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Abstract. New developments of the author’s research project on the geometry
of conics are presented. For any general point P taken on a given ellipse H,
some triplets of collinear, peculiar points are described (Theorem 2.1); several
angles sharing the same vertex are shown to share the same line as bisector, too
(Theorems 2.3 through 2.7). Three new circles (the bridge-circles Theorems 3.1,
3.2 and 3.3) linking points belonging to the ellipse H, Monge’s circle and other
conics introduced by the author (the symbiotic ellipse HΣ and the circle Φ1) are
described. Unsuspected relationships linking the newly defined objects with a
circle previously introduced by the author (denoted circle Ω) are described.
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1 Introduction

New developments of the author’s research project [4–8] on the geometry of conics are pre-
sented. In an orthogonal reference frame (Figure 1), let H be the ellipse

x2

a2 + y2

b2 = 1; (a > b), (1)

whose foci are
F1(−c, 0); F2(c, 0);

(
c =
√
a2 − b2

)
(2)

Throughout this paper, the ellipse general point – that is, any point different from the vertexes
– is denoted by P (a cos ε; b sin ε) or simply P ; to avoid the exceeding verbal complexity, I
will formulate any statement on the basis of the assumption that P lies in the 1st quadrant
(x > 0, y > 0). For the reader’s convenience, some geometrical objects frequently referred to
throughout this paper are listed and previous results are summarized:

1. The ellipse diameters with slope me = tan ε and me′ = − tan ε, introduced by Ternullo [4]
and named eccentric line (3) and symm-eccentric line (4), respectively:
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y = x tan ε (3) y = −x tan ε (4)

2. The tangent t (5) to the ellipse H at P :

y = −x b
a

cot ε+ b

sin ε (5)

3. The x- and y-intercepts (Tx (6) and Ty (7), respectively) of the tangent (5) to the ellipse
H at P :

Tx

(
a

cos ε ; 0
)

(6) Ty

(
0; b

sin ε

)
(7)

4. The normal n (8) to the ellipse H at P :

y = x
a

b
tan ε− c2

b
sin ε (8)

5. The x- and y-intercepts (Nx (9) and Ny (10), respectively) of the normal n (8) to the
ellipse H at P :

Nx

(
c2

a
cos ε; 0

)
(9) Ny

(
0; −c

2

b
sin ε

)
(10)

6. The following points E (11) and I (12), where the normal (8) meets the eccentric (3) and
the symm-eccentric (4) line of P , respectively:1

E((a+ b) cos ε; (a+ b) sin ε) (11) I((a− b) cos ε; −(a− b) sin ε) (12)

7. The following circle Φ1, whose center is the y-intercept Ty (7) of the tangent (5):

x2 +
(
y − b

sin ε

)2
= c2 + b2

sin2 ε
(13)

The circle Φ1 passes through the foci (by definition), as well as through the points E
(11) and I (12) ([7], Theorem 2.2) and the following T131 (14) and T112 (15) ([8], Theorem 1),
where the tangent t (5) drawn to the ellipse H (1) at P meets the tangents drawn at the
vertexes V3(−a, 0) and V1(a, 0) of the same ellipse, respectively:

T131

(
−a; b(1 + cos ε)

sin ε

)
(14) T112

(
a; b(1− cos ε)

sin ε

)
, (15)

8. The following circle Φ2, whose center is the y-intercept Ny (10) of the normal (8):

x2 +
(
y + c2

b
sin ε

)2
= c2 +

(
c2

b
sin ε

)2
. (16)

1The first mention of the point E (11) known to the author can be found in an exercise of Salmon ([3],
Chapter XIII, Article 231, p. 221); Salmon is aware that the locus of such point is a circle concentric with
the ellipse. Afterwards, such circle has been studied by A. Barlotti [1] and Ternullo ([4], Theorem 1).
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The circle Φ2 passes through through the foci; the normal (8) meets Φ2 at the following points
N21 and N22:

N22

(
−c cos ε; c(a+ c) sin ε

−b

)
(17) N21

(
c cos ε; c(a− c) sin ε

b

)
(18)

9. The following circle Φ3 whose center is the x-intercept Tx (6) of the tangent (5):

(
x− a

cos ε

)2
+ y2 = a2 sin2 ε+ b2 cos2 ε

cos2 ε
. (19)

The circle Φ3 passes through the points E (11) and I (12) (by definition), as well as through
the following T321 and T342, where the tangent t (5) drawn to the ellipse H (1) at P meets the
tangents to the same ellipse at its vertexes V2(0, b) and V4(0,−b), respectively ([8], Theorem 1):

