Journal for Geometry and Graphics Volume 24 (2020), No. 2, 159–173

# The Ellipse, Monge's Circle and Other Circles

Maurizio Ternullo

INAF - Osservatorio Astrofisico di Catania v. S. Sofia 78. I-95125 Catania, Italia mternullo@oact.inaf.it

Abstract. New developments of the author's research project on the geometry of conics are presented. For any general point P taken on a given ellipse H, some triplets of collinear, peculiar points are described (Theorem 2.1); several angles sharing the same vertex are shown to share the same line as bisector, too (Theorems 2.3 through 2.7). Three new circles (the bridge-circles Theorems 3.1, 3.2 and 3.3) linking points belonging to the ellipse H, Monge's circle and other conics introduced by the author (the symbiotic ellipse  $H_{\Sigma}$  and the circle  $\Phi_1$ ) are described. Unsuspected relationships linking the newly defined objects with a circle previously introduced by the author (denoted *circle*  $\Omega$ ) are described.

*Key Words:* ellipse, collinear points, angle bisector, concyclic points, symbiotic conics, Monge's circle, bridge-circle

MSC 2020: 51M04

### 1 Introduction

New developments of the author's research project [4–8] on the geometry of conics are presented. In an orthogonal reference frame (Figure 1), let H be the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; \quad (a > b), \tag{1}$$

whose foci are

$$F_1(-c,0); \quad F_2(c,0); \quad \left(c = \sqrt{a^2 - b^2}\right)$$
 (2)

Throughout this paper, the ellipse general point – that is, any point different from the vertexes – is denoted by  $P(a \cos \varepsilon; b \sin \varepsilon)$  or simply P; to avoid the exceeding verbal complexity, I will formulate any statement on the basis of the assumption that P lies in the 1st quadrant (x > 0, y > 0). For the reader's convenience, some geometrical objects frequently referred to throughout this paper are listed and previous results are summarized:

1. The ellipse diameters with slope  $m_e = \tan \varepsilon$  and  $m_{e'} = -\tan \varepsilon$ , introduced by Ternullo [4] and named *eccentric line* (3) and *symm-eccentric line* (4), respectively:

$$y = x \tan \varepsilon$$
 (3)  $y = -x \tan \varepsilon$  (4)

2. The tangent t (5) to the ellipse H at P:

$$y = -x\frac{b}{a}\cot\varepsilon + \frac{b}{\sin\varepsilon}$$
(5)

3. The x- and y-intercepts ( $T_x$  (6) and  $T_y$  (7), respectively) of the tangent (5) to the ellipse H at P:

$$T_x\left(\frac{a}{\cos\varepsilon}; 0\right)$$
 (6)  $T_y\left(0; \frac{b}{\sin\varepsilon}\right)$  (7)

4. The normal n (8) to the ellipse H at P:

$$y = x\frac{a}{b}\tan\varepsilon - \frac{c^2}{b}\sin\varepsilon$$
(8)

5. The x- and y-intercepts  $(N_x (9) \text{ and } N_y (10), \text{ respectively})$  of the normal n (8) to the ellipse H at P:

$$N_x\left(\frac{c^2}{a}\cos\varepsilon;\ 0\right)$$
 (9)  $N_y\left(0;\ -\frac{c^2}{b}\sin\varepsilon\right)$  (10)

6. The following points E (11) and I (12), where the normal (8) meets the eccentric (3) and the symm-eccentric (4) line of P, respectively:<sup>1</sup>

$$E((a+b)\cos\varepsilon; (a+b)\sin\varepsilon) \qquad (11) \qquad I((a-b)\cos\varepsilon; -(a-b)\sin\varepsilon) \qquad (12)$$

7. The following circle  $\Phi_1$ , whose center is the *y*-intercept  $T_y$  (7) of the tangent (5):

$$x^{2} + \left(y - \frac{b}{\sin\varepsilon}\right)^{2} = c^{2} + \frac{b^{2}}{\sin^{2}\varepsilon}$$
(13)

The circle  $\Phi_1$  passes through the foci (by definition), as well as through the points E (11) and I (12) ([7], Theorem 2.2) and the following  $T_{131}$  (14) and  $T_{112}$  (15) ([8], Theorem 1), where the tangent t (5) drawn to the ellipse H (1) at P meets the tangents drawn at the vertexes  $V_3(-a, 0)$  and  $V_1(a, 0)$  of the same ellipse, respectively:

$$T_{131}\left(-a; \frac{b(1+\cos\varepsilon)}{\sin\varepsilon}\right) \qquad (14) \qquad T_{112}\left(a; \frac{b(1-\cos\varepsilon)}{\sin\varepsilon}\right), \qquad (15)$$

8. The following circle  $\Phi_2$ , whose center is the *y*-intercept  $N_y$  (10) of the normal (8):

$$x^{2} + \left(y + \frac{c^{2}}{b}\sin\varepsilon\right)^{2} = c^{2} + \left(\frac{c^{2}}{b}\sin\varepsilon\right)^{2}.$$
 (16)

<sup>&</sup>lt;sup>1</sup>The first mention of the point E (11) known to the author can be found in an exercise of Salmon ([3], Chapter XIII, Article 231, p. 221); Salmon is aware that the locus of such point is a circle concentric with the ellipse. Afterwards, such circle has been studied by A. Barlotti [1] and Ternullo ([4], Theorem 1).

The circle  $\Phi_2$  passes through through the foci; the normal (8) meets  $\Phi_2$  at the following points  $N_{21}$  and  $N_{22}$ :

$$N_{22}\left(-c\cos\varepsilon;\frac{c(a+c)\sin\varepsilon}{-b}\right) \qquad (17) \qquad \qquad N_{21}\left(c\cos\varepsilon;\frac{c(a-c)\sin\varepsilon}{b}\right) \qquad (18)$$

9. The following circle  $\Phi_3$  whose center is the x-intercept  $T_x$  (6) of the tangent (5):

$$\left(x - \frac{a}{\cos\varepsilon}\right)^2 + y^2 = \frac{a^2 \sin^2\varepsilon + b^2 \cos^2\varepsilon}{\cos^2\varepsilon}.$$
(19)

The circle  $\Phi_3$  passes through the points E(11) and I(12) (by definition), as well as through the following  $T_{321}$  and  $T_{342}$ , where the tangent t(5) drawn to the ellipse H(1) at P meets the tangents to the same ellipse at its vertexes  $V_2(0, b)$  and  $V_4(0, -b)$ , respectively ([8], Theorem 1):

$$T_{321}\left(\frac{a(1-\sin\varepsilon)}{\cos\varepsilon}; b\right)$$
(20) 
$$T_{342}\left(\frac{a(1+\sin\varepsilon)}{\cos\varepsilon}; -b\right)$$
(21)

The circles  $\Phi_1$ ,  $\Phi_2$  and  $\Phi_3$  taken pairwise are mutually orthogonal ([7], Theorem 2.1).

