From M. C. Escher's Hexagonal Tiling to the Kiepert Hyperbola

Federico Giudiceandrea ${ }^{1}$, Luigi Grasselli ${ }^{2}$
${ }^{1}$ Curator of the M. C. Escher collection at Maurits s.r.l. fg@maurits.bz
${ }^{2}$ Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia
luigi.grasselli@unimore.it

Abstract

Generalizing Fermat and Napoleon points of a triangle, we introduce the notion of complementary Jacobi points, showing their collinearity with the circumcenter of the given triangle. The coincidence of the associated perspective lines for complementary Jacobi points is also proved, together with the orthogonality of this line with the one joining the circumcenter and the Jacobi points. Involutions on the Kiepert hyperbola naturally arise, allowing a geometric insight on the relationship between Jacobi points, their associated perspective lines and Kiepert conics of a triangle. Key Words: triangle geometry, M. C. Escher, Napoleon Point, Fermat Point, Kiepert hyperbola

MSC 2020: 51M04 (primary), 00A66

1 A Historical Introduction: Escher, Napoleon, Fermat

The theme of plane tessellations plays a role of outstanding relevance in the artistic production of the Dutch graphic artist M. C. Escher. It is perhaps since his second journey to the Alhambra in May/June 1936 that the idea of regularly organizing both Euclidean and hyperbolic plane surfaces by geometric tiles becomes an organic working plan. In 1937, Escher got from his stepbrother Beer, geologist at the university of Leiden, an article [3] by the German crystallographer F. Haag describing the properties of a particular hexagon built from an equilateral triangle and an arbitrary point on the plane. Escher sketched Haag's construction in one of his notebooks [5]. Figure 1 reproduces the original picture (on the right) and the related text (on the left), which can be translated from Dutch in the following way.

Figure 1: Escher's sketchpad (© M. C. Escher Company, Baarn NL)

From the vertex A of an equilateral triangle $A B C$, one draws a line AF of arbitrary length and direction. (AF could, for example, be longer than $A C$ and intersect $B C$.)

$$
\begin{aligned}
& A D=A F \quad \text { and } \quad \angle F A D=120^{\circ} \\
& B D=B E \quad \text { and } \quad \angle D B E=120^{\circ} \\
& C E=C F \quad \text { and } \quad \angle E C F=120^{\circ}
\end{aligned}
$$

(The plane is completely filled by congruent hexagons of the form $A D B E C F$ arranged as in picture). The diagonals $A E, B F$ and $C D$ intersect in a single point S.

Haag thus proved that the construction gives rise to a hexagon $A D B E C F$ and that this hexagon, precisely because it is built on a lattice of equilateral triangles, produces a monohedral tessellation of the Euclidean plane.

Studying Haag's hexagons, which we will later call Escher's hexagons, Escher noticed that the diagonals joining opposite pairs of vertices are concurrent in one point. Escher stated his result in the formal manner of mathematicians, that is in the form of a theorem: In fact, in stating it, he uses the term "stelling", the Dutch word to define the thesis of a theorem. Escher's statement is correct, even if he only verified it graphically, testing his thesis on different hexagons built in this way. Escher's son George had an engineering degree and had an extensive correspondence with his father on the mathematical questions surrounding planar tessellations. Asked for a proof of this "theorem", George pointed out that the hexagons could also be constructed in a different way. In fact, the centroids of the equilateral triangles
externally erected on the sides of any given triangle $D E F$ are the points A, B, C respectively, since they are the 120° vertices in the isosceles triangles built on these sides. Moreover, they are themselves vertices of an equilateral triangle (Figure 1): this result is known in geometry as Napoleon's theorem, since tradition attributes it to Napoleon Bonaparte, who seems to have been a talented mathematical amateur.

It is not known whether Escher understood that his construction was actually linked to this result. However, in 1942 he painted a watercolour in which, in addition to a multihedral hexagonal tessellation of the plane, the equilateral triangles of Napoleon's theorem are clearly recognizable (Figure 2).

The concurrency of the diagonals of a hexagon obtained by building similar isosceles triangles on the sides of an arbitrary given triangle is known as the Kiepert's theorem; a proof based on Ceva's Theorem, can be found in [1]. A generalization of this result, obtained by isogonal lines ${ }^{1}$ from the vertices, was seemingly discovered and published in 1825 by Carl Friedrich Andreas Jacobi (see Section 2).

Later the theorem, in the special case described by Escher, was also proved by J. F. Rigby in 1973 [4], by making use of rotation and translation symmetries of Escher's tessellation. This argument, based on the hexagon property of tessellating the plane, would certainly have been liked by Escher.

The concurrent point in the general case of the Jacobi's construction is called the Jacobi point of the given triangle. In the special case of Escher's hexagon, where the base angles of the isosceles triangles are $\pi / 6$, the point is often called in literature the Napoleon point $E\left(X_{17}\right)$ of the triangle. ${ }^{2}$

Another notable hexagon is obtained when the angles at the base of the isosceles triangles are $\pi / 3$, and therefore, the triangles become equilateral. In this case, if the given triangle does not contain angles greater than $2 \pi / 3$, the point of concurrency of the diagonals is the point of minimum distance from the vertices of the triangle. The point is known as the Fermat point $F\left(X_{13}\right)$, as it was Pierre de Fermat who identified it in response to a question posed by Evangelista Torricelli, giving rise to a close correspondence between the two great mathematicians of the XVI century.

Drawing the two hexagons, starting from the same triangle, the collinearity of the corresponding Napoleon and Fermat points with its circumcenter catches the eye.

It is worth pointing out that the construction of the isosceles triangles may be also performed internally to the sides of the given triangle or, equivalently, by making use of negative base angles. This gives rise to the second isogonic center $\left(X_{14}\right)$, also called second Fermat point, and to the second Napoleon point (X_{18}).

2 Centered hexagons and Jacobi points

Escher and Fermat hexagons, together with their associated points, are special cases of a general situation given by "centered" hexagons. A hexagon $A C^{\prime} B A^{\prime} C B^{\prime}$ is said to be centered if its opposite diagonals $A A^{\prime}, B B^{\prime}, C C^{\prime}$ (joining opposite pairs of vertices) are concurrent at a point P. As a direct consequence of Desargues's theorem applied to the triangles $A B C$

[^0]

Figure 2: Escher's watercolor Nr 10 (© M. C. Escher Company, Baarn NL) with tessellating motive based on Haag's hexagon

Figure 3: Circumcenter O, Napoleon point E and Fermat point F of the base triangle $A B C$ are collinear and this line is orthogonal to the perspectrix $r_{E}=r_{F}$
and $A^{\prime} B^{\prime} C^{\prime}$, the intersection points $K=A B \cap A^{\prime} B^{\prime}, L=A C \cap A^{\prime} C^{\prime}, M=B C \cap B^{\prime} C^{\prime}$ of the "twin" lines are collinear in the perspectrix r_{P} of P, which we will later refer to as its Desargues axis.