T321

(
a(1− sin ε)

cos ε ; b
)

(20) T342

(
a(1 + sin ε)

cos ε ; −b
)

(21)

The circles Φ1, Φ2 and Φ3 taken pairwise are mutually orthogonal ([7], Theorem 2.1).
The vertexes of the ellipse H (1) are denoted by V1(a, 0), V2(0, b), V3(−a, 0) and V4(0, −b)

or simply V1, . . . V4. The points where the circle Φi (i = 1, 3) meets the tangent drawn at the
ellipse vertex Vj (j = 1, 4) are denoted by Tijλ (λ = 1, 2).

2 Some Peculiar Points on the Circles Φ1, Φ2 and Φ3

Let the points lying on the circles Φi (i = 1, 3) at maximal and minimal distance to the H
center O (the Φi distal and proximal points), be denoted by Φid and Φip, respectively. Using
the following, compact notation

(asbc) = a2 sin2 ε+ b2 cos2 ε (22)

such points are represented as follows:

Φ1d

0;
b+

√
(asbc)

sin ε

 (23) Φ1p

0;
b−

√
(asbc)

sin ε

 (24)

Φ2d

0; −c
c sin ε+

√
(asbc)

b

 (25) Φ2p

0; c
−c sin ε+

√
(asbc)

b

 (26)

Φ3d

a+
√

(asbc)
cos ε ; 0

 (27) Φ3p

a−
√

(asbc)
cos ε ; 0

 (28)

Let the lines joining the focus F1 with the distal and proximal points of the circle Φ1 [Φ1d
(23) and Φ1p (24), respectively] be drawn; such lines F1Φ1d and F1Φ1p meet the circle Φ2 in
the following points Φ2l and Φ2r, respectively:
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Figure 1: For a general P taken on the ellipse, the tangent t and normal n [blue], the eccentric
line e and symm-eccentric line e′ [magenta], the circles Φ1 and Φ2 [red], the points
E, I, Φid, Φip, Φil, Φir (i = 1, 2) are shown.

Φ2l

(
−c
b

√
(asbc); −c

2

b
sin ε

)
(29) Φ2r

(
c

b

√
(asbc); −c

2

b
sin ε

)
(30)

One can easily check that Φ2l (29) and Φ2r (30) are also the points where the lines
x = ± c

b

√
(asbc) touch the circle Φ2; therefore, they are the Φ2 points lying at the maximal

distance to the y-axis. Quite similarly, the lines F1Φ2d and F1Φ2p meet the circle Φ1 in the
following points Φ1l and Φ1r, lying at the maximal distance to the y-axis, respectively:

Φ1l

−
√

(asbc)
sin ε ; b

sin ε

 (31) Φ1r


√

(asbc)
sin ε ; b

sin ε

 (32)

Accordingly, the following holds:

Theorem 2.1. The focus F1 is collinear with the distal point Φ1d (23) of the circle Φ1 and
the point Φ2l (29) of the circle Φ2, as well as with the proximal point Φ1p (24) of Φ1 and the
point Φ2r (30) of Φ2 on the following lines (33) and (34), respectively:

y =
b+

√
(asbc)

c sin ε (x+ c) (33) y =
b−

√
(asbc)

c sin ε (x+ c) (34)

The focus F1 is collinear with the proximal point Φ2p (26) of the circle Φ2 and the point
Φ1r (32) of the circle Φ1 as well as with the distal point Φ2d (25) of Φ2 and the point Φ1l (31)
of Φ1 on the following lines (35) and (36), respectively:
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y = −
c sin ε+

√
(asbc)

b
(x+ c) (35) y =

−c sin ε+
√

(asbc)
b

(x+ c) (36)

Of course, ]Φ1dF1Φ1p = ]Φ2pF1Φ2d = π/2, because both angles are inscribed in semi-
circles. On the other hand, the lines F1Φ2pΦ1r (35) and F1Φ1pΦ2r (34) bisect the angles
∠Φ1dF1Φ1p and ∠Φ2pF1Φ2d, because pass through the midpoints (Φ1r and Φ2r) of the arcs
Φ1dΦ1p and Φ2pΦ2d, respectively. Accordingly, we can state the following:

Theorem 2.2. For any P taken on the ellipse H, the following identities hold:

]Φ1dFiΦ2p = ]Φ2pFiΦ1p = ]Φ1pFiΦ2d = π/4
]Φ1dFiΦ2d = 3π/4; (i = 1, 2)