The vertexes of the ellipse H(1) are denoted by  $V_1(a, 0)$ ,  $V_2(0, b)$ ,  $V_3(-a, 0)$  and  $V_4(0, -b)$  or simply  $V_1, \ldots V_4$ . The points where the circle  $\Phi_i$  (i = 1, 3) meets the tangent drawn at the ellipse vertex  $V_j$  (j = 1, 4) are denoted by  $T_{ij\lambda}$   $(\lambda = 1, 2)$ .

## **2** Some Peculiar Points on the Circles $\Phi_1$ , $\Phi_2$ and $\Phi_3$

Let the points lying on the circles  $\Phi_i$  (i = 1, 3) at maximal and minimal distance to the H center O (the  $\Phi_i$  distal and proximal points), be denoted by  $\Phi_{id}$  and  $\Phi_{ip}$ , respectively. Using the following, compact notation

$$(asbc) = a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon \tag{22}$$

such points are represented as follows:

$$\Phi_{1d}\left(0; \frac{b + \sqrt{(asbc)}}{\sin\varepsilon}\right) \tag{23}$$

$$\Phi_{1p}\left(0; \frac{b - \sqrt{(asbc)}}{\sin\varepsilon}\right) \tag{24}$$

$$\Phi_{2d}\left(0; -c\frac{c\sin\varepsilon + \sqrt{(asbc)}}{b}\right) \qquad (25) \qquad \Phi_{2p}\left(0; c\frac{-c\sin\varepsilon + \sqrt{(asbc)}}{b}\right) \qquad (26)$$

$$\Phi_{3d}\left(\frac{a+\sqrt{(asbc)}}{\cos\varepsilon};\,0\right) \qquad (27) \qquad \Phi_{3p}\left(\frac{a-\sqrt{(asbc)}}{\cos\varepsilon};\,0\right) \qquad (28)$$

Let the lines joining the focus  $F_1$  with the distal and proximal points of the circle  $\Phi_1$  [ $\Phi_{1d}$ (23) and  $\Phi_{1p}$  (24), respectively] be drawn; such lines  $F_1\Phi_{1d}$  and  $F_1\Phi_{1p}$  meet the circle  $\Phi_2$  in the following points  $\Phi_{2l}$  and  $\Phi_{2r}$ , respectively:



Figure 1: For a general P taken on the ellipse, the tangent t and normal n [blue], the eccentric line e and symm-eccentric line e' [magenta], the circles  $\Phi_1$  and  $\Phi_2$  [red], the points  $E, I, \Phi_{id}, \Phi_{ip}, \Phi_{il}, \Phi_{ir}$  (i = 1, 2) are shown.

$$\Phi_{2l}\left(-\frac{c}{b}\sqrt{(asbc)}; -\frac{c^2}{b}\sin\varepsilon\right) \qquad (29) \qquad \Phi_{2r}\left(\frac{c}{b}\sqrt{(asbc)}; -\frac{c^2}{b}\sin\varepsilon\right) \qquad (30)$$

One can easily check that  $\Phi_{2l}$  (29) and  $\Phi_{2r}$  (30) are also the points where the lines  $x = \pm \frac{c}{b} \sqrt{(asbc)}$  touch the circle  $\Phi_2$ ; therefore, they are the  $\Phi_2$  points lying at the maximal distance to the *y*-axis. Quite similarly, the lines  $F_1\Phi_{2d}$  and  $F_1\Phi_{2p}$  meet the circle  $\Phi_1$  in the following points  $\Phi_{1l}$  and  $\Phi_{1r}$ , lying at the maximal distance to the *y*-axis, respectively:

$$\Phi_{1l}\left(-\frac{\sqrt{(asbc)}}{\sin\varepsilon}; \frac{b}{\sin\varepsilon}\right)$$
(31) 
$$\Phi_{1r}\left(\frac{\sqrt{(asbc)}}{\sin\varepsilon}; \frac{b}{\sin\varepsilon}\right)$$
(32)

Accordingly, the following holds:

**Theorem 2.1.** The focus  $F_1$  is collinear with the distal point  $\Phi_{1d}$  (23) of the circle  $\Phi_1$  and the point  $\Phi_{2l}$  (29) of the circle  $\Phi_2$ , as well as with the proximal point  $\Phi_{1p}$  (24) of  $\Phi_1$  and the point  $\Phi_{2r}$  (30) of  $\Phi_2$  on the following lines (33) and (34), respectively:

$$y = \frac{b + \sqrt{(asbc)}}{c\sin\varepsilon}(x+c) \qquad (33) \qquad \qquad y = \frac{b - \sqrt{(asbc)}}{c\sin\varepsilon}(x+c) \qquad (34)$$

The focus  $F_1$  is collinear with the proximal point  $\Phi_{2p}$  (26) of the circle  $\Phi_2$  and the point  $\Phi_{1r}$  (32) of the circle  $\Phi_1$  as well as with the distal point  $\Phi_{2d}$  (25) of  $\Phi_2$  and the point  $\Phi_{1l}$  (31) of  $\Phi_1$  on the following lines (35) and (36), respectively:

$$y = -\frac{c\sin\varepsilon + \sqrt{(asbc)}}{b}(x+c) \qquad (35) \qquad \qquad y = \frac{-c\sin\varepsilon + \sqrt{(asbc)}}{b}(x+c) \qquad (36)$$

Of course,  $\angle \Phi_{1d}F_1\Phi_{1p} = \angle \Phi_{2p}F_1\Phi_{2d} = \pi/2$ , because both angles are inscribed in semicircles. On the other hand, the lines  $F_1\Phi_{2p}\Phi_{1r}$  (35) and  $F_1\Phi_{1p}\Phi_{2r}$  (34) bisect the angles  $\angle \Phi_{1d}F_1\Phi_{1p}$  and  $\angle \Phi_{2p}F_1\Phi_{2d}$ , because pass through the midpoints ( $\Phi_{1r}$  and  $\Phi_{2r}$ ) of the arcs  $\Phi_{1d}\Phi_{1p}$  and  $\Phi_{2p}\Phi_{2d}$ , respectively. Accordingly, we can state the following:

