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Abstract. In this study, we continue the classification of finite type Gauss map
surfaces in the 3-dimensional Euclidean space E3. To do this, we investigate
an important family of surfaces, namely, tubular surfaces in E3. We show that
the Gauss map of a tubular surface is of an infinite type regarding the second
fundamental form.
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1 Introduction

The theory of surfaces of finite Chen type was introduced by B.-Y. Chen in the late 1970s.
From that moment on, interest in this field became widespread by many differential geometers,
and it remains until this moment.

Let x be an isometric immersion of a surface S in the 3-dimensional Euclidean space E3.
We represent by ∆I the Laplacian operator of S acting on the space of smooth functions
C∞(S). Then S is said to be of finite I-type, if the position vector x of S can be decomposed
as a finite sum of eigenvectors of ∆I of S, that is

x = c + x1 + x2 + · · · + xk,

where
∆Ixi = ξi xi, i = 1, . . . , k,

c is a fixed vector and ξ1, ξ2, . . . , ξk are eigenvalues of the operator ∆I .
In the framework of surfaces of finite type S. Stamatakis and H. Al-Zoubi in [22] defined

the notion of surfaces of finite type associated with the second or third fundamental form.
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For results concerning surfaces of finite type associated with the second or third fundamental
form (see [1, 3, 5, 6, 8, 9, 12]).

Another generalization can be made by studying surfaces in E3 of coordinate finite type,
that is, their position vector x satisfying the relation

∆Jx = Ax, J = II, III, (1)

where A ∈ R3×3.
H. Al-Zoubi and S. Stamatakis in [13] studied ruled and quadric surfaces of coordinate

finite type with respect to the third fundamental form satisfying

∆IIIx = Ax. (2)

The same authors in [23] classified the class of surfaces of revolution satisfying condition
(2). Later in [14], the translation surfaces were studied, and it was proved that Sherk’s surface
is the only translation surface satisfying (2). B. Senoussi and M. Bekkar, in [21] classified the
Helicoidal surfaces with △Jr = Ar, J = I, II, III.

On the other hand, H. Al-Zoubi, T. Hamadneh in [11] classified the class of surfaces of
revolution satisfying

∆IIx = Ax.

where A ∈ R3×3.
Similarly, we can apply the notion of surfaces of finite type to a smooth map, for example,

the Gauss map of a surface. Here in this kind of research, many results can be found in
([2, 4, 7, 10, 15–18, 20]).

In this research, we will focus on surfaces of finite II-type. Firstly, we will define the
second differential parameter of Beltrami with respect to the second fundamental form of
M2. Further, we continue our study by proving infinite type Gauss map for an important
class of surfaces, namely, tubes in E3.

2 Preliminaries

Let x = x(u1, u2) be a regular parametric representation of a surface M2 in the Euclidean
3-space E3 referred to any coordinate system, which does not contain parabolic points. We
denote by bij the components of the second fundamental form II = bijdu

iduj of S. Let
φ(u1, u2) be a sufficient differentiable function on M2. Then the second differential parameter
of Beltrami with respect to the second fundamental form of M2 is defined by [20]

∆IIφ := − 1√
|b|

(
√

|b|bijφ/i)/j, (3)

where (bij) denotes the inverse tensor of (bij) and b := det(bij).
Up to now, spheres are the only known surfaces of finite II-type in E3. So one can ask:

Problem. Other than the spheres, which surfaces in E3 are of finite II-type?

This paper provides the first attempt at the study of finite type Gauss map of surfaces
in E3 corresponding to the second fundamental form. In general when the Gauss map of M2
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is of finite type k, then there exists a polynomial R(x) ̸= 0, such that R(∆II)(n − c) = 0. If
R(x) = xk + ρ1x

k−1 + · · · + ρk−1x+ ρk, then coefficients ρi are given by

ρ1 = − (ξ1 + ξ2 + · · · + ξk),
ρ2 =(ξ1ξ2 + ξ1ξ3 + · · · + ξ1ξk + ξ2ξ3 + · · · + ξ2ξk + · · · + ξk−1ξk),
ρ3 = − (ξ1ξ2ξ3 + · · · + ξk−2ξk−1ξk),

· · ·
ρk =(−1)kξ1ξ2 · · · ξk.

Hence the Gauss map n satisfies, (see [19])

(∆II)kn + ρ1(∆II)k−1n + · · · + ρk(n − c) = 0 . (4)
Our main result is the following

Theorem 1. All tubes in E3 are of infinite type Gauss map corresponding to the second
fundamental form.

Our discussion is local, which means that we show in fact that any open part of the Gauss
map of a tube is of infinite Chen type.