In 2016, Ternullo [7] introduced the symbiotic conics (Figure 2): taken a point P on
the ellipse H (1), the symbiotic conics of the ellipse H about P are the ellipse HΣ and
the hyperbola YΣ whose center is P and whose axes are the tangent and normal to H at
P ; moreover, both HΣ and YΣ pass through the center O of H, where admit the axes of
symmetry of H as tangent and normal. The equation of the ellipse HΣ follows:

x2a
2 − b2 cos2 ε

a2 cos2 ε
− 2xy b

a
tan ε− 2x c2

a cos ε + y2 = 0 (37)

The symbiotic conics HΣ and YΣ are confocal; their foci are the points E (11) and I
(12) ([7], Theorem 3.1). The symbiotic ellipse of HΣ about O is the ellipse H (1). For any
object Ω (point, line, angle etc.) playing a certain role w.r.t. the ellipse H, there exists a
homologous object Ω′ playing the same role w.r.t. the ellipse HΣ. Accordingly, from any
statement involving a special set of objects, we may generate a twin statement involving the
set of homologous objects. In many cases [7, 8], the new statements, far from being trivial
duplicates of the original ones, reveal new, worth mentioning facts. In Table 1 some couples
of objects homologous to each other are listed.

Let the symbiotic ellipse HΣ (37) of the ellipse H (1) about the point P be constructed.
Both tangents drawn to HΣ from the focus F1 are represented in the following, compact form
(the notation R = a2 − b2 cos2 ε+ 2ac cos ε is used):

y = b sin ε±
√
R

c+ 2a cos ε (x+ c) (38)

The lines (38) touch the ellipse HΣ in the points Σ1, Σ2 represented as follows:

Σi


(
R± b sin ε

√
R
)
ac cos ε

(c+ a cos ε)R∓ ab sin ε cos ε
√
R

;
R
(
b sin ε±

√
R
)
c

(c+ a cos ε)R∓ ab sin ε cos ε
√
R

(i = 1, 2) (39)

The lines F1E and F1I, linking the focus F1(−c, 0) with the points E (11) and I (12) are
represented by the following (40) and (41) equations, respectively:

y = (a+ b) sin ε
(a+ b) cos ε+ c

(x+ c); (40) y = − (a− b) sin ε
(a− b) cos ε+ c

(x+ c) (41)
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Table 1: Couples of homologous objects
Objects defined w.r.t the ellipse H Homologous objects
P : point of H O: point of HΣ
~x (x-axis): major axis of H n: normal to H at P , major axis of HΣ
~y (y-axis): minor axis of H t: tangent to H at P , minor axis of HΣ
e: ecc. line OE of P (3) ecc. line PF1 of O
e′: symm-ecc. line OI of P (4) symm-ecc. line PF2 of O
n: normal to H at P (8) x-axis: normal to HΣ at O
t: tangent to H at P (5) y-axis; tangent to HΣ at O
E: e ∩ n (11) F1: PF1 ∩ ~x
I: e′ ∩ n (12) F2: PF2 ∩ ~x
F1, F2: foci of H E, I: foci of HΣ
Ty: t ∩ ~y (7) Ty: ~y ∩ t
Ny: n ∩ ~y (10) Tx: ~x ∩ t
Tx: t ∩ ~x (6) Ny: ~y ∩ n
Nx: n ∩ ~x (9) Nx: ~x ∩ n
Circle Φ1 (about Ty, through F1, F2) (13) Circle Φ1 (about Ty, through E, I)
Circle Φ2 (about Ny, through F1, F2) (16) Circle Φ3 (about Tx, through E, I)
Circle Φ3 (about Tx, through E, I) (19) Circle Φ2 (about Ny, through F1, F2)
T131, T112: t ∩ Φ1 Φ1d, Φ1p: ~y ∩ Φ1
T321, T342: t ∩ Φ3 Φ2p, Φ2d: ~y ∩ Φ2
N21, N22: n ∩ Φ2 Φ3p, Φ3d: ~x ∩ Φ3
line F1N21T112 (43) line EΦ3pΦ1p
line T131F1N22 (44) line Φ1dEΦ3d
line F2N21T131 line IΦ3pΦ1d
line T112F2N22 line Φ1pIΦ3d

The collinearity of the triplets F1N21T112, T131F1N22, F2N21T131, T112F2N22, EΦ3pΦ1p, Φ1dEΦ3d, IΦ3pΦ1d

and Φ1pIΦ3d has been proved by Ternullo ([8], Theorems 2.10 and 2.13).