The following statement, regarding the special case of Escher's and Fermat's hexagons (Figure 3), is a collection of more general results which will be proved in the next sections.
Theorem 1. Let \mathcal{T} be a triangle. Then,
(a) The circumcenter O, the Napoleon point E, and the Fermat point F of \mathcal{T} are collinear.
(b) The Desargues axis r_{E} of E coincides with the Desargues axis r_{F} of F.
(c) The line OEF is orthogonal to the Desargues axis $r_{E}=r_{F}$.

Since the line $r_{E}=r_{F}$ arises from Escher's and Fermat's hexagons, we call it EscherFermat line of \mathcal{T}. Of course, an analogous theorem may be stated for the second Napoleon and Fermat points, giving rise to the second Escher-Fermat line of \mathcal{T}.

Centered hexagons can be obtained by starting from a given triangle $\mathcal{T}=A B C$ and considering isogonal lines arising from its vertices A, B, C with angles α, β, γ respectively. In fact, the intersection points $A^{\prime}, B^{\prime}, C^{\prime}$ of the isogonal lines produce the hexagon $A C^{\prime} B A^{\prime} C B^{\prime}$ and Jacobi's theorem states that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent at a point $J_{\alpha, \beta, \gamma}$, the Jacobi $\{\alpha, \beta, \gamma\}$-point of \mathcal{T}. Among other proofs of Jacobi's theorem, the one given in [7] is based on Ceva's theorem and allows us to obtain the areal coordinates of $J_{\alpha, \beta, \gamma}{ }^{3}$

$$
\left(\frac{1}{\cot A+\cot \alpha}, \frac{1}{\cot B+\cot \beta}, \frac{1}{\cot C+\cot \gamma}\right)
$$

[^1]

Figure 4: Jacobi's construction in Cartesian coordinates

If, in particular, we set $\alpha=\beta=\gamma$, then $A^{\prime} B C, B^{\prime} A C, C^{\prime} A B$ are similar isosceles triangles with base angle $\alpha(-\pi / 2 \leq \alpha \leq \pi / 2)$: The corresponding point of concurrency J_{α} is called the Jacobi α-point of \mathcal{T}^{4}. Note that the Jacobi $\pi / 6$-point (resp. $\pi / 3$-point) of \mathcal{T} is its Napoleon (resp. Fermat) point.

It is also worth noting that the isosceles triangles are erected externally (resp. internally) on the sides of the given triangle if, and only if, α is positive (resp. negative). Given a positive α, we will call J_{α} (resp. $J_{-\alpha}$) the first (resp. second) Jacobi α-point of \mathcal{T}, in analogy with the terminology used for Fermat or Napoleon first and second point.

Theorem 2. If \mathcal{T} is a given triangle, O be its circumcenter and J_{α} be its Jacobi α-point, then the line $O J_{\alpha}$ is orthogonal to the Desargues axis r_{α} of J_{α}.

Proof. In the special case in which \mathcal{T} is isosceles ${ }^{5}$ (based on $A B$, say), all Jacobi α-points J_{α} lie on the median line $C O$ joining C with the circumcenter O. Moreover, the Desargues axis of each J_{α} are parallel to $A B$ and hence orthogonal to $C G$.

If \mathcal{T} is non isosceles, the result can be proved by simple, but rather lengthy computations in Cartesian coordinates. In fact, we may suppose that the coordinates of the vertices A, B, C of \mathcal{T} are (Figure 4)

$$
A=(a, 0), \quad B=(0,0), \quad C=\left(x_{C}, y_{C}\right), \quad \text { with } \quad a, y_{C}>0, x_{C} \geq 0
$$

and the coordinates of its circumcenter O are

$$
O=\left(\frac{a}{2}, \frac{x_{C}^{2}+y_{C}^{2}-x_{C} a}{2 y_{C}}\right)
$$

If $k:=\tan \alpha$, then the vertices $A^{\prime}, B^{\prime}, C^{\prime}$ of the isosceles triangles with base angle α are
$A^{\prime}=\left(\frac{x_{C}-y_{C} k}{2}, \frac{y_{C}+x_{C} k}{2}\right), \quad B^{\prime}=\left(\frac{x_{C}+y_{C} k+a}{2}, \frac{-x_{C} k+y_{C}+a k}{2}\right), \quad C^{\prime}=\left(\frac{a}{2},-\frac{a}{2} k\right)$.

[^2]Since

$$
A A^{\prime}: Y=\frac{\left(y_{C}+x_{C} k\right)(X-a)}{x_{C}-y_{C} k-2 a}
$$

and

$$
C C^{\prime}: Y=\frac{\left(2 y_{C}+a k\right) X-a\left(y_{C}+x_{C} k\right)}{2 x_{C}-a}
$$

we can obtain the following coordinates of the Jacobi point $J=J_{\alpha}=A A^{\prime} \cap C C^{\prime}$:

$$
\begin{aligned}
x_{J} & =\frac{a\left[x_{C} y_{C}\left(1+k^{2}\right)+x_{C}^{2} k+y_{C}^{2} k+a y_{C}+a x_{C} k\right]}{2 x_{C}^{2} k+2 y_{C}^{2} k-2 a x_{C} k+\left(3+k^{2}\right) a y_{C}+2 a^{2} k}, \\
y_{J} & =\frac{a\left[2 x_{C} y_{C}^{2}-2 x_{C}^{3} k^{2}+2 a x_{C} y_{C} k-a y_{C}^{2}+3 a x_{C}^{2} k^{2}-a^{2} y_{C} k-a^{2} x_{C} k^{2}\right]}{\left(2 x_{C}-a\right)\left[2 x_{C}^{2} k+2 y_{C}^{2} k-2 a x_{C} k+\left(3+k^{2}\right) a y_{C}+2 a^{2} k\right]} .
\end{aligned}
$$