3 Tubes in E3

Let ℓ : q = q(u), uϵ(a, b) be a regular unit speed curve of finite length. Suppose that t,h, b
is the Frenet frame and κ > 0 the curvature of the unit speed curve q. Then a regular
parametric representation of a tubular surface F of radius r satisfies 0 < r < min 1

|κ| is given
by

F : x(u, ψ) = q + r cosψh + r sinψb.
One can find that fundamental forms I and II of F are given by

I =
(
δ2 + r2τ 2

)
du2 + 2r2τdudψ + r2dψ2,

II =
(

− κδ cosψ + rτ 2
)
du2 + 2rτdudψ + rdψ2,

where δ := (1 − rκ cosψ) and τ is the torsion of the curve q. The Gauss curvature of F is
given by

K = −κ cosψ
rδ

.

In the following we consider an open portion of the tube surface where K ̸= 0(⇐⇒ cosψ ̸=
0). From (3) the Laplace operator ∆II of F is (see [1], formula (9))

∆II = 1
κδ cosψ

 ∂2

∂u2 − 2τ ∂2

∂u∂ψ
+
(
τ 2 − κδ cosψ

r

)
∂2

∂ψ2

+ (1 − 2δ)β
2κδ cosψ

∂

∂u
+
(

−τ́ + τβ(2δ − 1)
2κδ cosψ + κ(2δ − 1) sinψ

2r

)
∂

∂ψ

, (5)

where β := κ́ cosψ + κτ sinψ and´:= d
du

.
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The Gauss map n(u, ψ) of F has parametric representation

n(u, ψ) = − cosψh − sinψb.

Inserting n in (5), we obtain

∆IIn = β

2κδ2 cosψ t +
(

sin2 ψ

2rδ cosψ + cosψ
rδ

− 2 cosψ
r

)
h + (1 − 4δ) sinψ

2rδ b, (6)

We distinguish two cases
Case I. β ̸= 0. Relation (6) can be written

∆IIn = β

2κδ2 cosψ t + 1
κδ cosψP1(cosψ, sinψ), (7)

where P1(cosψ, sinψ) is a vector with components polynomials of the functions cosψ and
sinψ with coefficients functions of the variable u.

After long calculations, (∆II)2n can be computed as follows

(∆II)2n = (3δ − 2)(12δ − 7)β3

4κ4δ5 cos4 ψ
t + 1

(κδ cosψ)4 P2(cosψ, sinψ), (8)

where P2(cosψ, sinψ) is a vector with components polynomials of the functions cosψ and
sinψ with coefficients functions of the variable u. For later use we put

(3δ − 2)(12δ − 7) = h2(δ). (9)

From (7), one can see that h1(δ) = 1.
We need the following lemma which can be proved directly by using (5).

Lemma 1. For any natural numbers m and n, we have

∆II

 hk(δ)βm

δn(κ cosψ)n−1

 = − hk+1(δ)βm+2

2δn+3(κ cosψ)n+2 + 1
(κδ cosψ)n+2Q(cosψ, sinψ), (10)

where hk(δ) is a polynomial in δ of degree d, Q is a polynomial in cosψ, sinψ of degree n +
3 with functions in u as coefficients, deg(hk+1(δ)) = d +2 and

hk+1(δ) = ((2n− 1)δ − n)(4(n+ 1)δ − (2n+ 3))hk(δ). (11)

So, it is easily verified that

(∆II)3n = (3δ − 2)(12δ − 7)(9δ − 5)(24δ − 13)β5

8κ7δ8 cos7 ψ
t + 1

(κδ cosψ)7 P3(cosψ, sinψ), (12)

where P3(cosψ, sinψ) is a vector with components polynomials of the functions cosψ and
sinψ with coefficients functions of the variable u.

Moreover, by using Lemma 1, one can find

(∆II)kn = hk(δ)β2k−1

2kδ3k−1(κ cosψ)3k−2 t + 1
(κδ cosψ)3k−2 Pk(cosψ, sinψ), (13)
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and
(∆II)k+1n = hk+1(δ)β2k+1

2k+1δ3k+2(κ cosψ)3k+1 t + 1
(κδ cosψ)3k+1 Pk+1(cosψ, sinψ), (14)

where Pk(cosψ, sinψ), Pk+1(cosψ, sinψ) are vectors with components polynomials of the
functions cosψ, sinψ with coefficients functions of the variable u, and

hλ(δ) =
∏

12jδ(4j − 5) ̸= 0, j = 1, 2, . . . , λ− 1 (15)

for any positive integer λ.
Now, we suppose that the tube F is of finite type, thus from (7)-(14), and (4) we find that

hk+1(δ)β2k+1

2k+1δ3k+2(κ cosψ)3k+1 t + 1
(κδ cosψ)3k+1 Pk+1 + ρ1hk(δ)β2k−1

2kδ3k−1(κ cosψ)3k−2 t + ρ1

(κδ cosψ)3k−2 Pk

+ · · · + ρk−1(3δ − 2)(12δ − 7)β3

4κ4δ5 cos4 ψ
t + σk−1

(κδ cosψ)4 P2 + ρkβ

2κδ2 cosψ t + ρk

κδ cosψP1 = 0 .

