so that OQ′ = R2

d
;

PQ′ = R2 − d2

d
, whence PQ′

OQ′ = R2 − d2

R2

= 1− d2

R2 , so that PQ
′

OQ′ = P ′P

P ′O
.

The following corollaries refer to the Poncelet porism ([1], [4]).

Corollary 5. The circumcevian-inversion perspector of a poristically fixed point is poristically
fixed.

Proof. Suppose that a point P is poristically fixed, and let P ′ = Cip(P ). Let I(P ) be the
Γ-inverse of P . By Theorem 4,

P ′ = {O,P}-harmonic conjugate of I(P ).

Since O,P, and I(P ) are poristically fixed, the same holds for P ′.

Corollary 6. There are infinitely many poristically fixed triangle centers.

Proof. Let I denote the incenter. Then Cip(I), Cip(Cip(I)), Cip(Cip(Cip(I))), . . . are all
poristically fixed, since I lies inside Γ and 1− d2/R2 > 0.

3 Barycentrics for P ′ and X ′

In this section, we use Theorems 3 and 4 to derive barycentric coordinates for the circumcevian-
inversion perspector P ′ of a point P having normalised barycentric coordinates (p, q, r).

The normalised barycentrics for the circumcenter are given by

O = (a
2SA

2S2 ,
b2SB

2S2 ,
c2SC

2S2 ).

The barycentric distance formula ([8], p. 89) gives

d2 = (PO)2 = −
∑
cyc

a2(b
2SB

2S2 − q)(
c2SC

2S2 − r);

PP ′

P ′O
= 1− d2

R2 = 1 +
∑

cyc a
2( b2SB

2S2 − q)( c2SC

2S2 − r)
R2 ,

so that

P ′ = (p′, q′, r′), where q′ and r′ are defined cyclically from

p′ = 8S6R2p+ a2SA

(
4S4R2 +

∑
cyc

a2(b2SB − 2qS2)(c2SC − 2rS2)
)
.
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Switching from Conway notation to the variables a, b, c, and simplifying, we obtain the
following homogeneous barycentrics:

P ′ = p(p+ q + r)a2b2c2 + a2(b2 + c2 − a2)(a2qr + b2rp+ c2pq) : : .

These barycentrics enable rapid identifications, by computer, of pairs (P, P ′), such as these:

(X(1), X(35)), (X(2), X(7496)), (X(4), X(3520)),
(X(5), X(34864)), (X(6), X(574)).

Many other pairs (P, P ′) are known ([6]; see the preamble just before X(34864)).
Barycentrics for the A−vertex of the circumcevian-inversion triangle are given by

X ′ = a2h(a, b, c) : b2k(b, c, a) : c2k(c, a, b),where

h(a, b, c) = b4(2a2 − 2b2 − c2)p2r2 + (c4(2a2 − b2 − 2c2)p2q2

+ b4(a2 − b2)pr3 + c4(a2 − c2)pq3

+ b2(3a4 − 2a2b2 − b4 + 2a2c2 − b2c2 − c4)pqr2

+ c2(3a4 + 2a2b2 − b4 − 2a2c2 − b2c2 − c4)pq2r

+ a2c2(a2 + b2 − c2)q3r + a2b2(a2 − b2 + c2)qr3;
+ b2c2(5a2 − 3b2 − 3c2)p2qr + a2(a2 + b2 − c2)(a2 − b2 + c2)q2r2

k(b, c, a) =
(
− c2(2a2 − b2 + c2)pq − a2c2q2 − b2(a2 − b2 + c2)pr

− a2(a2 − b2 + 2c2)qr
)(

2c2pq + c2q2 + 2b2pr + (a2 + b2 + c2)qr + b2r2
)
.

In addition to X ′ in Example 2, we have, for P = X(3),

X ′ = a2(2a2 − b2 − c2)− (b2 − c2)2 : 3b2(b2 − c2 − a2) : 3c2(c2 − a2 − b2).