**Theorem 2.2.** For any P taken on the ellipse H, the following identities hold:

$$\measuredangle \Phi_{1d} F_i \Phi_{2p} = \measuredangle \Phi_{2p} F_i \Phi_{1p} = \measuredangle \Phi_{1p} F_i \Phi_{2d} = \pi/4 \measuredangle \Phi_{1d} F_i \Phi_{2d} = 3\pi/4; \quad (i = 1, 2)$$

In 2016, Ternullo [7] introduced the symbiotic conics (Figure 2): taken a point P on the ellipse H (1), the symbiotic conics of the ellipse H about P are the ellipse  $H_{\Sigma}$  and the hyperbola  $Y_{\Sigma}$  whose center is P and whose axes are the tangent and normal to H at P; moreover, both  $H_{\Sigma}$  and  $Y_{\Sigma}$  pass through the center O of H, where admit the axes of symmetry of H as tangent and normal. The equation of the ellipse  $H_{\Sigma}$  follows:

$$x^{2} \frac{a^{2} - b^{2} \cos^{2} \varepsilon}{a^{2} \cos^{2} \varepsilon} - 2xy \frac{b}{a} \tan \varepsilon - 2x \frac{c^{2}}{a \cos \varepsilon} + y^{2} = 0$$
(37)

The symbiotic conics  $H_{\Sigma}$  and  $Y_{\Sigma}$  are confocal; their foci are the points E (11) and I(12) ([7], Theorem 3.1). The symbiotic ellipse of  $H_{\Sigma}$  about O is the ellipse H (1). For any object  $\Omega$  (point, line, angle etc.) playing a certain role w.r.t. the ellipse H, there exists a homologous object  $\Omega'$  playing the same role w.r.t. the ellipse  $H_{\Sigma}$ . Accordingly, from any statement involving a special set of objects, we may generate a twin statement involving the set of homologous objects. In many cases [7, 8], the new statements, far from being trivial duplicates of the original ones, reveal new, worth mentioning facts. In Table 1 some couples of objects homologous to each other are listed.

Let the symbiotic ellipse  $H_{\Sigma}$  (37) of the ellipse H (1) about the point P be constructed. Both tangents drawn to  $H_{\Sigma}$  from the focus  $F_1$  are represented in the following, compact form (the notation  $R = a^2 - b^2 \cos^2 \varepsilon + 2ac \cos \varepsilon$  is used):

$$y = \frac{b\sin\varepsilon \pm \sqrt{R}}{c + 2a\cos\varepsilon} (x + c) \tag{38}$$

The lines (38) touch the ellipse  $H_{\Sigma}$  in the points  $\Sigma_1$ ,  $\Sigma_2$  represented as follows:

$$\Sigma_i \left( \frac{\left(R \pm b \sin \varepsilon \sqrt{R}\right) a c \cos \varepsilon}{(c + a \cos \varepsilon) R \mp a b \sin \varepsilon \cos \varepsilon \sqrt{R}}; \frac{R\left(b \sin \varepsilon \pm \sqrt{R}\right) c}{(c + a \cos \varepsilon) R \mp a b \sin \varepsilon \cos \varepsilon \sqrt{R}} \right) (i = 1, 2)$$
(39)

The lines  $F_1E$  and  $F_1I$ , linking the focus  $F_1(-c, 0)$  with the points E (11) and I (12) are represented by the following (40) and (41) equations, respectively:

$$y = \frac{(a+b)\sin\varepsilon}{(a+b)\cos\varepsilon + c}(x+c); \quad (40) \qquad \qquad y = -\frac{(a-b)\sin\varepsilon}{(a-b)\cos\varepsilon + c}(x+c) \quad (41)$$

| Objects defined w.r.t the ellipse $H$                       | Homologous objects                                     |
|-------------------------------------------------------------|--------------------------------------------------------|
| P: point of $H$                                             | $O$ : point of $H_{\Sigma}$                            |
| $\vec{x}$ (x-axis): major axis of H                         | n: normal to H at P, major axis of $H_{\Sigma}$        |
| $\vec{y}$ (y-axis): minor axis of H                         | t: tangent to H at P, minor axis of $H_{\Sigma}$       |
| e: ecc. line $OE$ of $P$ (3)                                | ecc. line $PF_1$ of $O$                                |
| e': symm-ecc. line $OI$ of $P$ (4)                          | symm-ecc. line $PF_2$ of $O$                           |
| n: normal to $H$ at $P(8)$                                  | x-axis: normal to $H_{\Sigma}$ at O                    |
| t: tangent to $H$ at $P(5)$                                 | y-axis; tangent to $H_{\Sigma}$ at O                   |
| $E: e \cap n \ (11)$                                        | $F_1: PF_1 \cap \vec{x}$                               |
| $I: e' \cap n \ (12)$                                       | $F_2: PF_2 \cap \vec{x}$                               |
| $F_1, F_2$ : foci of $H$                                    | $E, I:$ foci of $H_{\Sigma}$                           |
| $T_y: t \cap \vec{y}$ (7)                                   | $T_y: \ \vec{y} \cap t$                                |
| $N_y: n \cap \vec{y} \ (10)$                                | $T_x: \vec{x} \cap t$                                  |
| $T_x: t \cap \vec{x}$ (6)                                   | $N_y: \vec{y} \cap n$                                  |
| $N_x: n \cap \vec{x} (9)$                                   | $N_x$ : $\vec{x} \cap n$                               |
| Circle $\Phi_1$ (about $T_y$ , through $F_1$ , $F_2$ ) (13) | Circle $\Phi_1$ (about $T_y$ , through $E, I$ )        |
| Circle $\Phi_2$ (about $N_y$ , through $F_1$ , $F_2$ ) (16) | Circle $\Phi_3$ (about $T_x$ , through $E, I$ )        |
| Circle $\Phi_3$ (about $T_x$ , through $E, I$ ) (19)        | Circle $\Phi_2$ (about $N_y$ , through $F_1$ , $F_2$ ) |
| $T_{131}, T_{112}: t \cap \Phi_1$                           | $\Phi_{1d}, \ \Phi_{1p}: \ \vec{y} \cap \Phi_1$        |
| $T_{321}, T_{342}: t \cap \Phi_3$                           | $\Phi_{2p}, \ \Phi_{2d}: \ ec{y} \cap \Phi_2$          |
| $N_{21}, N_{22}: n \cap \Phi_2$                             | $\Phi_{3p}, \ \Phi_{3d}: \ ec{x} \cap \Phi_3$          |
| line $F_1 N_{21} T_{112}$ (43)                              | line $E\Phi_{3p}\Phi_{1p}$                             |
| line $T_{131}F_1N_{22}$ (44)                                | line $\Phi_{1d} E \Phi_{3d}$                           |
| line $F_2 N_{21} T_{131}$                                   | line $I\Phi_{3p}\Phi_{1d}$                             |
| line $T_{112}F_2N_{22}$                                     | line $\Phi_{1p}I\Phi_{3d}$                             |

Table 1: Couples of homologous objects

The collinearity of the triplets  $F_1N_{21}T_{112}$ ,  $T_{131}F_1N_{22}$ ,  $F_2N_{21}T_{131}$ ,  $T_{112}F_2N_{22}$ ,  $E\Phi_{3p}\Phi_{1p}$ ,  $\Phi_{1d}E\Phi_{3d}$ ,  $I\Phi_{3p}\Phi_{1d}$  and  $\Phi_{1p}I\Phi_{3d}$  has been proved by Ternullo ([8], Theorems 2.10 and 2.13).