In the same way, $K=A B \cap A^{\prime} B^{\prime}$:

$$
\begin{gathered}
A B: Y=0, \quad A^{\prime} B^{\prime}: X=\frac{1}{-2 x_{C} k+a k} Y+\frac{2 x_{C}^{2} k+2 y_{C}^{2} k+a y_{C}\left(1+k^{2}\right)}{2 k\left(2 x_{C}-a\right)}, \\
x_{K}=\frac{2 x_{C}^{2} k+2 y_{C}^{2} k+a y_{C}\left(1+k^{2}\right)}{2 k\left(2 x_{C}-a\right)}, \quad y_{K}=0
\end{gathered}
$$

and $L=A C \cap A^{\prime} C^{\prime}$

$$
\begin{gathered}
A C: X=\frac{x_{C}-a}{y_{C}} Y+a, \quad A^{\prime} C^{\prime}: X=\frac{x_{C}-y_{C} k-a}{y_{C}+x_{C} k+a k} Y+\frac{a y_{C}\left(1-k^{2}\right)+2 a x_{C} k}{2\left(y_{C}+x_{C} k+a k\right)} \\
x_{L}=\frac{a\left[2 x_{C}^{2} k+2 y_{C}^{2} k-x_{C} y_{C}\left(1+k^{2}\right)-2 a x_{C} k+a y_{C}\left(1+k^{2}\right)\right]}{2 k\left(x_{C}^{2}+y_{C}^{2}-a^{2}\right)} \\
y_{L}=-\frac{a y_{C}\left[\left(1+k^{2}\right) y_{C}+2 a k\right]}{2 k\left(x_{C}^{2}+y_{C}^{2}-a^{2}\right)}
\end{gathered}
$$

If $\overrightarrow{L K} \equiv\left(\overrightarrow{L K}_{x}, \overrightarrow{L K}_{y}\right)$, with $\overrightarrow{L K}_{x}=x_{K}-x_{L}, \overrightarrow{L K}_{y}=y_{K}-y_{L}$, and $\overrightarrow{O J} \equiv\left(\overrightarrow{O J}_{x}, \overrightarrow{O J}_{y}\right)$, with $\overrightarrow{O J}_{x}=x_{J}-x_{O}, \overrightarrow{O J}_{y}=y_{J}-y_{O}$, from the coordinates of O, J, L, K we obtain:

$$
\overrightarrow{L K}_{x}=\frac{\overrightarrow{L K}_{x n}}{\overrightarrow{L K}_{x d}}, \quad \overrightarrow{L K}_{y}=\frac{\overrightarrow{L K}_{y n}}{\overrightarrow{L K}_{y d}}, \quad \overrightarrow{O J}_{x}=\frac{\overrightarrow{O J}_{x n}}{\overrightarrow{O J}_{x d}}, \quad \overrightarrow{O J}_{y}=\frac{\overrightarrow{O J}_{y n}}{\overrightarrow{O J}_{y d}}
$$

with

$$
\begin{aligned}
\overrightarrow{L K}_{x n} & =2 a^{3} x_{c} k-4 a^{2} x_{C}{ }^{2} k+3 a^{2} x_{C} y_{C}\left(1+k^{2}\right)+4 a x_{C}{ }^{3} k+4 a x_{C} y_{C}{ }^{2} k \\
& -3 a x_{C}{ }^{2} y_{C}\left(1+k^{2}\right)-a y_{C}{ }^{3}\left(1+k^{2}\right)-2 x_{C}{ }^{4} k-4 k x_{C}{ }^{2} y_{C}{ }^{2} k-2 y_{C}{ }^{4} k, \\
\overrightarrow{L K}_{x d} & =2 k\left(a-2 x_{C}\right)\left(-a^{2}+x_{C}{ }^{2}+y_{C}{ }^{2}\right), \\
\overrightarrow{L K}_{y n} & =a y_{C}\left(2 a k+y_{C}\left(1+k^{2}\right)\right) \\
\overrightarrow{L K}_{y d} & =2 k\left(-a^{2}+x_{C}{ }^{2}+y_{C}{ }^{2}\right), \\
\overrightarrow{O J}_{x n} & =-a\left(a-2 x_{C}\right)\left(2 a k+y_{C}\left(1+k^{2}\right)\right), \\
\overrightarrow{O J}_{x d} & =2\left(2 a^{2} k-2 a x_{C} k+a y_{C}\left(3+k^{2}\right)+2 x_{C}{ }^{2} k+2 y_{C}{ }^{2} k\right), \\
\overrightarrow{O J}_{y n} & =2 a^{3} x_{c} k-4 a^{2} x_{C}{ }^{2} k+3 a^{2} x_{C} y_{C}\left(1+k^{2}\right)+4 a x_{C}{ }^{3} k+4 a x_{C} y_{C}{ }^{2} k \\
& -3 a x_{C}{ }^{2} y_{C}\left(1+k^{2}\right)-a y_{C}{ }^{3}\left(1+k^{2}\right)-2 x_{C}{ }^{4} k-4 k x_{C}{ }^{2} y_{C}{ }^{2} k-2 y_{C}{ }^{4} k, \\
\overrightarrow{O J}_{y d} & =2 y_{C}\left(2 a^{2} k-2 a x_{C} k+a y_{C}\left(3+k^{2}\right)+2 x_{C}{ }^{2} k+2 y_{C}{ }^{2} k\right) .
\end{aligned}
$$

Since the orthogonality condition between $\overrightarrow{L K}$ and $\overrightarrow{O J}$ is

$$
\begin{equation*}
\overrightarrow{L K}_{x} \overrightarrow{O J}_{x}+\overrightarrow{L K}_{y} \overrightarrow{O J}_{y}=\frac{\overrightarrow{L K}_{x n} \overrightarrow{O J}_{x n}}{\overrightarrow{L K}_{x d} \overrightarrow{O J}_{x d}}+\frac{\overrightarrow{L K}_{y n} \overrightarrow{O J}_{y n}}{\overrightarrow{L K}_{y d} \overrightarrow{O J}_{y d}}=0 \tag{1}
\end{equation*}
$$

and

$$
\overrightarrow{L K}_{x n}=\overrightarrow{O J}_{y n}, \quad \overrightarrow{O J}_{y d}=y_{C} \overrightarrow{O J}_{x d}, \quad \overrightarrow{L K}_{y d}=\frac{\overrightarrow{L K}_{x d}}{\left(a-2 x_{C}\right)}, \quad \overrightarrow{O J}_{x n}=-\frac{\left(a-2 x_{C}\right) \overrightarrow{L K}_{y n}}{y_{C}}
$$

by substituting into (1), we obtain

$$
-\frac{\overrightarrow{O J}_{y n} \overrightarrow{L K}_{y n}\left(a-2 x_{C}\right)}{\overrightarrow{L K}_{x d} \overrightarrow{O J}_{x d} y_{C}}+\frac{\overrightarrow{L K}_{y n} \overrightarrow{O J}_{y n}\left(a-2 x_{C}\right)}{\overrightarrow{L K}_{x d} \overrightarrow{O J}_{x d} y_{C}}=0
$$

which shows that (1) holds true.