4 Shinagawa coefficients

The Shinagawa coefficients of a triangle center

X = f(a, b, c) : f(b, c, a) : f(c, a, b)
on the Euler line are defined ([6], Introduction) as functions g(a, b, c) and h(a, b, c) such

that

f(a, b, c) = g(a, b, c)S2 + h(a, b, c)SBSC , (1)
In (1), with regard to the homogeneity of barycentrics, we can (and do) assume that g and h
are symmetric in (a, b, c), so that we can represent X unambiguously by

X = gS2 + hSBSC : gS2 + hSCSA : gS2 + hSASB

and represent X simply as (g, h). Since the circumcevian-inversion perspector X ′ also lies
on the Euler line, we have X ′ = (g′, h′) for some g′ and h′. Our objective in this section is to
determine g′ and h′.
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We begin by writing

OX

XH
= r1

r2
so that X = r2S

2 + (2r2 − r1)SBSC : : ,

leading to
OX

XH
= g + h

2g , and OX = (g + h)(OH)
3g + h

.

Next, we introduce two functions symmetric in a, b, c :

E = (SB + SC)(SC + SA)(SA + SB)
S2 = (abc

S
)2 = 4R2

F = SASBSC

S2 = (a2 + b2 + c2)
2 − 4R2 = Sω − 4R2.

By Theorem 4 ,

X ′X

X ′O
= 1− d2

R2

= 1− (g + h)2(OH)2

(3g + h)2R2

= 1− (g + h)2(E − 8F )
(3g + h)2E

= (3g + h)2E − (g + h)2(E − 8F )
(3g + h)2E

.

Now converting to barycentrics, we find

X ′ = (g′, h′), where
g′ = 2g(3g + h)E + (3g + h)2E − (g + h)2(E − 8F ),
h′ = 2h(3g + h)E − (3g + h)2E + (g + h)2(E − 8F ).

Example 7. The Shinagawa coefficients of the nine-point center, X(5), are (1, 1), so that
the Shinagawa coefficients of X(34864), the circumcevian-inversion perspector of X(5), are
(5E + 8F,−E − 8F ).
Example 8. The Shinagawa coefficients of the de Longchamps points, X(20), are (1,−2), so
that the Shinagawa coefficients of X(7488), the circumcevian-inversion perspector of X(20),
are (E + 4F,−2E − 4F ).

5 Circumcircle of X ′Y ′Z ′

Suppose that P , P ′, and X ′Y ′Z ′ have the same meanings as in Section 2. The circumcenter
of X ′Y ′Z ′ for arbitrary P = p : q : r is the point O′ given by

a2f(a, b, c) : b2f(b, c, a) : c2f(c, a, b), where

f(a, b, c) = β1p
2 + β2q

2 + β3r
2 + β4qr + β5rp+ β6pq,



224 Suren et al.: The Circumcevian-Inversion Perspector of Two Triangles

β1 = b2c2(3a4 − 4a2b2 + b4 − 4a2c2 − 2b2c2 + c4)
β2 = 2a2b2c2(a2 − b2 − c2)
β4 = −a2(a2 − b2 − c2)(a4 − 2a2b2 + b4 − 2a2c2 − 6b2c2 + c4)
β5 = −b2(a6 − b6 − 2c2 − 3a4b2 + 3a2b4 + 3b2c4 + 9a2c4 − 8a4c2 + 8a2b2c2),

and β3 is obtained from β2, and β6 from β5, by interchanging b and c.

Theorem 9. The circumcenter of triangle X ′Y ′Z ′ satisfies the following distance-ratio iden-
tity:

OP

OP ′ = 2OO
′

O′P ′ .

Proof. This follows easily (by computer) from the barycentrics for O′ and the barycentric
distance formula ([8], p. 89).

Theorem 10. Let |ρ| denote the radius of the circumcircle of X ′Y ′Z ′. Then

|ρ| = (abc)3/2 p+ q + r

d(a, b, c)S , where

d(a, b, c) = a2(a4 + b4 + c4 − 2a2b2 − 2a2c2 − 8b2c2)qr
+ b2(a4 + b4 + c4 − 2a2b2 − 2b2c2 − 8c2a2)rp
+ c2(a4 + b4 + c4 − 2a2c2 − 2b2c2 − 8a2b2)pq
− 3a2b2c2(p2 + q2 + r2).