The focal radius  $F_1P$  is:

$$y = \frac{b\sin\varepsilon}{a\cos\varepsilon + c}(x+c) \tag{42}$$

Finally, we should remember that the focus  $F_1(-c, 0)$  is collinear with the points  $N_{21}$  (18) and  $T_{112}$  (15), as well as with the points  $T_{131}$  (14) and  $N_{22}$  (17), on the following orthogonal lines  $F_1N_{21}T_{112}$  (43) and  $T_{131}F_1N_{22}$  (44), respectively ([8], Theorem 2.10):

$$y = \frac{(a-c)\sin\varepsilon}{b(1+\cos\varepsilon)}(x+c) \qquad (43) \qquad \qquad y = -\frac{b(1+\cos\varepsilon)}{(a-c)\sin\varepsilon}(x+c) \qquad (44)$$

Bearing these facts in mind, we can state the following:

**Theorem 2.3.** [Fig. 2] The line  $F_1N_{21}T_{112}$  (43) [black, dashed] bisects the following angles sharing the focus  $F_1$  as vertex: (i)  $\angle PF_1F_2$  [blue], (ii)  $\angle EF_1I$  [red], (iii)  $\angle \Sigma_1F_1\Sigma_2$  [green] and (iv)  $\angle T_{131}F_1N_{22}$  [red]. *Proof.* The Theorem 2.3 is equivalent to the following four statements:

(*i*) 
$$\measuredangle PF_1F_2 = 2\measuredangle T_{112}F_1F_2;$$
 (*ii*)  $\measuredangle EF_1T_{112} = \measuredangle T_{112}F_1I;$   
(*iii*)  $\measuredangle \Sigma_1F_1T_{112} = \measuredangle T_{112}F_1\Sigma_2;$  (*iv*)  $\measuredangle T_{131}F_1T_{112} = \measuredangle T_{112}F_1N_{22}.$ 

Taking the slopes of the lines  $F_1N_{21}T_{112}$  (43) and  $F_1P$  (42) into account, we may express the 1st statement as follows:

$$\frac{b\sin\varepsilon}{(a\cos\varepsilon+c)} = \tan\left(2\arctan\frac{(a-c)\sin\varepsilon}{b(1+\cos\varepsilon)}\right)$$
(45)

Indeed, if we rewrite the r.h.s. (right hand side) of (45) as follows:

$$\frac{2\frac{(a-c)\sin\varepsilon}{b(1+\cos\varepsilon)}}{1-\left(\frac{(a-c)\sin\varepsilon}{b(1+\cos\varepsilon)}\right)^2} = \frac{2(a-c)b(1+\cos\varepsilon)\sin\varepsilon}{(a+c)(a-c)(1+\cos\varepsilon)^2 - (a-c)^2(1+\cos\varepsilon)(1-\cos\varepsilon)}$$

one can easily check that (45) is an identity.

As regards the item (*ii*), observe that (*a*) the tangent to the ellipse H at P meets the circle  $\Phi_1$  in  $T_{112}$  ([8], Theorem 1) and (*b*) the points E and I symmetrically lie about such tangent ([4], Theorem 2) on the circle  $\Phi_1$  ([7], Theorem 2.3); it follows that the arcs  $ET_{112}$  and  $T_{112}I$  are congruent; this conclusion implies, in turn, that  $\angle EF_1T_{112}$  and  $\angle T_{112}F_1I$  are congruent because are inscribed in the circle  $\Phi_1$  and are subtended by congruent arcs.

As regards the item (*iii*), let us rewrite the thesis  $\angle \Sigma_1 F_1 T_{112} = \angle T_{112} F_1 \Sigma_2$  as follows:  $\angle \Sigma_1 F_1 P + \angle P F_1 T_{112} = \angle T_{112} F_1 F_2 + \angle F_2 F_1 \Sigma_2$ ; accordingly, by virtue of the item (*i*) of the present Theorem 2.3 (namely,  $\angle P F_1 T_{112} = \angle T_{112} F_1 F_2$ ), to prove the thesis it is enough to prove:  $\angle \Sigma_1 F_1 P = \angle F_2 F_1 \Sigma_2$ ; remembering the equations (38) representing the tangents drawn to the ellipse  $H_{\Sigma}$  from the focus  $F_1(-c, 0)$ , we can write:

$$\mathscr{L}\Sigma_1 F_1 P = \arctan \frac{\frac{b\sin\varepsilon + \sqrt{R}}{c+2a\cos\varepsilon} - \frac{b\sin\varepsilon}{a\cos\varepsilon + c}}{1 + \frac{b\sin\varepsilon + \sqrt{R}}{c+2a\cos\varepsilon} \frac{b\sin\varepsilon}{a\cos\varepsilon + c}}; \quad (46) \qquad \qquad \mathscr{L}F_2 F_1 \Sigma_2 = \arctan \left| \frac{b\sin\varepsilon - \sqrt{R}}{c+2a\cos\varepsilon} \right| \tag{47}$$

Our thesis amounts to state that the r.h.s.'s of (46) and (47) are equal and to write, therefore, the following:

$$\frac{(b\sin\varepsilon + \sqrt{R})(a\cos\varepsilon + c) - b\sin\varepsilon(c + 2a\cos\varepsilon)}{(c + 2a\cos\varepsilon)(a\cos\varepsilon + c) + (b\sin\varepsilon + \sqrt{R})b\sin\varepsilon} = \frac{\sqrt{R} - b\sin\varepsilon}{c + 2a\cos\varepsilon}$$
(48)

Indeed, (48) can be written, after clearing and simplifying, as follows:

$$2(c + a\cos\varepsilon)(c + 2a\cos\varepsilon) = (c + 2a\cos\varepsilon)^2 + a^2 - b^2\cos^2\varepsilon + 2a\cos\varepsilon - b^2\sin^2\varepsilon$$

which is an identity.