3 Jacobi complementary points

Let J_{α} (resp. $J_{\alpha^{\prime}}$) be a Jacobi α-point (resp. α^{\prime}-point) of \mathcal{T} : J_{α} and $J_{\alpha^{\prime}}$ are said to be complementary if α and α^{\prime} are complementary angles. Since the range of α and α^{\prime} is the interval $[-\pi / 2, \pi / 2]$, the complementarity between α and α^{\prime} means $\alpha+\alpha^{\prime}=\pi / 2$ (resp. $-\pi / 2$) if α and α^{\prime} belongs to $[0, \pi / 2]$ (resp. to $[-\pi / 2,0]$).

We call the line containing J_{α} and $J_{\alpha^{\prime}}$ the α-line of \mathcal{T}.
Theorem 3. Let O be the circumcenter of the triangle $\mathcal{T}=A B C$ and let J_{α} and $J_{\alpha^{\prime}}$ be a pair of complementary Jacobi points. Then, O, J_{α}, and $J_{\alpha^{\prime}}$, are collinear.

Proof. It is sufficient to proof that the determinant of the matrix M whose rows are the areal coordinates of O, J_{α}, and $J_{\alpha^{\prime}}$, equals 0 .

By using the areal coordinates of the three points [7], since α and α^{\prime} are complementary, we have

$$
M=\left[\begin{array}{ccc}
\sin (2 A) & \sin (2 B) & \sin (2 C) \\
\frac{1}{\cot A+\cot \alpha} & \frac{1}{\cot B+\cot \alpha} & \frac{1}{\cot C+\cot \alpha} \\
\frac{1}{\cot A+\tan \alpha} & \frac{1}{\cot B+\tan \alpha} & \frac{1}{\cot C+\tan \alpha}
\end{array}\right]
$$

By applying double-angle formulae in the first row and by expressing cot, tan by sin, cos in the 2nd and 3rd row, we obtain

$$
\operatorname{det} M=2 \sin \alpha \cos \alpha \sin A \sin B \sin C \operatorname{det} M^{\prime}
$$

and hence

$$
M^{\prime}=\left[\begin{array}{ccc}
\cos A & \cos B & \cos C \\
\frac{1}{\cos A \sin \alpha+\sin A \cos \alpha} & \frac{1}{\cos B \sin \alpha+\sin B \cos \alpha} & \frac{1}{\cos C \sin \alpha+\sin C \cos \alpha} \\
\frac{1}{\cos A \cos \alpha+\sin A \sin \alpha} & \frac{1}{\cos B \cos \alpha+\sin B \sin \alpha} & \frac{1}{\cos C \cos \alpha+\sin C \sin \alpha}
\end{array}\right]
$$

Therefore O, J_{α}, and $J_{\alpha^{\prime}}$ are collinear if, and only if, $\operatorname{det} M^{\prime}=0$.
Note that the three denominators of the 2 nd row can be expressed as $\sin (A+\alpha), \sin (B+\alpha)$, $\sin (C+\alpha)$, while those of the 3rd row as $\cos (A-\alpha), \cos (B-\alpha), \cos (C-\alpha)$. Therefore, we have

$$
M^{\prime}=\left[\begin{array}{ccc}
\cos A & \cos B & \cos C \\
\frac{1}{\sin (A+\alpha)} & \frac{1}{\sin (B+\alpha)} & \frac{1}{\sin (C+\alpha)} \\
\frac{1}{\cos (A-\alpha)} & \frac{1}{\cos (B-\alpha)} & \frac{1}{\cos (C-\alpha)}
\end{array}\right]
$$

with $\operatorname{det} M^{\prime}=\cos A \operatorname{det} M_{11}^{\prime}+\cos B \operatorname{det} M_{12}^{\prime}+\cos C \operatorname{det} M_{13}^{\prime}$, where

$$
\begin{gathered}
M_{11}^{\prime}=\left[\begin{array}{ccc}
\frac{1}{\sin (B+\alpha)} & \frac{1}{\sin (C+\alpha)} \\
\frac{1}{\cos (B-\alpha)} & \frac{1}{\cos (C-\alpha)}
\end{array}\right], \quad M_{12}^{\prime}=\left[\begin{array}{ll}
\frac{1}{\sin (C+\alpha)} & \frac{1}{\sin (A+\alpha)} \\
\frac{1}{\cos (C-\alpha)} & \frac{1}{\cos (A-\alpha)}
\end{array}\right] \\
M_{13}^{\prime}=\left[\begin{array}{cc}
\frac{1}{\sin (A+\alpha)} & \frac{1}{\sin (B+\alpha)} \\
\frac{1}{\cos (A-\alpha)} & \frac{1}{\cos (B-\alpha)}
\end{array}\right]
\end{gathered}
$$

After some simple computations and by defining $Y_{1}, Y_{2}, Y_{3}, X_{1}, X_{2}, X_{3}$ as

$$
\begin{aligned}
& Y_{1}=\sin (C+\alpha) \cos (B-\alpha)-\sin (B+\alpha) \cos (C-\alpha), \\
& Y_{2}=\sin (A+\alpha) \cos (C-\alpha)-\sin (C+\alpha) \cos (A-\alpha), \\
& Y_{3}=\sin (B+\alpha) \cos (A-\alpha)-\sin (A+\alpha) \cos (B-\alpha), \\
& X_{1}=\cos A \sin (A+\alpha) \cos (A-\alpha), \\
& X_{2}=\cos B \sin (B+\alpha) \cos (B-\alpha), \\
& X_{3}=\cos C \sin (C+\alpha) \cos (C-\alpha),
\end{aligned}
$$

we obtain the following expression for $\operatorname{det} M^{\prime}$:

$$
\begin{equation*}
\operatorname{det} M^{\prime}=\frac{X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3}}{\sin (A+\alpha) \sin (B+\alpha) \sin (C+\alpha) \cos (A-\alpha) \cos (B-\alpha) \cos (C-\alpha)} \tag{2}
\end{equation*}
$$

and then, $\operatorname{det} M^{\prime}=0$ if, and only if, $Y=X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3}=0$.
The application of the prostaphaeresis formulae $\sin (\theta) \cos (\varphi)=\frac{1}{2}(\sin (\theta+\varphi)+\sin (\theta-\varphi))$ to Y_{1}, Y_{2}, Y_{3} yields

$$
Y_{1}=-\sin (B-C) \cos (2 \alpha), \quad Y_{2}=-\sin (C-A) \cos (2 \alpha), \quad Y_{3}=-\sin (A-B) \cos (2 \alpha)
$$

while the application to X_{1}, X_{2}, X_{3} yields

$$
\begin{aligned}
& X_{1}=\cos A(\sin A \cos A+\sin \alpha \cos \alpha) \\
& X_{2}=\cos B(\sin B \cos B+\sin \alpha \cos \alpha) \\
& X_{3}=\cos C(\sin C \cos C+\sin \alpha \cos \alpha)
\end{aligned}
$$

