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Abstract. We study an isomorphism between the group of rigid body displace-
ments and the group of dual quaternions modulo the dual number multiplicative
group from the viewpoint of differential geometry in a projective space over the
dual numbers. Some seemingly weird phenomena in this space have lucid kine-
matic interpretations. An example is the existence of non-straight curves with
a continuum of osculating tangents which correspond to motions in a cylinder
group with osculating vertical Darboux motions. We also suggest geometrically
meaningful ways to select osculating conics of a curve in this projective space and
illustrate their corresponding motions. Furthermore, we investigate factorizabil-
ity of these special motions and use the obtained results for the construction of
overconstrained linkages.
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1 Introduction

The eight-dimensional real algebra DH of dual quaternions provides a well-known model for
the group SE(3) of rigid body displacements. Dual quaternions with non-zero real norm
represent elements of SE(3) and are uniquely determined up to real scalar multiples. In the
projectivization P(DH) ∼= P7(R) they correspond to points of the Study quadric S minus an
exceptional subspace E of dimension three [5].

The Study quadric model provides a rich geometric and algebraic environment for inves-
tigating questions of space kinematics. However, its “curved” nature poses serious problems
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in numerous applications. One way of getting around this is to consider dual quaternions
modulo multiplication by dual numbers instead of just real numbers. The locus of the ensu-
ing geometry is then not the set S \ E ⊂ P7(R) but the projective space P3(D) of dimension
three over the dual numbers (minus a low dimensional subset). It provides a linear model of
space kinematics which is certainly a big advantage. However, it also comes with some rather
counter-intuitive properties: The connecting straight line of two points is no longer unique
and there exist curves with an osculating tangent in any of their points.

What seems rather strange from a traditional geometric viewpoint becomes much more
natural in a kinematic interpretation where straight lines in P3(D) correspond to vertical
Darboux motions. Two poses may be interpolated by an infinity of vertical Darboux motions
[10] and motions in cylinder groups, for example helical motions, admit osculating Darboux
motions at any instance. We demonstrate and illustrate this in Section 3.

In Section 4 we present some results on osculating conics/motions. Generically, there
exists a four dimensional set of osculating conics in every curve point. Among them we
find the well-known Bennett motions [2, 3] but we also suggest another type of osculating
conic with geometric significance. It allows an interpretation as osculating circle in an elliptic
geometry. We further investigate factorizations of polynomial parametric representations of
these motions and give a geometric criterion for factorizability. The obtained results are used
to construct overconstrained linkages whose couplers perform such motions.

2 Preliminaries

A dual number is an element of the factor ring D := R[ε]/⟨ε2⟩. It is uniquely represented by
a linear polynomial a + εb in the indeterminate ε with coefficients a, b ∈ R, the primal and
dual part, respectively. Sum and product of two dual numbers as implied by this definition
are

(a + εb) + (c + εd) = a + c + ε(b + d), (a + εb)(c + εd) = ac + ε(ad + bc).
Multiplication obeys the rule ε2 = 0. Provided a ̸= 0, the multiplicative inverse of a + εb
exists and is given by (a + εb)−1 = a−1 − εba−2. We denote the set of invertible dual numbers
by D×.

2.1 Projective Geometry over Dual Numbers
Similar to common projective geometry over the real or complex numbers, we can study pro-
jective geometry over the dual numbers. We focus on the projective space P3(D) of dimension
three over the dual numbers as this will be the relevant case for rigid body kinematics. The
elements of P3(D) are equivalence classes of elements of D4 \{0} where two vectors x and y are
considered equivalent if there exists an invertible dual number a + εb such that (a + εb)x = y.
We denote equivalence classes by square brackets, i. e. as [x] where x ∈ D4 or as [x0, x1, x2, x3]
where x0, x1, x2, x3 ∈ D.

In spite of its formal similarity with P3(R) or P3(C), the space P3(D) exhibits some rather
unusual properties. Let us consider the connecting line of two points [a] and [b]. For its
definition we already have two choices. It can be considered as point set

{[αa + βb] | (α, β) ∈ F2, (α, β) ̸= (0, 0)} (1)

where F = R or F = D, respectively. We will reserve the word straight line for the case
F = R. There are two reasons for this preference: Firstly, it seems to be the common notion
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in projective geometry over rings. Secondly, a straight line in this sense has real dimension
one while it has real dimension two otherwise. With regard to kinematics, this means that a
straight line describes an, again more common, one-parametric motion.

A first, possibly surprising, geometric property of P3(D) refers to the connecting straight
lines of two points. In contrast to geometry over the real numbers, it is no longer unique.

Proposition 2.1. Let c and d ∈ D4 be two points such that c or d has at least one entry with
non-zero primal part. Provided [c] and [d] ∈ P3(D) do not coincide, they have infinitely many
connecting straight lines. If only one of the points c and d has an entry with non-zero primal
part, the real dimension of the set of all connecting straight lines is equal to one, otherwise
the dimension is two.

Proof. We may parameterize any straight line connecting the given points by (1) where a =
γc, b = δd and γ, δ ∈ D×. This gives four real parameters, the coefficients of γ and δ. But
multiplying c and d simultaneously with the same invertible dual number yields identical
lines. Thus, only two essential real parameters remain. If all entries of c or d have primal
part zero, the dual part of γ or δ does not affect the product γc or δd, respectively. Thus we
only have one essential parameter.