As regards the item (iv) ( $\angle T_{131}F_1T_{112} = \angle T_{112}F_1N_{22}$ ), it is enough to remember the afore mentioned result ([8], Theorem 2.10) ensuring us that the line  $F_1N_{21}T_{112}$  (43) orthogonally meets  $T_{131}F_1N_{22}$  (44). The same Theorem ensures us that the line  $T_{131}F_1N_{22}$  (44) bisects the external angles associated with  $\angle PF_1F_2$ ,  $\angle EF_1I$  and  $\angle \Sigma_1F_1\Sigma_2$ .

Before stating the next result, let us remember that the focus  $F_2(c, 0)$  is collinear with the points  $T_{131}$  (14) and  $N_{21}$  (18), as well as with the points  $T_{112}$  (15) and  $N_{22}$  (17) on the following orthogonal lines  $F_2N_{21}T_{131}$  (49) and  $T_{112}F_2N_{22}$  (50), respectively ([8], Theorem 2.10):



Figure 2: The ellipse H, its point P, the symbiotic ellipse  $H_{\Sigma}$  [blue], the circle  $\Phi_1$  [red], the tangents [green] from  $F_1$  to  $H_{\Sigma}$ , from E to H and from  $T_{131}$  to H, the lines  $F_1E$ ,  $F_1I$ ,  $F_2E$ ,  $F_2I$  [red],  $F_1P$ ,  $F_1F_2$ ,  $F_2P$  [blue], the eccentric line OE [magenta], the normal EPI [blue] the lines  $T_{131}F_1$  [red] and  $T_{131}F_2$  [black, dashed],  $T_{131}N_y$ ,  $T_{131}O$  [blue]; dashed lines are bisectors.

$$y = -\frac{b(1+\cos\varepsilon)}{(a+c)\sin\varepsilon}$$
(49)  $y = \frac{b(1-\cos\varepsilon)}{(a-c)\sin\varepsilon}(x-c)$ (50)

**Theorem 2.4.** [Fig. 2] The line  $F_2N_{21}T_{131}$  (49) [black, dashed] bisects the following angles sharing the focus  $F_2$  as vertex: (i)  $\angle F_1F_2P$  [blue], (ii)  $\angle IF_2E$  [red], (iii)  $\angle N_{22}F_2T_{112}$  [red].

Proof. As regards the item (i), observe that, by virtue of a well known Theorem, the normal to the ellipse H at P bisects the angle  $\angle F_1 P F_2$ , formed by the focal radii of P; on the other hand, we know (Theorem 2.3, item i) that the line  $F_1 N_{21} T_{112}$  bisects  $\angle P F_1 F_2$ ; since these two bisectors – namely, the normal and the line  $F_1 N_{21} T_{112}$  – meet in  $N_{21}$  (18), such point is the incenter of the triangle  $PF_1F_2$ ; accordingly, the bisector of the 3rd angle of such triangle, that is  $\angle F_1 F_2 P$ , passes through  $N_{21}$ , too; therefore, the line  $F_2 N_{21} T_{131}$  bisects  $\angle F_1 F_2 P$ . As regards the item (ii), the arcs  $IT_{131}$  and  $T_{131}E$  are congruent because the point  $T_{131}$  belongs to the tangent to the ellipse H at P, which is the perpendicular bisector of the segment EI ([4], Theorem 2); it follows that  $\angle IF_2T_{131} = \angle T_{131}F_2E$  because both angles are inscribed in the circle  $\Phi_1$  and are subtended by the afore mentioned, congruent arcs. As regards the item (ii), it is enough to remember ([8], Theorem 2.10) that the line  $F_2N_{21}T_{131}$  (49) orthogonally meets  $T_{112}F_2N_{22}$  (50).

Knowing the coordinates of the points  $T_{131}$  (14),  $\Phi_{1p}$  (24),  $N_y$  (10) and O(0,0), we can write the following equations of the lines  $T_{131}O$  (51),  $T_{131}\Phi_{1p}$  (52) and  $T_{131}N_y$  (53):

$$T_{131}O: \qquad y = -\frac{b(1+\cos\varepsilon)}{a\sin\varepsilon}x \tag{51}$$

M. Ternullo: The Ellipse, Monge's Circle and Other Circles 167

$$T_{131}\Phi_{1p}: \quad y = \frac{b - \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{\sin \varepsilon} - \frac{b \cos \varepsilon + \sqrt{a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon}}{a \sin \varepsilon} x \tag{52}$$

$$T_{131}N_y: \qquad y = -\frac{c^2}{b}\sin\varepsilon - \frac{a^2\sin^2\varepsilon + b^2\cos^2\varepsilon + b^2\cos\varepsilon}{ab\sin\varepsilon}x$$
(53)

**Theorem 2.5.** [Fig. 2] The line  $T_{131}\Phi_{1p}$  (52) [black, dashed] bisects the following angles sharing the point  $T_{131}$  (14) as vertex: (i)  $\angle N_y T_{131}O$  [blue], (ii)  $F_1 T_{131}F_2$  [ $F_1 T_{131}$ : red;  $T_{131}F_2$ : black, dashed line] and (iii)  $V_3 T_{131}P$  [its sides are the tangents (green) to the ellipse H at the vertex  $V_3(-a, 0)$ , and at P].

Proof. item (i): the lines  $T_{131}O$  and  $T_{131}N_y$  meet the circle  $\Phi_1$  in points symmetrically lying about the minor axis, at the  $\Delta x = ac^2 \sin^2 \varepsilon / (a^2 \sin^2 \varepsilon + b^2 (1 + \cos \varepsilon)^2)$  distance from the minor axis; accordingly, the  $\Phi_1$  arcs joining  $\Phi_{1p}$  with either intersection are congruent and, therefore, the inscribed angles  $\angle OT_{131}\Phi_{1p}$  and  $\angle \Phi_{1p}T_{131}N_y$ , subtended by these arcs, are congruent, too; the item (ii) is equivalent to:  $\angle F_1T_{131}\Phi_{1p} = \angle \Phi_{1p}T_{131}F_2$ ; indeed, such angles are inscribed in the circle  $\Phi_1$  and are subtended by the congruent arcs  $F_1\Phi_{1p}$  and  $\Phi_{1p}F_2$ , respectively; the item (iii) is equivalent to  $\angle V_3T_{131}\Phi_{1p} = \angle \Phi_{1p}T_{131}O$ ; indeed, such angles are inscribed in the circle  $\Phi_1$  and are subtended by congruent arcs.