Therefore, we obtain

$$
\begin{aligned}
Y= & -\cos A(\sin A \cos A+\sin \alpha \cos \alpha) \sin (B-C) \cos (2 \alpha) \\
& -\cos B(\sin B \cos B+\sin \alpha \cos \alpha) \sin (C-A) \cos (2 \alpha) \\
& -\cos C(\sin C \cos C+\sin \alpha \cos \alpha) \sin (A-B) \cos (2 \alpha) .
\end{aligned}
$$

Figure 5: Kiepert hyperbola \mathcal{K} and complementary Jacobi points

Now, we write Y in the following way

$$
Y=-\cos (2 \alpha)\left(Y^{\prime}+Y^{\prime \prime}\right)
$$

where

$$
Y^{\prime}=\sin A \cos ^{2} A \sin (B-C)+\sin B \cos ^{2} B \sin (C-A)+\sin C \cos ^{2} C \sin (A-B)
$$

and
$Y^{\prime \prime}=\cos A \sin \alpha \cos \alpha \sin (B-C)+\cos B \sin \alpha \cos \alpha \sin (C-A)+\cos C \sin \alpha \cos \alpha \sin (A-B)$.
A simple computation gives $Y^{\prime \prime}=0$. Hence $Y=0$ if, and only if, $Y^{\prime}=0$.
Finally, recall that $C=\pi-(A+B)$, and hence,

$$
\begin{aligned}
& \sin C=\sin (A+B)=\sin A \cos B+\sin B \cos A \\
& \cos C=-\cos (A+B)=-\cos A \cos B+\sin A \sin B
\end{aligned}
$$

By substituting these formulas, a straightforward computation gives $Y^{\prime}=0$.
Summarizing, O, J_{α}, and $J_{\alpha^{\prime}}$ are collinear because det $M=0$. In fact, by reducing $\operatorname{det} M$ to (2) and decomposing the numerator $Y=X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3}$ via the prostaphaeresis formulae into the additive terms $Y^{\prime}+Y^{\prime \prime}$, one can prove that both Y^{\prime} and $Y^{\prime \prime}$ evaluate identically equal to zero (regardless of α).

Note that a direct consequence of Theorem 3 is statement (a) of Theorem 1: In this way, the Escher-Fermat line of \mathcal{T} is its $\pi / 6$-line. It is also worth noting that the degenerate situations given by $\alpha=0$ and $\alpha=\pi / 2$ respectively produces the complementary Jacobi points $J_{0}=G$ and $J_{\pi / 2}=H$, where G denotes the centroid of \mathcal{T} and H its orthocenter: Thus, the Euler-line of \mathcal{T} is its 0 -line.
Remark 3.1. By a slight modification in the proof of Theorem 3, it can be shown that the Lemoine or symmedian point $U\left(X_{6}\right)$ of \mathcal{T} is the intersection of all lines joining the first and second Jacobi α-points of \mathcal{T}. This result appears as Exercise 2, Page 48 in [9].

4 An Involution on the Kiepert hyperbola

Theorem 3, together with Theorem 2, puts in evidence the role of the circumcenter in the geometry of the triangle related to Kiepert conics.

The Kiepert hyperbola \mathcal{K} of a (non-equilateral) triangle \mathcal{T} is the (unique) rectangular hyperbola containing the vertices A, B, C of \mathcal{T} and its centroid G (Figure 5). Note that \mathcal{K} is degenerate if, and only if, \mathcal{T} is isosceles (whose base is $A B$, say). In fact, \mathcal{K} reduces to a pair of perpendicular lines, namely to the side $A B$ and the opposite median $C G$. Moreover, the circumcenter O, together with any Jacobi point, lies on $C G$. Thus, suppose \mathcal{T} is non-isosceles, i.e., \mathcal{K} is non-degenerate. It is well-known (see for example [2] or [6]) that many remarkable points of \mathcal{T} are contained in \mathcal{K}, among them the orthocenter H, the Fermat points and the Napoleon points.

Each point X in the plane induces an involution ω_{X} on \mathcal{K}, centered in X, defined as follows. For each $P \in \mathcal{K}$, if the line $X P$ is a secant of \mathcal{K}, then $\omega_{X}(P)$ is the other intersection point of $X P$ with \mathcal{K}. If $X P$ is tangent to \mathcal{K} at P, then set $\omega_{X}(P)=P$. The point X and its polar line p_{X} are respectively center and axis of the involution ω_{X}. Recall that p_{X} is the locus of all intersection points of line pairs which are associated in ω_{X}.

The perspective collineation φ_{X} on the plane inducing the involution ω_{X} on \mathcal{K} is a harmonic (involutory) homology with center X and axis p_{X}. Its center X and all points of p_{X} are fixed points in φ_{X}, while p_{X} and any line containing X is mapped into itself. Moreover, since φ_{X} is harmonic, if P, P^{\prime} are corresponding points (collinear with X) and P^{*} denotes the intersection point of the line $P P^{\prime}$ with the axis p_{X} of φ_{X}, then P^{*} is the harmonic conjugate of X with respect to P and P^{\prime}. In other words: The cross ratio of the ordered points P, P^{\prime}, X, P^{*} is $\left(P, P^{\prime}, X, P^{*}\right)=-1$.

The line d_{1} (resp. d_{2}) from X which is parallel to the asymptote a_{1} (resp. a_{2}) of \mathcal{K} intersects the hyperbola in the point at infinity D_{1}^{∞} of a_{1} (resp. D_{2}^{∞} of a_{2}) and in a proper point D_{1} (resp. D_{2}). Therefore, the intersection point of $D_{1} D_{2}$ with $D_{1}^{\infty} D_{2}^{\infty}$, i.e., the point at infinity of $D_{1} D_{2}$, lies on the axis p_{X} of ω_{X}. In other words: $D_{1} D_{2}$ and p_{X} are parallel. Note that $D_{1} D_{2}$ and the line at infinity are corresponding elements in φ_{X} : this proves that $D_{1} D_{2}$ is equidistant from X and the axis p_{X}. Moreover, the fourth point D in the rectangle $X D_{1} D_{2} D$, i.e., the intersection point of the corresponding lines $D_{1} D_{2}^{\infty}$ and $D_{2} D_{1}^{\infty}$, lies on the axis p_{X}. On the other side, D lies on the diameter of \mathcal{K} containing X. In fact, with respect to the canonical Cartesian coordinate system whose axes are the asymptotes of \mathcal{K}, the coordinates of D and X are reciprocal each other and hence these points are collinear with the origin of the reference system, i.e., the center of the hyperbola. Since this diameter is the polar line of the point at infinity of the axis p_{X} (or of $D_{1} D_{2}$), the intersection points V_{1}, V_{2} of the hyperbola with p_{X} are symmetric with respect to the diameter $X D$ along p_{X}, and then, D is the midpoint between V_{1} and V_{2}.