Theorem 10 can be used to show that P ′ is a center of similitude of Γ and the circumcircle
of X ′Y ′Z ′, here denoted by Γ′. Care is required for an interpretation, since the radius ρ can
be negative. The various cases can be summarised as follows: P is an exsimilicenter (i.e.,
external center of similitude) when Γ′ lies entirely within Γ; otherwise, P ′ is the insimilicenter.
Or, if the triangles ABC and X ′Y ′Z ′ have the same orientation, then P ′ is the insimilicenter,
and otherwise, the P ′ is the exsimilicenter.

6 The Cip transform applied to curves

In previous sections, we discussed the images under the circumcevian-inversion perspector
transform of individual points. Using the notation Cip for that transform, we note that Cip
is a rational, but not birational, quadratic transformation. We turn now to images of lines
and circular cubics.

First, suppose that L is a line, represented as px+ qy+ rz = 0. Then Cip(L) is the conic
given by

a2(β1b
2c2px2 + β2yz) + (cyclic) = 0,where

β1 = (a4 + a2b2 − 2b4 + a2c2 + 4b2c2 − 2c4)p− 3b2(a2 − b2 + c2)q − 3c2(a2 + b2 − c2)r
β2 = a4(a2 − b2 − c2)2p2 + b4(a2 − b2 − 2c2)(a2 − b2 + c2)q2 + c4(a2 − 2b2 − c2)(a2 + b2 − c2)r2

− b2c2(2a4 − 5a2b2 + 3b4 − 5a2c2 − 6b2c2 + 3c4)qr
− a2c2(2a2 − b2 − 2c2)(a2 − b2 − c2)rp− a2b2(2a2 − 2b2 − c2)(a2 − b2 − c2)pq.

Example 11. If L = Euler line, then the conic Cip(L) is degenerate; indeed, it is the Euler
line, as in Section 4.
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Example 12. If L = Nagel line (the line X(1)X(2)), then Cip(L) is the conic that passes
through X(i) for i = 3, 35, 7496, 34758, 34868, 34875, 34876.

The center of the conic Cip(L), if not degenerate, is the point

a2f(a, b, c) : b2f(b, c, a) : c2f(c, a, b)

given by
f(a, b, c) = β1p

2 + β2q
2 + β3r

2 + β4qr + β5rp+ β6pq = 0,where

β1 = a4(a2 − b2 − c2)(a4 + b4 + c4 − 2a2b2 − 2a2c2 − 4b2c2)
β2 = b4(a6 − b6 − 2c6 − 3a4b2 + 3a2b4 + 3b2c4 − 6a4c2 + 7a2c4 + 6a2b2c2)
β4 = −b2c2(6a6 − 3b6 − 3c6 − 15a4b2 − 15a4c2 + 12a2b4 + 12a2c4 + 3b4c2 + 3b2c4 + 8a2b2c2)
β5 = −a2c2(2a6 − 5b6 − 2c6 − 9a4b2 + 12a2b4 − 6a4c2 + 6a2c4 + 4b4c2 + 3b2c4 + 6a2b2c2),

and β3 is obtained from β2, and β6 from β5, by interchanging b and c.
It may seem surprising that Cip(Λ) can be a conic when Λ is a curve other than a

line. In order to account for such a curve, we note that if the target conic, Cip(Λ), passes
through the circumcenter, O, then a degree-reducing cancellation of x+ y+ z occurs, and the
remaining equation is quadratic, as in the next three examples: Brocard circle (Example 13),
Jerabek circumhyperbola (Example 14), and Thomson-Gibert-Moses hyperbola (Example
15, introduced at X(5642) in [6]). Four more examples, in the form of Geogebra files, can be
accessed from the preamble just before X(39371) in [6].
Example 13. Let K1 be the circular cubic (defined in [2]) given by

a2
(
b4c4x3 − a2c2(a4 + 2b4 + c4 − 2a2c2 − 2b2c2)y2z

+ a2b2(a4 + b2 + 2c4 − 2a2b2 − 2b2c2)yz2
)

+ (cyclic)

− a2b2c2(5a4 + 5b4 + 5c4 − 4a2b2 − 4a2c2 − 4b2c2)xyz
= 0.