The focal radius F1P is:

y = b sin ε
a cos ε+ c

(x+ c) (42)

Finally, we should remember that the focus F1(−c, 0) is collinear with the points N21 (18)
and T112 (15), as well as with the points T131 (14) and N22 (17), on the following orthogonal
lines F1N21T112 (43) and T131F1N22 (44), respectively ([8], Theorem 2.10):

y = (a− c) sin ε
b(1 + cos ε) (x+ c) (43) y = − b(1 + cos ε)

(a− c) sin ε(x+ c) (44)

Bearing these facts in mind, we can state the following:

Theorem 2.3. [Fig. 2] The line F1N21T112 (43) [black, dashed] bisects the following angles
sharing the focus F1 as vertex: (i) ∠PF1F2 [blue], (ii) ∠EF1I [red], (iii) ∠Σ1F1Σ2 [green]
and (iv) ∠T131F1N22 [red].
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Proof. The Theorem 2.3 is equivalent to the following four statements:

(i) ]PF1F2 = 2]T112F1F2; (ii) ]EF1T112 = ]T112F1I;
(iii) ]Σ1F1T112 = ]T112F1Σ2; (iv) ]T131F1T112 = ]T112F1N22.

Taking the slopes of the lines F1N21T112 (43) and F1P (42) into account, we may express the
1st statement as follows:

b sin ε
(a cos ε+ c) = tan

2 arctan (a− c) sin ε
b(1 + cos ε)

 (45)

Indeed, if we rewrite the r.h.s. (right hand side) of (45) as follows:

2 (a−c) sin ε
b(1+cos ε)

1−
(

(a−c) sin ε
b(1+cos ε)

)2 = 2(a− c)b(1 + cos ε) sin ε
(a+ c)(a− c)(1 + cos ε)2 − (a− c)2(1 + cos ε)(1− cos ε)

one can easily check that (45) is an identity.
As regards the item (ii), observe that (a) the tangent to the ellipse H at P meets the

circle Φ1 in T112 ([8], Theorem 1) and (b) the points E and I symmetrically lie about such
tangent ([4], Theorem 2) on the circle Φ1 ([7], Theorem 2.3); it follows that the arcs ET112
and T112I are congruent; this conclusion implies, in turn, that ∠EF1T112 and ∠T112F1I are
congruent because are inscribed in the circle Φ1 and are subtended by congruent arcs.

As regards the item (iii), let us rewrite the thesis ]Σ1F1T112 = ]T112F1Σ2 as follows:
]Σ1F1P + ]PF1T112 = ]T112F1F2 + ]F2F1Σ2; accordingly, by virtue of the item (i) of the
present Theorem 2.3 (namely, ]PF1T112 = ]T112F1F2), to prove the thesis it is enough to
prove: ]Σ1F1P = ]F2F1Σ2; remembering the equations (38) representing the tangents drawn
to the ellipse HΣ from the focus F1(−c, 0), we can write:

]Σ1F1P = arctan
b sin ε+

√
R

c+2a cos ε −
b sin ε

a cos ε+c

1 + b sin ε+
√
R

c+2a cos ε
b sin ε

a cos ε+c

; (46) ]F2F1Σ2 = arctan

∣∣∣∣∣∣b sin ε−
√
R

c+ 2a cos ε

∣∣∣∣∣∣ (47)

Our thesis amounts to state that the r.h.s.’s of (46) and (47) are equal and to write,
therefore, the following:

(b sin ε+
√
R)(a cos ε+ c)− b sin ε(c+ 2a cos ε)

(c+ 2a cos ε)(a cos ε+ c) + (b sin ε+
√
R)b sin ε

=
√
R− b sin ε
c+ 2a cos ε (48)

Indeed, (48) can be written, after clearing and simplifying, as follows:

2(c+ a cos ε)(c+ 2a cos ε) = (c+ 2a cos ε)2 + a2 − b2 cos2 ε+ 2ac cos ε− b2 sin2 ε

which is an identity.
As regards the item (iv) (]T131F1T112 = ]T112F1N22), it is enough to remember the afore

mentioned result ([8], Theorem 2.10) ensuring us that the line F1N21T112 (43) orthogonally
meets T131F1N22 (44). The same Theorem ensures us that the line T131F1N22 (44) bisects the
external angles associated with ∠PF1F2, ∠EF1I and ∠Σ1F1Σ2.