Figure 6: Autopolar triangle $O U N$ with respect to Kiepert hyperbola

If, in particular, we take the circumcenter O of \mathcal{T} as the center of the involution, we can reformulate Theorem 3 in the following way: Complementary Jacobi points of \mathcal{T} are pairs of corresponding points in the involution ω_{O} on \mathcal{K}.

The following remarks are direct consequences of the above result:
Remark 4.1. If E_{1}, E_{2} (resp. F_{1}, F_{2}) are the first and the second Napoleon (resp. Fermat) point, the pairs $(G, H),\left(E_{1}, F_{1}\right),\left(E_{2}, F_{2}\right)$ are corresponding points in the involution ω_{O}, via the Euler line and the Escher-Fermat lines, respectively.
Remark 4.2. If t_{O} and t_{O}^{\prime} denote the tangent lines from O to \mathcal{K}, then the tangent points V_{1} and V_{2} are the first and second Jacobi $\pi / 4$-point ${ }^{6}$. Therefore, t_{O} (resp. t_{O}^{\prime}) is the polar line of V_{1} (resp. V_{2}) and the line joining these two tangent points is the polar line p_{O} of O, with respect to \mathcal{K}, i.e., the axis of ω_{O} and φ_{O} : We will call it the Vecten line of \mathcal{T}. Note that, if N is the intersection point of p_{O} with the Euler line, the cross ratio (G, H, O, N) is -1 . This proves that N is the midpoint of $O H$ and hence N is the nine-point center of \mathcal{T} (see X_{5} properties in [8]).

Remark 4.3. Let d_{1} (resp. d_{2}) denote the line from O which is parallel to the asymptote a_{1} (resp. a_{2}) of \mathcal{K} and let D_{1} (resp. D_{2}) be the proper intersection point of the hyperbola with d_{1} (resp. with $\left.d_{2}\right)^{7}$. Then, the line $D_{1} D_{2}$ is parallel to the axis p_{O} and is equidistant from O

[^3]and p_{O}. As a consequence, the fourth point ${ }^{8} D$ in the rectangle $O D_{1} D_{2} D$ lies on the Vecten line p_{O} and is the midpoint between the Vecten points.

Remark 4.4. Recall (see Remark 3.1) that the Lemoine point U belongs to the Fermat line f (resp. to the Escher line e) joining the Fermat points F_{1}, F_{2} (resp. the Napoleon points E_{1}, $\left.E_{2}\right)$. In other words, U is the intersection point of f and e. Thus, U belongs to the axis p_{O} of ω_{O}, and hence, its polar line p_{U} contains O. On another side, U belongs to the diameter $f=F_{1} F_{2}$ of the hyperbola. Therefore, the tangent lines to \mathcal{K} at F_{1} and F_{2} are parallel and p_{U} is the line through O which is parallel to these tangent lines. In fact, later we will see that it is the Euler line.

Besides the circumcenter O of \mathcal{T}, other remarkable points P may be considered as centers of the involution ω_{P} on \mathcal{K} defined in the beginning of this section (Figure 6). In particular, since the Lemoine point U is the intersection point of all lines joining the first and second Jacobi α-points J_{α} and $J_{-\alpha}$ of \mathcal{T} (Remark 3.1), then J_{α} and $J_{-\alpha}$ are pairs of corresponding points in the involution ω_{U}.

Another interesting involution arises if we consider the nine-point center N of \mathcal{T}, as we may see in what follows.

First of all, recall that four distinct points on a conic define an autopolar triangle, whose vertices are the diagonal points of the quadrilateral. Now, if E_{1}, E_{2} (resp. F_{1}, F_{2}) are the first and the second Escher (resp. Fermat) points of \mathcal{T}, then the vertices of the autopolar triangle defined by these four points on Kiepert hyperbola \mathcal{K} are the circumcenter O, the Lemoine point U, and the nine-point center N.

This property which brings us back to the classical context of the historical introduction, may be obtained as a special case of the following theorem, summarizing, in some sense, the results obtained in the present section.

Theorem 4. Let \mathcal{T} be a triangle and let α, α^{\prime} be complementary angles.
(a) The intersection point of the lines $J_{\alpha} J_{\alpha^{\prime}}$ and $J_{-\alpha} J_{-\alpha^{\prime}}$ is the circumcenter O of \mathcal{T}.
(b) The intersection point of the lines $J_{\alpha} J_{-\alpha}$ and $J_{\alpha^{\prime}} J_{-\alpha^{\prime}}$ is the Lemoine point U of \mathcal{T}.
(c) The intersection point of the lines $J_{\alpha} J_{-\alpha^{\prime}}$ and $J_{-\alpha} J_{\alpha^{\prime}}$ is the nine-point center N of \mathcal{T}.

Moreover, the triangle $O U N$ is autopolar with respect to Kiepert hyperbola \mathcal{K} and its sides are the Brocard axis $O U$, the Euler line $O N$, and the Vecten line $U N$.

Proof. The statement (a) (resp. (b)) is a direct consequence of Theorem 3 (resp. of Remark 3.1). Recall that the polar line p_{O} of the circumcenter O is the Vecten line, containing N and U (Remarks 4.2 and 4.4). The fixed points of the involution ω_{U} are the centroid $G=J_{0}$ and the orthocenter $H=J_{-\pi / 2}$ of \mathcal{T}. Hence, the tangent lines to \mathcal{K} from U are the lines $U G$ and $U H$: Equivalently, the polar line p_{U}, i.e., the axis of the involution ω_{U}, is the Euler line (containing O). Remark 3.1 states that the intersection point of the Euler line p_{U} with the polar line p_{O} of the circumcenter O is the nine-point center N (Figure 6): Therefore, the polar line p_{N} of N is the line $O U$, the Brocard axis of \mathcal{T} (cf. [2, p. 195]). This proves the last part of the theorem. Finally, if N^{\prime} identifies the intersection point of the lines $J_{\alpha} J_{-\alpha^{\prime}}$ and $J_{-\alpha} J_{\alpha^{\prime}}$, the triangle $O U N^{\prime}$ is autopolar and then N^{\prime} is the pole of the Brocard axis $O U$. This proves $N=N^{\prime}$ and hence statement (c).