Now, let the tangents to the ellipse H(1) be drawn from the point E; by means of the previously introduced symbol (*asbc*) (22) and the following, compact notation:

$$(a4b4) = a^4 \sin^2 \varepsilon + b^4 \cos^2 \varepsilon, \tag{54}$$

the tangency points – denoted as  $H_1$ ,  $H_2$  – can be given the following representation:

$$H_i\left(a^2 \frac{b^2 \cos\varepsilon \pm \sin\varepsilon \sqrt{(a4b4) + 2ab(asbc)}}{(a+b)(asbc)}; \ b^2 \frac{a^2 \sin\varepsilon \mp \cos\varepsilon \sqrt{(a4b4) + 2ab(asbc)}}{(a+b)(asbc)}\right)(i=1,2)$$
(55)

We may invoke the Theorems 2.3 and 2.4 for the ellipse  $H_{\Sigma}$  and its point O, so to state the following Theorems 2.6 and 2.7, respectively (any object entering the original statements has been replaced by its homologous, according to the Table I):

**Theorem 2.6.** [Fig. 2] The line  $E\Phi_{3p}\Phi_{1p}$  [black, dashed] bisects the following angles, sharing the vertex E: (i)  $\angle OEN_y$  [it is formed by the eccentric line OE [magenta] (3) of P and the normal  $EPIN_y$  (8) [blue] to the ellipse H (1) at P], (ii)  $\angle F_1EF_2$  [red], (iii)  $\angle H_1EH_2$  [green; it is formed by the tangents drawn to H from E] and (iv)  $\angle \Phi_{1d}E\Phi_{3d}$ .

**Theorem 2.7.** [Fig. 2] The line  $I\Phi_{3p}\Phi_{1d}$  [black, dashed] bisects the following angles, sharing the vertex I: (i)  $\angle OIP$  [it is the angle formed by the symm-eccentric line OI of P [magenta] (4) and the normal IP [blue] to the ellipse H at P]; (ii)  $\angle F_1IF_2$  [red].

Similar facts, we overlook for the sake of brevity, could be stated for some angles sharing as vertex the points  $T_{112}$ ,  $T_{321}$  and  $T_{342}$ .

## 3 The "Bridge" Circles

The locus of points from which the ellipse (1) can be seen under a right angle is ([2], Theo-rem 9.2.1) the circle (Fig. 3):

$$x^2 + y^2 = a^2 + b^2 \tag{56}$$



Figure 3: The ellipse H is drawn with its point P, Monge's circle [blue], the circle  $\Phi_1$  [red], the symbiotic ellipse  $H_{\Sigma}$  [blue] the bridge circle  $B_1$  [green] with its tangents at Eand I [magenta] and the bridge circle  $B_2$  [violet]

which is referred to as Monge's circle.

The tangent (5) to the ellipse H at P meets Monge's circle in two points  $M_1$ ,  $M_2$ , synthetically represented as follows:

$$M_i \left(\frac{b^2 \cos \varepsilon \mp \sin \varepsilon \sqrt{(a4b4)}}{(asbc)}a; \ \frac{a^2 \sin \varepsilon \pm \cos \varepsilon \sqrt{(a4b4)}}{(asbc)}b\right); \ (i = 1, 2)$$
(57)

In this Section, I will deal with circles  $[B_1 (58), B_2 (61), B_3 (63)]$  which link couples of noticeable points belonging to the ellipse H (1), the symbiotic ellipse  $H_{\Sigma} (37)$ , the circle  $\Phi_1$  (13) and Monge's circle (56); such property accounts for their name.

**Theorem 3.1.** [The 1st bridge-circle Theorem] [Fig. 3] Let the following six points be taken: (i) E (11) and I (12) [where the normal to the ellipse H at P meets the circle  $\Phi_1$  (13)], (ii)  $M_1$ ,  $M_2$  (57) [where the tangent to the ellipse H at P meets Monge's circle]; (iii)  $H_1$  and  $H_2$  (55) [where the tangents drawn to the ellipse H from E (11) touch H]; such points are concyclic on the following circle  $B_1$ :

$$\left(x - \frac{ab^2 \cos\varepsilon}{a^2 \sin^2\varepsilon + b^2 \cos^2\varepsilon}\right)^2 + \left(y - \frac{a^2 b \sin\varepsilon}{a^2 \sin^2\varepsilon + b^2 \cos^2\varepsilon}\right)^2 = \frac{a^4 \sin^2\varepsilon + b^4 \cos^2\varepsilon}{a^2 \sin^2\varepsilon + b^2 \cos^2\varepsilon} \tag{58}$$

*Proof.* The Theorem 3.1 can be proved by checking that the coordinates of the afore mentioned six points fulfill (58); for this purpose, we shall begin by rewriting (58) as follows:

$$x^{2}(asbc) - 2xab^{2}\cos\varepsilon + y^{2}(asbc) - 2ya^{2}b\sin\varepsilon = (a^{2} - b^{2})(a^{2}\sin^{2}\varepsilon - b^{2}\cos^{2}\varepsilon)$$
(59)

Replacing either the E (11) or I (12) coordinates in (59), we get two relationships, summarized as follows:

$$(a \pm b)(a^2 \sin^2 \varepsilon + b^2 \cos^2 \varepsilon) - 2ab(\pm a \sin^2 \varepsilon + b \cos^2 \varepsilon) = (a \mp b)(a^2 \sin^2 \varepsilon - b^2 \cos^2 \varepsilon)$$

One can easily see that both expressions are identically fulfilled. Now, replacing either the  $M_1$  or  $M_2$  (57) coordinates in (59), we get two relationships which, after clearing and simplifying, can be written as follows:

$$\begin{aligned} -a^2b^4\sin^2\varepsilon\cos^2\varepsilon + a^2(a^4\sin^2\varepsilon + b^4\cos^2\varepsilon)\sin^2\varepsilon - a^4b^2\sin^2\varepsilon\cos^2\varepsilon \\ +b^2(a^4\sin^2\varepsilon + b^4\cos^2\varepsilon)\cos^2\varepsilon - a^6\sin^4\varepsilon - b^6\cos^4\varepsilon = 0 \end{aligned}$$

this expression is an identity, too.