Before stating the next result, let us remember that the focus F2(c, 0) is collinear with the
points T131 (14) and N21 (18), as well as with the points T112 (15) and N22 (17) on the following
orthogonal lines F2N21T131 (49) and T112F2N22 (50), respectively ([8], Theorem 2.10):
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Figure 2: The ellipse H, its point P , the symbiotic ellipse HΣ [blue], the circle Φ1 [red], the
tangents [green] from F1 to HΣ, from E to H and from T131 to H, the lines F1E,
F1I, F2E, F2I [red], F1P , F1F2, F2P [blue], the eccentric line OE [magenta], the
normal EPI [blue] the lines T131F1 [red] and T131F2 [black, dashed], T131Ny, T131O
[blue]; dashed lines are bisectors.

y = − b(1 + cos ε)
(a+ c) sin ε (49) y = b(1− cos ε)

(a− c) sin ε(x− c) (50)

Theorem 2.4. [Fig. 2] The line F2N21T131 (49) [black, dashed] bisects the following angles
sharing the focus F2 as vertex: (i) ∠F1F2P [blue], (ii) ∠IF2E [red], (iii) ∠N22F2T112 [red].

Proof. As regards the item (i), observe that, by virtue of a well known Theorem, the normal
to the ellipse H at P bisects the angle ∠F1PF2, formed by the focal radii of P ; on the other
hand, we know (Theorem 2.3, item i) that the line F1N21T112 bisects ∠PF1F2; since these
two bisectors – namely, the normal and the line F1N21T112 – meet in N21 (18), such point is
the incenter of the triangle PF1F2; accordingly, the bisector of the 3rd angle of such triangle,
that is ∠F1F2P , passes through N21, too; therefore, the line F2N21T131 bisects ∠F1F2P . As
regards the item (ii), the arcs IT131 and T131E are congruent because the point T131 belongs
to the tangent to the ellipse H at P , which is the perpendicular bisector of the segment EI
([4], Theorem 2); it follows that ]IF2T131 = ]T131F2E because both angles are inscribed in
the circle Φ1 and are subtended by the afore mentioned, congruent arcs. As regards the item
(iii), it is enough to remember ([8], Theorem 2.10) that the line F2N21T131 (49) orthogonally
meets T112F2N22 (50).

Knowing the coordinates of the points T131 (14), Φ1p (24), Ny (10) and O(0, 0), we can
write the following equations of the lines T131O (51), T131Φ1p (52) and T131Ny (53):

T131O: y = −b(1 + cos ε)
a sin ε x (51)
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T131Φ1p: y = b−
√
a2 sin2 ε+ b2 cos2 ε

sin ε − b cos ε+
√
a2 sin2 ε+ b2 cos2 ε

a sin ε x (52)

T131Ny: y = −c
2

b
sin ε− a2 sin2 ε+ b2 cos2 ε+ b2 cos ε

ab sin ε x (53)

Theorem 2.5. [Fig. 2] The line T131Φ1p (52) [black, dashed] bisects the following angles
sharing the point T131 (14) as vertex: (i) ∠NyT131O [blue], (ii) F1T131F2 [F1T131: red; T131F2:
black, dashed line] and (iii) V3T131P [its sides are the tangents (green) to the ellipse H at the
vertex V3(−a, 0), and at P ].

Proof. item (i): the lines T131O and T131Ny meet the circle Φ1 in points symmetrically lying
about the minor axis, at the ∆x = ac2 sin2 ε/

(
a2 sin2 ε+ b2 (1 + cos ε)2

)
distance from the

minor axis; accordingly, the Φ1 arcs joining Φ1p with either intersection are congruent and,
therefore, the inscribed angles ∠OT131Φ1p and ∠Φ1pT131Ny, subtended by these arcs, are
congruent, too; the item (ii) is equivalent to: ]F1T131Φ1p = ]Φ1pT131F2; indeed, such angles
are inscribed in the circle Φ1 and are subtended by the congruent arcs F1Φ1p and Φ1pF2,
respectively; the item (iii) is equivalent to ]V3T131Φ1p = ]Φ1pT131O; indeed, such angles are
inscribed in the circle Φ1 and are subtended by congruent arcs.