The above equation can be simply written as follows

hk+1(δ)β2k+1

δ
t = Q1(cosψ, sinψ)t +Q2(cosψ, sinψ)h +Q3(cosψ, sinψ)b, (16)

where Qi(cosψ, sinψ) are polynomials in cosψ and sinψ.
Case I. β ̸= 0. From (16), we have

hk+1(δ)β2k+1

δ
= Q1(cosψ, sinψ). (17)

This is impossible for any k ≥ 1 since hk+1(δ) ̸= 0.
Case II. β ≡ 0. Then κ′ = 0 and κτ = 0. Thus κ = const. ̸= 0 and τ = 0, therefore the

curve q is a plane circle and so, F is an anchor ring. In this case, the first fundamental form
becomes

I = δ2du2 + r2dψ2,

while the second is
II = −κδ cosψdu2 + rdψ2.

Hence, equation (5) reduces to

∆II = 1
κδ cosψ

(
∂2

∂u2 − κδ cosψ
r

∂2

∂ψ2 + κ(2δ − 1) sinψ
2r

∂

∂ψ

)
. (18)

Applying (18) for the position vector n, one finds

∆IIn =
(

sin2 ψ

2rδ cosψ + cosψ
rδ

− 2 cosψ
r

)
h + (1 − 4δ) sinψ

2rδ b,

which can be written as follows

∆IIn = sin2 ψ

2rδ cosψh + 1
δ

F1(cosψ, sinψ). (19)
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Consequently, we get

(∆II)2n = − 3 sin4 ψ

4r2δ3 cos3 ψ
h + 1

δ2 cos3 ψ
F2(cosψ, sinψ), (20)

where F1(cosψ, sinψ), F2(cosψ, sinψ) are vectors with components polynomials of the func-
tions cosψ, sinψ with coefficients functions of the variable u.

One can easily prove that

∆II sinm ψ

(δ cosψ)n
= − 3 sinm+2 ψ

2r(δ cosψ)n+2 + 1
(δ cosψ)n+1Q(cosψ, sinψ),

where Q(cosψ, sinψ) is a polynomial in cosψ, sinψ with coefficients functions of the variable
u. Therefore, we find that

(∆II)kn = (−1)k−1 3k−1 sin2k ψ

(2r)k(δ cosψ)2k−1 h + 1
δ2k−1 cos2k−2 ψ

Fk(cosψ, sinψ) (21)

and
(∆II)k+1n = (−1)k 3k sin2k+2 ψ

(2r)k+1(δ cosψ)2k+1 h + 1
δ2k+1 cos2k ψ

Fk+1(cosψ, sinψ), (22)

where Fk(cosψ, sinψ), Fk+1(cosψ, sinψ) are vectors with components polynomials of the
functions cosψ, sinψ with coefficients functions of the variable u.

On account of (19), (20), (21), (22) and (4), we conclude that

(−1)k 3k sin2k+2 ψ

(2r)k+1(δ cosψ)2k+1 h + 1
δ2k+1 cos2k ψ

Fk+1(cosψ, sinψ)

+ (−1)k−1ρ1
3k−1 sin2k ψ

(2r)k(δ cosψ)2k−1 h + ρ1
1

δ2k−1 cos2k−2 ψ
Fk(cosψ, sinψ) + · · · − ρk−1

3 sin4 ψ

4r2δ3 cos3 ψ
h

+ ρk−1
1

δ3 cos2 ψ
F2(cosψ, sinψ) + ρk

sin2 ψ

2rδ cosψh + ρk
1
δ

F1(cosψ, sinψ) = 0 . (23)

For simplicity, equation (23) can be written as follows

3k sin2k+2 ψ

(2r)k+1 cosψh = Q1(cosψ, sinψ)h +Q2(cosψ, sinψ)b, (24)

where Qi(cosψ, sinψ), i = 1, 2 are polynomials in cosψ, sinψ with coefficients functions of
the variable u. Therefore, we find that

3k sin2k+2 ψ

(2r)k+1 cosψ = Q1(cosψ, sinψ). (25)

This is impossible, since the right side hand Q1 is a polynomial in cosψ, sinψ while the left
side hand is not. Thus, our theorem is proved.
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