Then Cip(K1) is the Brocard circle.
Example 14. Let K2 be the circular cubic given by

a4(a2 − b2 − c2)
(
c2(a2 + b2 − c2 − ab)(a2 + b2 − c2 + ab)y2z

− b2(a2 − b2 + c2 − ac)(a2 − b2 + c2 + ac)yz2
)

+ (cyclic)

− 6a2b2c2(b2 − c2)(c2 − a2)(a2 − b2)xyz
= 0.

Then Cip(K2) is the Jerabek circumhyperbola. For example, the point X(35372) on K2 maps
to the point X(35373) on the Jerabek circumhyperbola.
Example 15. Let K3 be the circular cubic given by

2a2b4(b− c)c4(b+ c)x3

+ a4b2(a6 − 3a4b2 + 3a2b4 − b6 + 4a4c2 + a2b2c2 − 5b4c2 − 4a2c4 + 5b2c4 − c6)yz2

− a4c2(a6 + 4a4b2 − 4a2b4 − b6 − 3a4c2 + a2b2c2 + 5b4c2 + 3a2c4 − 5b2c4 − c6)y2z

+ (cyclic)− 14a2(a− b)b2(a+ b)(a− c)(b− c)c2(a+ c)(b+ c)xyz
= 0.
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Then Cip(K3) is the Thomson-Gibert-Moses hyperbola. The cubic K3 (as well as K1 and
K2) appears to be new to the literature. Notably, K3 passes through the vertices of the Thom-
son triangle, the points X(3), X(110), X(10620), X(14915), and the circular points at infinity.
The singular focus of K3 lies on the lines X(3)X(541), X(476)X(7464), X(1302)X(7496), and
X(9003)X(32305).

The preceding three examples can be extended to other conics that pass through O, such
as the circumconic that passes through O and I, the Kiepert circumhyperbola of the medial
triangle, the Jerabek circumhyperbola of the medial triangle, the Feuerbach circumhyperbola
of the tangential triangle, the Lester circle, and the Hung circle.

7 Secondary pre-circumcevian-inversion points

Suppose that X = Cip(P ), where P = p : q : r. Barycentric coordinates for a second point,
X̂, such that X̂ = Cip(P ), can be found by computer:

a2f(a, b, c) : b2f(b, c, a) : c2f(c, a, b), where

f(a, b, c) = (b2c2(a4 − 2b4 − 2c4 + a2b2 + a2c2 + 4b2c2)p2

+ 3a2b2c2(a2 − b2 − c2)q2 + 3a2b2c2(a2 − b2 − c2)r2

+ a2(a2 − b2 − c2)(a4 + b4 + c4 − 2a2b2 − 2a2c2 + 4b2c2)qr
+ b2(a6 − b6 − 3c6 − 3a4b2 + 3a2b4 + a4c2 + a2c4 − b4c2 + 5b2c4)rp
+ c2(a6 − c6 − 3b6 − 3a4c2 + 3a2c4 + a4b2 + a2b4 − b2c4 + 5b4c2)pq.

The point X̂ is introduced in ([6]; see the preamble just before X(35000)) as the secondary
pre-circumcevian-inversion point of P .
Example 16. Not only is Cip(X(1)) = X(35), but also, Cip(X(35000)) = X(35), so that
X(35000) is the secondary pre-circumcevian-inversion point of the incenter.
Example 17. Not only is Cip(X(2)) = X(7496), but also, Cip(X(35001)) = X(7496), so that
X(35001) is the secondary pre-circumcevian-inversion point of the centroid.

Next we introduce two circles, named, by the third author, the Suren circle and the
Moses-Suren circle. The two circles play a central role in the connections between X and X̂.