Figure 7: Desarguesian configuration

5 Desarguesian configurations and Kiepert parabola

Now we describe a configuration which allows to obtain an interesting consequence of the collinearity of O with complementary Jacobi points given in Theorem 3.

Let be given in the plane an extended Desargues configuration, i.e., nine distinct points $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$ such that all the triads of points $\left(A_{1}, A_{2}, A_{3}\right),\left(B_{1}, B_{2}, B_{3}\right)$, $\left(C_{1}, C_{2}, C_{3}\right)$ and, for each $i=1,2,3,\left(A_{i}, B_{i}, C_{i}\right)$, are not collinear.

In what follows, $(i, j) \in\{(1,2),(1,3),(2,3)\}$. Then, for each (i, j) set $K_{i, j}=A_{i} B_{i} \cap A_{j} B_{j}$, $L_{i, j}=A_{i} C_{i} \cap A_{j} C_{j}, M_{i, j}=B_{i} C_{i} \cap B_{j} C_{j}$ and $R_{i, j}=A_{i} A_{j} \cap B_{i} B_{j}, S_{i, j}=A_{i} A_{j} \cap C_{i} C_{j}$, $T_{i, j}=B_{i} B_{j} \cap C_{i} C_{j}$ (Figure 7).

Lemma 1. For each (i, j), we have $R_{i, j}=S_{i, j}=T_{i, j}$ if, and only if, $K_{i, j}, L_{i, j}, M_{i, j}$ are collinear.

Proof. It is Desargues's theorem applied to the triangles A_{i}, B_{i}, C_{i} and A_{j}, B_{j}, C_{j}.
Lemma 2. With the above notations, we have:
(a) $K_{12}=K_{13}=K_{23}$ if, and only if, R_{12}, R_{13}, R_{23} are collinear.
(b) $L_{12}=L_{13}=L_{23}$ if, and only if, S_{12}, S_{13}, S_{23} are collinear.
(c) $M_{12}=M_{13}=M_{23}$ if, and only if, T_{12}, T_{13}, T_{23} are collinear.

Proof. It is sufficient to apply Desargues's theorem to the triangle pairs $\left(A_{1} A_{2} A_{3}, B_{1} B_{2} B_{3}\right)$, $\left(A_{1} A_{2} A_{3}, C_{1} C_{2} C_{3}\right),\left(B_{1} B_{2} B_{3}, C_{1} C_{2} C_{3}\right)$ respectively (Figure 7).

[^4]

Figure 8: Desargues's theorem applied to triangles $\left(A, A^{\prime}, A^{\prime \prime}\right),\left(B, B^{\prime}, B^{\prime \prime}\right)$, and $\left(C, C^{\prime}, C^{\prime \prime}\right)$

The following result is a direct consequence of the previous lemmas:
Theorem 5. For each (i, j), we have $R_{i j}=S_{i j}=T_{i j}=Z_{i j}$ with Z_{12}, Z_{13}, Z_{23} collinear if, and only if, $K_{12}=K_{13}=K_{23}=K, L_{12}=L_{13}=L_{23}=L, M_{12}=M_{13}=M_{23}=M$ with K, L, M collinear.

Let now $\mathcal{T}=A B C$ be a given triangle and let $A^{\prime}, B^{\prime}, C^{\prime}$ (resp. $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$) denote the vertices opposite to the three vertices of the similar isosceles triangles with base $B C, A C$, $A B$ and base angle α (resp. α^{\prime}), with α and α^{\prime} complementary (Figure 8). We refer to the pair (\mathcal{T}, α) as the Jacobi α-triangle $A B C$. Then, we have:
$R_{12}=S_{12}=T_{12}=A^{\prime} A^{\prime \prime} \cap B^{\prime} B^{\prime \prime} \cap C^{\prime} C^{\prime \prime}=$ circumcenter O of $\mathcal{T}, R_{13}=S_{13}=T_{13}=$ $A A^{\prime} \cap B B^{\prime} \cap C C^{\prime}=$ Jacobi α-point J_{α} of $\mathcal{T}, R_{23}=S_{23}=T_{23}=A A^{\prime \prime} \cap B B^{\prime \prime} \cap C C^{\prime \prime}=$ Jacobi α^{\prime}-point $J_{\alpha^{\prime}}$ of \mathcal{T}.

Note that J_{α} and $J_{\alpha^{\prime}}$ are complementary Jacobi points.
Theorem 6. In each Jacobi α-triangle $A B C$, the lines $A B, A^{\prime} B^{\prime}, A^{\prime \prime} B^{\prime \prime}$ are concurrent in a point K, the lines $A C, A^{\prime} C^{\prime}, A^{\prime \prime} C^{\prime \prime}$ are concurrent in a point L, the lines $B C, B^{\prime} C^{\prime}, B^{\prime \prime} C^{\prime \prime}$ are concurrent in a point M.

Moreover, K, L, and M are collinear on a line r_{α}, which is the common Desargues axis of the complementary Jacobi points J_{α} and $J_{\alpha^{\prime}}$ of \mathcal{T} and is orthogonal to the α-line $J_{\alpha} J_{\alpha^{\prime}}$ of \mathcal{T}.

Proof. Since $O, J_{\alpha}, J_{\alpha^{\prime}}$ are collinear (Theorem 3), Lemma 2 proves $K_{12}=K_{13}=K_{23}=K$, $L_{12}=L_{13}=L_{23}=L$ and $M_{12}=M_{13}=M_{23}=M$, with K, L, M collinear. This implies, in particular, that the line containing the collinear points K_{13}, L_{13}, M_{13} (the Desargues axis of J_{α}) and the line containing the collinear points K_{23}, L_{23}, M_{23} (the Desargues axis of $J_{\alpha^{\prime}}$) actually coincide. The last statement of the Theorem follows from Theorem 2.

Figure 9: Kiepert hyberbola \mathcal{K} and Kiepert parabola \mathcal{P}

Note that direct consequences of Theorem 6 are statements (b) and (c) of Theorem 1.
Theorem 6 leads to an alternative construction of the Desargues axis r_{α} of the complementary Jacobi points J_{α} and $J_{\alpha^{\prime}}$ and to a deeper insight on the relations between the Kiepert hyperbola and the Kiepert parabola of the given triangle. Following [2], we recall that the Kiepert parabola \mathcal{P} of a triangle \mathcal{T} is the envelope of the Desargues axes of all α-Jacobi points of \mathcal{T}. Moreover, \mathcal{P} is inscribed into \mathcal{T} and the Euler line is the directrix of \mathcal{P} (Figure 9).