Now, let the tangents to the ellipse H (1) be drawn from the point E; by means of the
previously introduced symbol (asbc) (22) and the following, compact notation:

(a4b4) = a4 sin2 ε+ b4 cos2 ε, (54)

the tangency points – denoted as H1, H2 – can be given the following representation:

Hi

a2 b
2 cos ε± sin ε

√
(a4b4) + 2ab(asbc)

(a+ b)(asbc) ; b2a
2 sin ε∓ cos ε

√
(a4b4) + 2ab(asbc)

(a+ b)(asbc)

(i = 1, 2)

(55)
We may invoke the Theorems 2.3 and 2.4 for the ellipse HΣ and its point O, so to state

the following Theorems 2.6 and 2.7, respectively (any object entering the original statements
has been replaced by its homologous, according to the Table I):

Theorem 2.6. [Fig. 2] The line EΦ3pΦ1p [black, dashed] bisects the following angles, sharing
the vertex E: (i) ∠OENy [it is formed by the eccentric line OE [magenta] (3) of P and the
normal EPINy (8) [blue] to the ellipse H (1) at P ], (ii) ∠F1EF2 [red], (iii) ∠H1EH2 [green;
it is formed by the tangents drawn to H from E] and (iv) ∠Φ1dEΦ3d.

Theorem 2.7. [Fig. 2] The line IΦ3pΦ1d [black, dashed] bisects the following angles, sharing
the vertex I: (i) ∠OIP [it is the angle formed by the symm-eccentric line OI of P [magenta]
(4) and the normal IP [blue] to the ellipse H at P ]; (ii) ∠F1IF2 [red].

Similar facts, we overlook for the sake of brevity, could be stated for some angles sharing
as vertex the points T112, T321 and T342.

3 The “Bridge” Circles

The locus of points from which the ellipse (1) can be seen under a right angle is ([2], Theo-
rem 9.2.1) the circle (Fig. 3):

x2 + y2 = a2 + b2 (56)
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Figure 3: The ellipse H is drawn with its point P , Monge’s circle [blue], the circle Φ1 [red],
the symbiotic ellipse HΣ [blue] the bridge circle B1 [green] with its tangents at E
and I [magenta] and the bridge circle B2 [violet]

.

which is referred to as Monge’s circle.
The tangent (5) to the ellipse H at P meets Monge’s circle in two points M1, M2, syn-

thetically represented as follows:

Mi

(b2 cos ε∓ sin ε
√

(a4b4)
(asbc) a;

a2 sin ε± cos ε
√

(a4b4)
(asbc) b

)
; (i = 1, 2) (57)

In this Section, I will deal with circles [B1 (58), B2 (61), B3 (63)] which link couples of
noticeable points belonging to the ellipse H (1), the symbiotic ellipse HΣ (37), the circle Φ1
(13) and Monge’s circle (56); such property accounts for their name.

Theorem 3.1. [The 1st bridge-circle Theorem] [Fig. 3] Let the following six points be taken:
(i) E (11) and I (12) [where the normal to the ellipse H at P meets the circle Φ1 (13)], (ii)
M1, M2 (57) [where the tangent to the ellipse H at P meets Monge’s circle]; (iii) H1 and
H2 (55) [where the tangents drawn to the ellipse H from E (11) touch H]; such points are
concyclic on the following circle B1:(

x− ab2 cos ε
a2 sin2 ε+ b2 cos2 ε

)2
+
(
y − a2b sin ε

a2 sin2 ε+ b2 cos2 ε

)2
= a4 sin2 ε+ b4 cos2 ε

a2 sin2 ε+ b2 cos2 ε
(58)

Proof. The Theorem 3.1 can be proved by checking that the coordinates of the afore men-
tioned six points fulfill (58); for this purpose, we shall begin by rewriting (58) as follows:

x2(asbc)− 2xab2 cos ε+ y2(asbc)− 2ya2b sin ε = (a2 − b2)(a2 sin2 ε− b2 cos2 ε) (59)



M. Ternullo: The Ellipse, Monge’s Circle and Other Circles 169

Replacing either the E (11) or I (12) coordinates in (59), we get two relationships, sum-
marized as follows:

(a± b)(a2 sin2 ε+ b2 cos2 ε)− 2ab(±a sin2 ε+ b cos2 ε) = (a∓ b)(a2 sin2 ε− b2 cos2 ε)

One can easily see that both expressions are identically fulfilled. Now, replacing either
the M1 or M2 (57) coordinates in (59), we get two relationships which, after clearing and
simplifying, can be written as follows:

−a2b4 sin2 ε cos2 ε+ a2(a4 sin2 ε+ b4 cos2 ε) sin2 ε− a4b2 sin2 ε cos2 ε

+b2(a4 sin2 ε+ b4 cos2 ε) cos2 ε− a6 sin4 ε− b6 cos4 ε = 0

this expression is an identity, too.
The replacement of the H1 coordinates (55) in (59) results in an expression where radicals

are easily seen to form a vanishing set; the remnant terms can be written as follows:

a4b4 + (a4 sin2 ε+ b4 cos2 ε)(a4 sin2 ε+ b4 cos2 ε) + 2ab(a2 sin2 ε+ b2 cos2 ε)(a4 sin2 ε+ b4 cos2 ε)
−2a3b3(a+ b)(b cos2 ε+ a sin2 ε) = (a2 − b2)(a4 sin4 ε− b4 cos4 ε)(a+ b)2

Even this expression, as one can see by trivial manipulations, is an identity.