The Suren circle has center O and radius ρ satisfying ρ2 = −2R2, where R is the circum-
radius of ABC. The Suren circle is imaginary. Its perspector ([8], p. 127) is X(3526), and
an equation for the Suren circle is

a2yz + b2zx+ c2xy − 3R2(x+ y + z)2 = 0.

The Moses-Suren circle has center O and radius ρ satisfying ρ2 = 2R2. The Moses-Suren
circle is real. Its perspector is X(3527), and an equation for the Moses-Suren circle is

a2yz + b2zx+ c2xy + 3R2(x+ y + z)2 = 0.

Theorem 18. The point X̂ is the Suren-circle-inverse of X; thus X̂ = X if and only if X
lies on the Suren circle.
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Proof. As in the proof of Theorem 3,

OP ′ = R2d

2R2 − d2 .

Let x = OP ′. Then
xd2 +R2d− 2R2x = 0. (2)

As a quadratic equation, there are formally two solutions for d. As the discriminant, R
√
R2 + 8x

is positive, the two solutions are real; that is, for each length OP ′, there are two values of d.
The product of the roots of (2) is −2R2 = ρ2. This and the collinearity of P,O, P ′ establish
that X̂ is the Suren-circle-inverse of X

Theorem 19. The point X̂ is the Moses-Suren-circle-inverse of the reflection of X in O, so
that if X is on the Moses-Suren circle, then X̂ is the antipode of X.

Theorems 18 and 19 can be routinely verified by computer.

8 Source points

In Theorem 1, we started with a point P and constructed the point P ′ = Cip(P ). Then in
Section 7, we discussed a second point, X̂ such that Cip(X) = Cip(X̂). In this section, we
invert the Cip transform; that is, we start with any point U = u : v : w not in {A,B,C,X(3)}
and find barycentrics for the two points P1 = p1 : q1 : r1 and P2 = p2 : q2 : r2 satisfying

U = Cip(P1) = Cip(P2).
We call the points P1 and P2 the source points for U and have these formulas:

P1 = H −K
√

∆ and P2 = H +K
√

∆,

where

H = bc
(
a2b2 + a2c2 − (b2 − c2)2

)
p+ a2bc(b2 + c2 − a2)(q + r);

K = a
(
b2c2(2a4 − a2b2 − b4 − a2c2 + 2b2c2 − c4)p2

+ 3a2b2c2(a2 − b2 − c2)q2 + 3a2b2c2(a2 − b2 − c2)r2)
+ 2a2(a2 − b2 − c2)(a2 − b2 − bc− c2)(a2 − b2 + bc− c2)qr
+ b2(2a6 − 2b6 − 3c6 − 6a4b2 + 6a2b4 − a4c2 + 2a2c4 + b4c2 + 4b2c4)rp

+ c2(2a6 − 2c6 − 3b6 − 6a4c2 + 6a2c4 − a4c2 + 2a2b4 + c4b2 + 4c2b4)pq
)

;

∆ = 9a2b2c2(p2 + q2 + r2) + f(a, b, c)qr + f(b, c, a)rp+ f(c, a, b)pq,

where
f(a, b, c) = 2a2(4a4 + 4b4 + 4c4 + b2c2 − 8a2b2 − 8a2c2)qr.

The least i for which the source points of X(i) are in [6] is 15, as indicated in the following
table.
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i P1 P2
15 36243 36244
16 36241 36242
35 1 35000
574 35002 6
3520 4 18859
5210 33878 187
7280 12702 36
7488 2070 20
7492 3534 23
7496 2 35001
8722 2080 1350
9130 35447 351
11012 22765 40

i P1 P2
11510 1319 35448
14379 6760 64
15020 32609 15054
21855 186 1657
25042 54 35449
33924 34147 35450
34758 35450 8
34864 35452 5
34866 115 35453
34867 9 35454
34868 10 35455
34870 35456 35456
34871 35457 35

An unexpected observation from the above list is that there seems to be no easily recog-
nised pattern for distinguishing between “negative” source points, P1, and “positive”, P2; for
example,

X(1), X(2), X(4), X(6), X(20) are of the form P1 = H −K
√

∆, whereas
X(5), X(8), X(9), X(10), X(35) are of the form P1 = H +K

√
∆.