The replacement of the  $H_1$  coordinates (55) in (59) results in an expression where radicals are easily seen to form a vanishing set; the remnant terms can be written as follows:

$$a^{4}b^{4} + (a^{4}\sin^{2}\varepsilon + b^{4}\cos^{2}\varepsilon)(a^{4}\sin^{2}\varepsilon + b^{4}\cos^{2}\varepsilon) + 2ab(a^{2}\sin^{2}\varepsilon + b^{2}\cos^{2}\varepsilon)(a^{4}\sin^{2}\varepsilon + b^{4}\cos^{2}\varepsilon) - 2a^{3}b^{3}(a+b)(b\cos^{2}\varepsilon + a\sin^{2}\varepsilon) = (a^{2}-b^{2})(a^{4}\sin^{4}\varepsilon - b^{4}\cos^{4}\varepsilon)(a+b)^{2}$$

Even this expression, as one can see by trivial manipulations, is an identity.

If we wish to invoke the Theorem 3.1 for the symbiotic ellipse  $H_{\Sigma}$ , we should previously determine the homologous points to the ones  $(M_1, M_2 (57))$  the tangent to H at P shares with Monge's orthoptic circle (56). Remembering that Monge's circle is the locus of points from which the ellipse can be seen under a right angle and that the tangent to  $H_{\Sigma}$  at its point O is the y-axis, we conclude that the points we are looking for are the y-axis points from which a tangent to  $H_{\Sigma}$  orthogonal to the y-axis can be drawn. Easy calculations allow us to determine such points – hereinafter denoted  $Y_1$ ,  $Y_2$  – as follows:

$$Y_i \Big( 0, \ b \sin \varepsilon \pm \sqrt{a^2 - b^2 \cos^2 \varepsilon} \Big) \ (i = 1, 2) \tag{60}$$

Therefore, we can state the following:

**Theorem 3.2.** [The 2nd bridge-circle Theorem] [Fig. 3] Let the following six points be taken: (i) the foci  $F_1$ ,  $F_2$  of the ellipse H (1); (ii) the points  $Y_1$ ,  $Y_2$  (60) [where the tangent to the ellipse  $H_{\Sigma}$  at O (x = 0) meets  $H_{\Sigma}$  Monge's circle]; (iii) the points  $\Sigma_1$ ,  $\Sigma_2$  (39) [where the tangents  $t_1$ ,  $t_2$  (38) drawn to the symbiotic ellipse  $H_{\Sigma}$  from the focus  $F_1$  of H touch  $H_{\Sigma}$ ].

Such six points are concyclic on the following circle  $B_2$ :

$$x^{2} + (y - b\sin\varepsilon)^{2} = b^{2}\sin^{2}\varepsilon + c^{2}$$
(61)

Now, let us take (Fig. 4) the intersections of the tangent and normal to H at P with  $\Phi_1$  and Monge's circle, respectively; the formers are the well known points  $T_{131}$  (14) and  $T_{112}$  (15); the latters, – we denote  $M_3$ ,  $M_4$  – are synthetically represented as follows:

$$M_{i}\left(\frac{ac^{2}\sin^{2}\varepsilon \pm b\sqrt{\left(asbc\right)^{2} + a^{2}b^{2}}}{\left(asbc\right)}\cos\varepsilon; \ \frac{\pm a\sqrt{\left(asbc\right)^{2} + a^{2}b^{2}} - bc^{2}\cos^{2}\varepsilon}{\left(asbc\right)}\sin\varepsilon\right) (i = 3, 4)$$

$$\tag{62}$$



Figure 4: The tangent to the ellipse H at P meet the circle  $\Phi_1$  [red] at  $T_{131}$  and  $T_{112}$ ; the normal to H at P meets Monge's circle [blue] at  $M_3$ ,  $M_4$ . The circle  $B_3$  [green] passes through  $T_{131}$ ,  $T_{112}$ ,  $M_3$  and  $M_4$  (Theorem 3.3).

**Theorem 3.3.** [The 3rd bridge-circle Theorem] [Fig. 4]. Let the following four points be taken: (i)  $T_{131}$  (14),  $T_{112}$  (15) [where the tangent (5) to the ellipse H at P meets the circle  $\Phi_1$  (13) [red] and (ii)  $M_3$ ,  $M_4$  (62) [where the normal (8) to the ellipse H at P meets Monge's circle (blue)]; such points are concyclic on the following circle  $B_3$  [green]:

$$\left(x + \frac{ab^2 \cos \varepsilon}{(asbc)}\right)^2 + \left(y - \frac{b^3 \cos^2 \varepsilon}{(asbc) \sin \varepsilon}\right)^2 = \frac{(asbc)^2 + a^2 b^2 \sin^2 \varepsilon}{(asbc) \sin^2 \varepsilon}$$
(63)

The Theorem (3.3) can be demonstrated by showing that the coordinates of the four points  $T_{131}$  (14),  $T_{112}$  (15),  $M_3$ ,  $M_4$  (62) fulfil the circle  $B_3$  equation (63).

Another Theorem, omitted for the sake of brevity, could be stated invoking the Theorem 3.3 for the symbiotic ellipse  $H_{\Sigma}$ .

The Theorems 3.4 and 3.5 describe further relationships linking the bridge circles with the ellipse H.

**Theorem 3.4.** The centers of the circles  $B_1$  (58) and  $B_2$  (61) lie on the circle constructed on the segment OP as diameter, whose equation follows:

$$\left(x - \frac{a\cos\varepsilon}{2}\right)^2 + \left(y - \frac{b\sin\varepsilon}{2}\right)^2 = \left(\frac{a\cos\varepsilon}{2}\right)^2 + \left(\frac{b\sin\varepsilon}{2}\right)^2 \tag{64}$$

The Theorem 3.4 can be proved by checking that the coordinates of the mentioned points fulfill the equation (64); analogously, one can do for the next statement (Theorem 3.5):



Figure 5: The same as Fig. 3 (smaller and simplified), with the addition of the symm-normal line n' [black], the points  $E^{\Gamma}$  and  $I^{\Gamma}$ , the circle  $\Omega$  [red], the sides [blue] of the complete quadrangle  $M_1 I M_2 E$  and the line [blue] joining the diagonal points  $D_1$  and  $D_2$ .