If we wish to invoke the Theorem 3.1 for the symbiotic ellipse HΣ, we should previously
determine the homologous points to the ones (M1, M2 (57)) the tangent to H at P shares
with Monge’s orthoptic circle (56). Remembering that Monge’s circle is the locus of points
from which the ellipse can be seen under a right angle and that the tangent to HΣ at its point
O is the y-axis, we conclude that the points we are looking for are the y-axis points from
which a tangent to HΣ orthogonal to the y-axis can be drawn. Easy calculations allow us to
determine such points – hereinafter denoted Y1, Y2 – as follows:

Yi
(
0, b sin ε±

√
a2 − b2 cos2 ε

)
(i = 1, 2) (60)

Therefore, we can state the following:

Theorem 3.2. [The 2nd bridge-circle Theorem] [Fig. 3] Let the following six points be taken:
(i) the foci F1, F2 of the ellipse H (1); (ii) the points Y1, Y2 (60) [where the tangent to the
ellipse HΣ at O (x = 0) meets HΣ Monge’s circle]; (iii) the points Σ1, Σ2 (39) [where the
tangents t1, t2 (38) drawn to the symbiotic ellipse HΣ from the focus F1 of H touch HΣ].

Such six points are concyclic on the following circle B2:

x2 + (y − b sin ε)2 = b2 sin2 ε+ c2 (61)

Now, let us take (Fig. 4) the intersections of the tangent and normal to H at P with
Φ1 and Monge’s circle, respectively; the formers are the well known points T131 (14) and T112
(15); the latters, – we denote M3, M4 – are synthetically represented as follows:

Mi

ac2 sin2 ε± b
√

(asbc)2 + a2b2

(asbc) cos ε;
±a
√

(asbc)2 + a2b2 − bc2 cos2 ε

(asbc) sin ε
 (i = 3, 4)

(62)
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Figure 4: The tangent to the ellipse H at P meet the circle Φ1 [red] at T131 and T112; the
normal to H at P meets Monge’s circle [blue] at M3, M4. The circle B3 [green]
passes through T131, T112, M3 and M4 (Theorem 3.3).

Theorem 3.3. [The 3rd bridge-circle Theorem] [Fig. 4]. Let the following four points be
taken: (i) T131 (14), T112 (15) [where the tangent (5) to the ellipse H at P meets the circle Φ1
(13) [red] and (ii) M3, M4 (62) [where the normal (8) to the ellipse H at P meets Monge’s
circle (blue)]; such points are concyclic on the following circle B3 [green]:(

x+ ab2 cos ε
(asbc)

)2
+
(
y − b3 cos2 ε

(asbc) sin ε

)2
= (asbc)2 + a2b2 sin2 ε

(asbc) sin2 ε
(63)

The Theorem (3.3) can be demonstrated by showing that the coordinates of the four
points T131 (14), T112 (15), M3, M4 (62) fulfil the circle B3 equation (63).

Another Theorem, omitted for the sake of brevity, could be stated invoking the Theo-
rem 3.3 for the symbiotic ellipse HΣ.

The Theorems 3.4 and 3.5 describe further relationships linking the bridge circles with
the ellipse H.

Theorem 3.4. The centers of the circles B1 (58) and B2 (61) lie on the circle constructed
on the segment OP as diameter, whose equation follows:(

x− a cos ε
2

)2
+
(
y − b sin ε

2

)2
=
(
a cos ε

2

)2
+
(
b sin ε

2

)2
(64)

The Theorem 3.4 can be proved by checking that the coordinates of the mentioned points
fulfill the equation (64); analogously, one can do for the next statement (Theorem 3.5):
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Figure 5: The same as Fig. 3 (smaller and simplified), with the addition of the symm-normal
line n′ [black], the points EΓ and IΓ, the circle Ω [red], the sides [blue] of the
complete quadrangle M1IM2E and the line [blue] joining the diagonal points D1
and D2.