Corollary 6.1. Let \mathcal{T} be a triangle and let J_{α}, $J_{\alpha^{\prime}}$ denote complementary Jacobi points of \mathcal{T}. Then, the common Desargues axis r_{α} of J_{α} and $J_{\alpha^{\prime}}$ is the (unique) line which is orthogonal to the α-line $J_{\alpha} J_{\alpha^{\prime}}$ and tangent to the Kiepert parabola \mathcal{P}.

Proof. The statement is a direct consequence of Theorem 6. In fact, recall that the foot of the perpendicular from the focus of a parabola to any tangent belongs to the tangent at the vertex. So, if s_{α} is the line from the focus of \mathcal{P} which is parallel to the α-line $J_{\alpha} J_{\alpha^{\prime}}$ and if S_{α} denotes the intersection point of s_{α} with the tangent to \mathcal{P} at its vertex, then the common Desargues axis r_{α} is the tangent to \mathcal{P} simply obtained as the line from S_{α} which is orthogonal to s_{α} (or to $J_{\alpha} J_{\alpha^{\prime}}$).

In fact, the construction of r_{α} described in the proof of Corollary 6.1 induces a correspondence Φ which associates to each α-line $J_{\alpha} J_{\alpha^{\prime}}$ of \mathcal{T} the Desargues axis r_{α} of J_{α} and $J_{\alpha^{\prime}}$.

Reversing this construction, given a line t enveloping the Kiepert parabola \mathcal{P}, we may consider the line from O which is orthogonal to t. In this way, besides the Euler line whose associated Desargues axis is the line at infinity, we can deduce, for example, that the line of the pencil centered in O associated to the Lemoine axis of the triangle, the so-called fifth tangent to \mathcal{P} [2], is just its Brocard axis $O U$.

Another remarkable example may be considered by recalling that the axes s_{1}, s_{2} of the Steiner ellipse of a triangle \mathcal{T} are parallel to the asymptotes of its Kiepert hyperbola and
tangent to its Kiepert parabola (see [6], Theorem 3). In this case, if d_{1} (resp. d_{2}) is the α-line (resp. β-line) from the circumcenter O of \mathcal{T} which is parallel to the asymptote a_{1} (resp. a_{2}) of \mathcal{K} (recall Remark 4.3), we have $\Phi\left(d_{1}\right)=s_{2}$ and $\Phi\left(d_{2}\right)=s_{1}$. Therefore, the intersections D_{1}, D_{1}^{∞} (resp. D_{2}, D_{2}^{∞}) of $d_{1}\left(\right.$ resp. $\left.d_{2}\right)$ with \mathcal{K} are complementary Jacobi α-points (resp. β-points) of \mathcal{T}, for a suitable base angle α (resp. β), whose common Desargues axis is just the Steiner axis s_{1} (resp. s_{2}). Note that, if Q_{i} denotes the tangent point of the Steiner axis s_{i} with \mathcal{P}, the polar line of the centroid G is the line $Q_{1} Q_{2}$, which, for the polarity reciprocity law, also contains the focus of \mathcal{P}.

Acknowledgments

All M. C. Escher works © the M. C. Escher Company B. V., Baarn, the Netherlands. Used by permission. All rights reserved. www.mcescher.com

This work was supported by GNSAGA of INdAM and by the University of Modena and Reggio Emilia, funds for selected research topics.

References

[1] O. Bottema: Hoofdstukken uit de elementaire meetkunde. Servire, Den Haag, 1984.
[2] R. H. Eddy and R. Fritsch: The Conics of Ludwig Kiepert: A Comprehensive Lesson in the Geometry of the Triangle. Math. Mag. 67(3), 188-205, 1994.
[3] F. HaAG: Die regelmäßigen Planteilungen und Punktsysteme. Z. Kristallogr. 58(1-6), 478-489, 1923. doi: 10.1524/zkri.1923.58.1.478.
[4] J. F. Rigby: Napoleon, Escher and Tesselations. Math. Mag. 64(4), 242-246, 1991. doi: 10.1080/0025570X. 1991.11977614.
[5] D. Schattschneider: Visions of Symmetry, Notebooks, Periodic Drawings, and related Works of M. C. Escher. W.H. Freeman \& Co, New York, 1990.
[6] B. Scimemi: Simple Relations Regarding the Steiner Inellipse of a Triangle. Forum Geom. 10, 55-77, 2010.
[7] G. T. Vickers: Reciprocal Jacobi Triangles and the McCay Cubic. Forum Geom. 15, 179-183, 2015.

Internet Sources

[8] C. Kimberling: Encyclopedia of Triangle Centers. https://faculty.evansville.e du/ck6/encyclopedia/ETC.html.
[9] P. Yiu: Introduction to the Geometry of the Triangle. Version 12.1224. Department of Mathematics Florida Atlantic University, 2001. http://math.fau.edu/Yiu/YIUIntrod uctionToTriangleGeometry121226.pdf.

Received March 26, 2021; final form June 1, 2021.

[^0]: ${ }^{1}$ Isogonal lines through a triangle vertex are obtained by reflecting an initial line about the corresponding angle bisector.
 ${ }^{2}$ In order to identify central points of a triangle. $\mathcal{T}=A B C$, we shall recall their notations, as listed by Clark Kimberling in [8]; for example: Incenter $I=X_{1}$, Centroid $G=X_{2}$, Circumcenter $O=X_{3}$, Ortocenter $H=X_{4}$.

[^1]: ${ }^{3}$ For the sake of conciseness, we identify each angle of \mathcal{T} with the name of the corresponding vertex.

[^2]: ${ }^{4}$ The Jacobi α-point is often called the Kiepert α-perspector of \mathcal{T} and the triangle $A^{\prime} B^{\prime} C^{\prime}$ its Kiepert α triangle.
 ${ }^{5}$ The case of an equilateral triangle \mathcal{T} is trivial, since all Jacobi α-points coincide with the centroid G, whose Desargues axis is the line at infinity. From now on, \mathcal{T} is assumed to be non-equilateral.

[^3]: ${ }^{6}$ These points are also known as Vecten Points X_{485} and X_{486}.
 ${ }^{7}$ By using Peter J.C. Moses's " $6,9,13$ Search Function" in [8], we identify D_{1}, D_{2} as the triangle centers
 X_{6177} and X_{6178}, the Ceva points of the real (resp. imaginary) foci of the Steiner inellipse.

[^4]: ${ }^{8}$ This point is the intersection point of the Vecten line and the line joining the circumcenter with the center
 X_{115} of the Kiepert hyperbola and could not be found in [8].