9 The center Ψ(P ) of a conic

Suppose that P is a point and L(P ) is the line through P perpendicular to OP . As in Section
6, Cip(L(P )) is a conic. Its center we denote by Ψ(P ).
Theorem 20. If L(P ) is tangent to the circumcircle, then Cip(L(P )) is a right hyperbola
that passes through O and P .
If L(P ) is tangent to the Moses-Suren circle (i.e., (

√
2R,O)), then Cip((L(P )) is a parabola.

If L(P ) lies outside the Moses-Suren circle, then Cip((L(P )) is an ellipse.
If L(P ) lies inside the Moses-Suren circle, then Cip((L(P )) is a hyperbola.

Theorem 20 is similar to the well-known fact that the isogonal conjugate of a line is an
ellipse, parabola, or hyperbola according as the line meets Γ in 0,1, or 2 points.
Theorem 21. Ψ(P ) is the midpoint of O and Cip(P ).

Although Theorem 21 can be routinely checked by computer, an intuitive proof can be
described as follows: as a point W moves on L(P ) away from O, the point Cip(W ) approaches
O; thus, regarding Cip as inversion in a circle centered at O, images of Cip are symmetrical
for points equally distant on L(P ) from OP , so that the center of the conic must be the
midpoint of O and Cip(P ).

10 A generalisation: (t)Cip transformations

Returning now to Theorem 1, the points X, Y, Z are the images of D,E, F under the homo-
thety with ratio −1 centered at P . If the ratio is changed to an arbitrary nonzero number t,
then the resulting lines AX ′, BY ′, CZ ′ concur, as in Theorem 1. We write the resulting point
of concurrence as (t)Cip(P ).
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Theorem 22. If P = p : q : r and t 6= 0, then

(t)Cip(P ) = f(a, b, c) : f(b, c, a) : f(c, a, b), where
f(a, b, c) = a2b2c2p(p+ q + r)− ta2(−a2 + b2 + c2)(a2qr + b2rp+ c2pq).

As in Section 7, there is a secondary pre-(t)circumcevian-inversion point, for which, if written
as h(a, b, c) : h(b, c, a) : h(c, a, b), then

h(a, b, c) = p(p+ q + r)
a2qr + b2rp+ c2pq − uR2(p+ q + r)2 + −a

2 + b2 + c2

b2c2(u− 1) ,

where u = (2t− 1)/t. The two points f(a, b, c) : : and h(a, b, c) : : are an inverse pair in
the circle centered at O with radius ρ satisfying ρ2 = (1− t)R2/t.

Example 23. The appearance of (t, j, k) in the following list means that (t)Cip(X(j)) = X(k):

(−1, 1, 35), (−1/2, 1, 55), (−1/3, 1, 3746), (3/2, 2, 22),
(3/4, 2, 25), (2/3, 6, 305), (3/4, 186, 25).

11 A further generalisation

Suppose that Γ(U) is the circumconic with perspector U = u : v : w. The Γ(U)-inverse of a
point F = f : g : h is the point

ghu2(u− v − w) + f 2uvw + fu
(
h(u− v)v + g(u− w)w

)
: : .

(Γ(U) is an ellipse if and only if U lies inside the Steiner inellipse.)
As a generalisation of circumcevian triangle (i.e., when Γ(U) is the circumcircle, as in the

preceding sections), the A-vertex of the Γ(U)-cevian triangle of a point P = p : q : r is the
point

D = −qru : q(rv + qw) : r(rv + qw).

Let σ = p+ q+ r and τ = qru+ rpv+ pqw. Then the t-reflection of P in D (with t = −1
for ordinary reflection) is the point

X = qrσu− t(q + r)τ : −qσ(rv + qw) + tqτ : −rσ(rv + qw) + trτ.