Theorem 3.5. The centers of the circles B1 (58) and B3 (63) lie on the circle constructed
on the segment OTy as diameter, whose equation follows:

x2 +
(
y − b

2 sin ε

)2
=
(

b

2 sin ε

)2
(65)

In 2007, Ternullo [4] introduced the following line through P , denoted symm-normal:

y = −xa
b

tan ε+ a2 + b2

b
sin ε; (66)

In 2009, the same author [5] introduced the following circle Ω:
(
x− a3

(a2 − b2) cos ε

)2
+
(
y + b3

(a2 − b2) sin ε

)2
= a6 sin2 ε+ b6 cos2 ε

(a2 − b2)2 sin2 ε cos2 ε
− (a2 + b2) (67)

The circle Ω (67) passes ([5], Theorem 2.11) through the points E (11) and I (12) (where
the normal to H at P meets the eccentric (3) and symm-eccentric line of P (4), respectively),
as well as through the following points EΓ, IΓ:

EΓ
(
a2 + b2

a− b
cos ε; −a

2 + b2

a− b
sin ε

)
; IΓ

(
a2 + b2

a+ b
cos ε; a

2 + b2

a+ b
sin ε

)
where the symm-normal (66) meets the symm-ecc (4) and the eccentric line (3), respectively.



172 M. Ternullo: The Ellipse, Monge’s Circle and Other Circles

The center CΩ of the circle Ω is the pole of the normal (8) to H at P wrt the ellipse H
([5], Theorem 2.2); therefore, the normal contains the poles – wrt the ellipse H – of all lines
through CΩ. On the other hand, we have determined the points H1, H2 where the tangents
drawn to the ellipse H from E touch H; the line linking H1 and H2 is, therefore, the polar of
E wrt the ellipse H. Remembering that E belongs to the normal and that, accordingly, the
polar of E passes through CΩ, we conclude as follows:

Theorem 3.6. The points H1, H2 (55), where the tangents drawn to the ellipse H (1) from
E (11) touch H, are collinear with the center CΩ of the circle Ω (67).

Theorem 3.7. The tangents drawn to the circle B1 (58) at E and I concur in CΩ

Proof. To demonstrate the Theorem 3.7, let us begin by writing the matrix of coefficients of
the circle B1 equation (58) as follows:

∣∣∣∣∣∣∣
(asbc) 0 −ab2 cos ε

0 (asbc) −a2b sin ε
−ab2 cos ε −a2b sin ε a2b2 − a4 sin2 ε− b4 cos2 ε

∣∣∣∣∣∣∣
Afterwards, we can write the equation of the polar of CΩ w.r.t the circle B1; few manipu-

lations are enough to check that such polar coincides with the normal (8) to H at P . On the
other hand, we know that (i) the normal to H at P contains the points E and I and (ii) the
normal shares such points with the circle B1 (58); therefore, we conclude that the tangents
drawn to the circle B1 from the point CΩ touch B1 at E and I.

Remembering that the circle Ω shares the points E and I with the circle B1, the afore
mentioned conclusion – namely, that the tangents drawn to the circle B1 from the center CΩ
of the circle Ω touch B1 at E and I – implies that the circles B1 and Ω are orthogonal. On the
other hand, let us consider the complete quadrangle determined by the points M1, I, M2, E;
the special symmetry with which such points are disposed – namely, M1, M2 on a diameter
of B1 and E, I on a chord orthogonal to M1M2 – implies that, if the opposite sides of the
quadrangle meet in points we denote D1 and D2, then the circle constructed taking the
segment D1D2 as diameter orthogonally meets the circle B1 at E and I. Conversely, as the
circle Ω orthogonally meets the circle B1 at E and I (and, of course, there is precisely one
circle which ortogonally meets a given circle at two given points), we conclude that there is a
diameter of the circle Ω joining the points D1 and D2 where the opposite sides M1E, M2I and
M1I, M2E of the quadrangle meet. Obvious reasons of symmetry require that such diameter
parallels the line EI (namely, the normal to H at P ). The following statement represents the
conclusion of this reasoning:

Theorem 3.8. Taken the complete quadrangle M1IM2E, its diagonal points D1, D2 – rep-
resenting the intersections of the opposite sides M1E, M2I and M1I, M2E – belong to the
circle Ω, where they are diametrically opposed on a line paralleling the normal to H at P .

It is worth mentioning that the point CΩ is the pole of a unique line – that is, the normal
to H at P – under the polarity relationships defined by two conics, namely the ellipse H and
the circle B1.
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