**Theorem 3.5.** The centers of the circles  $B_1$  (58) and  $B_3$  (63) lie on the circle constructed on the segment  $OT_y$  as diameter, whose equation follows:

$$x^{2} + \left(y - \frac{b}{2\sin\varepsilon}\right)^{2} = \left(\frac{b}{2\sin\varepsilon}\right)^{2}$$
(65)

In 2007, Ternullo [4] introduced the following line through P, denoted symm-normal:

$$y = -x\frac{a}{b}\tan\varepsilon + \frac{a^2 + b^2}{b}\sin\varepsilon;$$
(66)

In 2009, the same author [5] introduced the following circle  $\Omega$ :

$$\left(x - \frac{a^3}{(a^2 - b^2)\cos\varepsilon}\right)^2 + \left(y + \frac{b^3}{(a^2 - b^2)\sin\varepsilon}\right)^2 = \frac{a^6\sin^2\varepsilon + b^6\cos^2\varepsilon}{(a^2 - b^2)^2\sin^2\varepsilon\cos^2\varepsilon} - (a^2 + b^2) \quad (67)$$

The circle  $\Omega$  (67) passes ([5], Theorem 2.11) through the points E (11) and I (12) (where the normal to H at P meets the eccentric (3) and symm-eccentric line of P (4), respectively), as well as through the following points  $E^{\Gamma}$ ,  $I^{\Gamma}$ :

$$E^{\Gamma}\left(\frac{a^2+b^2}{a-b}\cos\varepsilon; \ -\frac{a^2+b^2}{a-b}\sin\varepsilon\right); \qquad I^{\Gamma}\left(\frac{a^2+b^2}{a+b}\cos\varepsilon; \ \frac{a^2+b^2}{a+b}\sin\varepsilon\right)$$

where the symm-normal (66) meets the symm-ecc (4) and the eccentric line (3), respectively.

The center  $C_{\Omega}$  of the circle  $\Omega$  is the pole of the normal (8) to H at P wrt the ellipse H ([5], Theorem 2.2); therefore, the normal contains the poles – wrt the ellipse H – of all lines through  $C_{\Omega}$ . On the other hand, we have determined the points  $H_1$ ,  $H_2$  where the tangents drawn to the ellipse H from E touch H; the line linking  $H_1$  and  $H_2$  is, therefore, the polar of E wrt the ellipse H. Remembering that E belongs to the normal and that, accordingly, the polar of E passes through  $C_{\Omega}$ , we conclude as follows:

**Theorem 3.6.** The points  $H_1$ ,  $H_2$  (55), where the tangents drawn to the ellipse H (1) from E (11) touch H, are collinear with the center  $C_{\Omega}$  of the circle  $\Omega$  (67).

**Theorem 3.7.** The tangents drawn to the circle  $B_1$  (58) at E and I concur in  $C_{\Omega}$ 

*Proof.* To demonstrate the Theorem 3.7, let us begin by writing the matrix of coefficients of the circle  $B_1$  equation (58) as follows:

$$\begin{vmatrix} (asbc) & 0 & -ab^2 \cos \varepsilon \\ 0 & (asbc) & -a^2b \sin \varepsilon \\ -ab^2 \cos \varepsilon & -a^2b \sin \varepsilon & a^2b^2 - a^4 \sin^2 \varepsilon - b^4 \cos^2 \varepsilon \end{vmatrix}$$

Afterwards, we can write the equation of the polar of  $C_{\Omega}$  w.r.t the circle  $B_1$ ; few manipulations are enough to check that such polar coincides with the normal (8) to H at P. On the other hand, we know that (i) the normal to H at P contains the points E and I and (ii) the normal shares such points with the circle  $B_1$  (58); therefore, we conclude that the tangents drawn to the circle  $B_1$  from the point  $C_{\Omega}$  touch  $B_1$  at E and I.

Remembering that the circle  $\Omega$  shares the points E and I with the circle  $B_1$ , the afore mentioned conclusion – namely, that the tangents drawn to the circle  $B_1$  from the center  $C_{\Omega}$ of the circle  $\Omega$  touch  $B_1$  at E and I – implies that the circles  $B_1$  and  $\Omega$  are orthogonal. On the other hand, let us consider the complete quadrangle determined by the points  $M_1$ , I,  $M_2$ , E; the special symmetry with which such points are disposed – namely,  $M_1$ ,  $M_2$  on a diameter of  $B_1$  and E, I on a chord orthogonal to  $M_1M_2$  – implies that, if the opposite sides of the quadrangle meet in points we denote  $D_1$  and  $D_2$ , then the circle constructed taking the segment  $D_1D_2$  as diameter orthogonally meets the circle  $B_1$  at E and I. Conversely, as the circle  $\Omega$  orthogonally meets the circle  $B_1$  at E and I (and, of course, there is precisely one circle which ortogonally meets a given circle at two given points), we conclude that there is a diameter of the circle  $\Omega$  joining the points  $D_1$  and  $D_2$  where the opposite sides  $M_1E$ ,  $M_2I$  and  $M_1I$ ,  $M_2E$  of the quadrangle meet. Obvious reasons of symmetry require that such diameter parallels the line EI (namely, the normal to H at P). The following statement represents the conclusion of this reasoning:

**Theorem 3.8.** Taken the complete quadrangle  $M_1IM_2E$ , its diagonal points  $D_1$ ,  $D_2$  – representing the intersections of the opposite sides  $M_1E$ ,  $M_2I$  and  $M_1I$ ,  $M_2E$  – belong to the circle  $\Omega$ , where they are diametrically opposed on a line paralleling the normal to H at P.

It is worth mentioning that the point  $C_{\Omega}$  is the pole of a unique line – that is, the normal to H at P – under the polarity relationships defined by two conics, namely the ellipse H and the circle  $B_1$ .

### References

- [1] A. BARLOTTI: Affinité et polygones réguliers: Extension d'un théorème classique relatif au triangle. Math. Paedagog. 9, 43–52, 1955–1956.
- [2] G. GLAESER, H. STACHEL, and B. ODEHNAL: *The Universe of Conics*. Springer-Verlag, Berlin, Heidelberg, 2016.
- [3] G. SALMON: A Treatise on Conic Sections. Chelsea Publishing Company, New York, N. Y., 6 ed., 1954.
- [4] M. TERNULLO: A 10-point Circle is Associated with any General Point of the Ellipse. New Properties of Fagnano's Point. J. Geom. 87, 179–187, 2007.
- [5] M. TERNULLO: Two new sets of ellipse-related concyclic points. J. Geom. 94, 159–173, 2009.
- [6] M. TERNULLO: Triples of Mutually Orthogonal Circles Associated with any Ellipse. J. Geom. 104, 383–393, 2013.
- [7] M. TERNULLO: Symbiotic Conics and Quartets of Four-Foci Orthogonal Circles. J. Geom. Graph. 20(1), 85–100, 2016.
- [8] M. TERNULLO: Common Tangents to Ellipse and Circles, the 13-Point Circle and Other Theorems. J. Geom. Graph. 23(1), 45–63, 2019.

Received June 24, 2020.