From those basics, the Γ(U)-inverse of X is then found to be

X ′ = qrσ2u2vw + t2u(u− v − w)τ 2 − tσuτ(ruv − rv2 + quw − qw2)
: −qσ2uvw(rv + qw) + t2v(−u+ v − w)τ 2 − tσvτ(−ruv + rv2 − 2quw + qvw − rvw − qw2)
: −rσ2uvw(rv + qw) + t2w(−u− v + w)τ 2 − tσwτ(−2ruv − rv2 − quw − qvw + rvw + qw2),

the perspector of X ′Y ′Z ′ and ABC, by

P ′ = pσuvw + tu(u− v − w)τ : : ,

and the radius of the circumcircle of X ′Y ′Z ′ by
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(t− 1)a3b3c3σ2

2S
(

(2t− 1)a2b2c2σ2 − 4t2(a2qr + b2rp+ c2pq)S2
) .

For comparison with the results in Section 7, the secondary pre-Γ(U, t)-cevian-inversion
point is given by

(p+ q + r)uvw
(

(q + r)uξ + p(uv − v2 + uw + 2vw − w2)
)

− tu
(
qruξ3 + 2q2uvwξ + 2r2uvwξ

+ p2vw(u+ v − w)(u− v + w) + prv(u3 − 3u2v + 3uv2 − v3 + uw2 + 3vw2 − 2w3)

+ pqw(u3 + uv2 − 2v3 − 3u2w + 3v2w + 3uw2 − w3)
)

: : ,

where ξ = u+ v + w.

12 Four equilateral triangles

Next we apply the generalisation in Section 11 to a question raised by Suren: “What is the
locus of a point P = p : q : r such that the circumcevian-inversion triangle of P is equilateral?”
After elaborate Mathematica computations followed by extensive simplifications, Moses found
that for t-reflection (as a generalisation of ordinary reflection, given by t = −1), the locus
consists of four points. In order to present them in the form

a2f(a, b, c) : b2f(b, c, a) : c2f(c, a, b), (3)
let

β1 = a2 + b2 + c2

β2 = a2b2 + a2c2 − b4 − c4

β3 = b2c2 + c2a2 + a2b2

β4 = a4 + b4 + c4

δ1 = −1, δ2 = 1, ε1 = −1, ε2 = 1

ρij = εi

√
2
√√

12δjβ1S + 4β3 − β4 − 8(β4 − β3t(1− t)).

Then

f(a, b, c) = β1β2 + 4(β4 − β3)(−a2 + b2 + c2)t+ β2(ρij + δj

√
12S). (4)

The four points P are now given by (3) and (4) using δi, εj = (±1,±1). These are the
source points for the isodynamic points, X(15) and X(16) (Figures 2 and 3).

In order to see that the four points are real for all ABC, it suffices to show that ρ2
ij > 0

for all a, b, c. We write ρ2
ij in terms of the Brocard angle ω:

ρ2
ij = 4S2(csc2 ω)

(
2− 4t(t− 1) + (8t2 − 8t− 1) cos 2ω + δj

√
3 sin 2ω

)
.

Then
min

(
(8t2 − 8t− 1) cos 2ω

)
= (8t2 − 8t− 1)/2,
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Figure 2: Equilateral triangles with source points for X(16)

which occurs when ω = π/6. Since

2− 4t(t− 1) + (8t2 − 8t− 1)/2 = 3/2,

and since 0 <
√

3 sin 2ω < 3/2 for all a, b, c, we conclude that ρ2
ij > 0.

The four points can also be nicely represented in terms of the Brocard angle ω:

(sin2 A)
(

cos(A+ ω)(cscA cscω)(δi

√
3 + cotω + εj ρ̂ cscω)− 2t(cotA)(csc2 ω − 4)

)
:: ,

where
ρ̂ =

√
2 + 4t(1− t) + (8t2 − 8t− 1)(cos 2ω +

√
3 sin 2ω).
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Figure 3: Equilateral triangles with source points for X(15)
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