2.2 Space Kinematics
A quaternion is an element of the algebra H generated by basis elements 1, i, j, k with
generating relations i2 = j2 = k2 = ijk = −1 over the real numbers. A dual quaternion
q is an element of the algebra DH with the same basis elements and generating relations
but over the dual numbers D. Thus, we may write q = q0 + q1i + q2j + q3k with q0, q1, q2,
q3 ∈ D or, separating primal and dual parts, q = p + εd where p = p0 + p1i + p2j + p3k and
d = d0 + d1i + d2j + d3k are elements of H.

The conjugate dual quaternion is q⋆ = q0 − q1i − q2j − q3k = p⋆ + εd⋆, the dual quaternion
norm is qq⋆. In terms of (coefficients of) p and d it may be written as qq⋆ = pp⋆+ε(pd⋆+dp⋆) =
p2

0 + p2
1 + p2

2 + p2
3 + 2ε(p0d0 + p1d1 + p2d2 + p3d3) ∈ D. A dual quaternion q is invertible if and

only if its norm is invertible as a dual number. Its inverse is then given by q−1 = (qq⋆)−1q⋆.
The unit norm condition for dual quaternions reads as

pp⋆ = 1, pd⋆ + dp⋆ = 0.

Because the norm is multiplicative, the unit dual quaternions form a multiplicative group
DH×

0 . We embed R3 into DH via (x1, x2, x3) ↪→ 1 + ε(x1i + x2j + x3k) and define the action
of q = p + εd ∈ DH×

0 on points of R3 in the usual way as

1 + ε(x1i + x2j + x3k) 7→ 1 + ε(y1i + y2j + y3k) = (p − εd)x(p⋆ + εd⋆) (2)

[5]. This action provides us with a double cover of SE(3), the group of rigid body displace-
ments, by the group DH×

0 .
A slight modification of (2) extends the action to points [x0, x1, x2, x3] in the projective

extension P3(R) of R3:

[x0 + ε(x1i + x2j + x3k)] 7→ [y0 + ε(y1i + y2j + y3k)] = [(p − εd)x(p⋆ + εd⋆)]. (3)
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This gives an isomorphism between the group of dual quaternions of non-zero real norm
modulo R×, the real multiplicative group, and SE(3). The unit norm condition of (2) is
replaced by the condition that the norm of q be real but non-zero:

pd⋆ + dp⋆ = 0, pp⋆ ̸= 0. (4)
This means that [q] = [p + εd] is a point on the so-called Study quadric S given by the
quadratic form pd⋆ + dp⋆, minus the null cone N given by the singular quadratic form pp⋆.
The only real points of N are those of its three-dimensional vertex space E, given by p = 0.
We call it the exceptional generator.

A crucial observation for this article is that even the real norm requirement (4) can be
abandoned: As long as qq⋆ is invertible, (3) will describe a valid action on P3(R) and provide
a homomorphism from the group DH× of invertible dual quaternions modulo R× to SE(3) or
even an isomorphism between DH×/D× and SE(3).
Proposition 2.2. The groups DH×/D× and SE(3) are isomorphic via the action (3).
Proof. It is easy to see that DH× is homomorphic to SE(3) via (3). In order to see that
DH×/D× is isomorphic, we have to show that dual multiples yield the same action and that
identical action implies a dual factor.

Using the notation qε := p − εd for the ε-conjugate of q = p + εd we can write the right-
hand side of (3) as qεxq⋆. Multiplying q with a dual number a yields (aq)εx(aq)⋆ = aεqεxaq⋆ =
(aεa)qεxq⋆. Because aεa equals the squared primal part of a, this does not change the action
on P3(R). Existence of a dual factor from identical action follows from equal dimension of
DH×/D× and SE(3) and the fact that these groups have only one connected component.

Since all elements of DH×/D× are points of P3(D), it is natural to study space kinematics
via the projective geometry of P3(D). This point of view is not new. It played a role in [7]
and [8]. From an old paper by C. Segre [11] we even infer that probably already E. Study
and his disciples were aware of these connections in the first decades of the 20th century.

2.3 Straight Lines and Vertical Darboux Motions
Via the action (3), a curve in P3(D) corresponds to a one-parametric rigid body motion.
In particular, polynomial curves yield motions with polynomial trajectories in homogeneous
coordinates, that is, rational motions. The simplest example of such motions comes from
straight lines in P3(D) which correspond to vertical Darboux motions [8, 9]. A vertical Dar-
boux motion is the composition of a unit speed rotation about a fixed axis with a harmonic
oscillation along the axis such that one full rotation corresponds to one oscillation period.
Its trajectories are bounded rational curves of degree two (ellipses or straight-line segments).
Rotations and translations are considered as special cases of vertical Darboux motions with
zero or infinite oscillation amplitude, respectively.

We illustrate a vertical Darboux motion in Figure 1. This figure also helps us explain
a generally useful concept: Motions obtained as composition of rotation around an axis and
translation along the same axis have trajectories on a right circular cylinder. Any curve γ on
such a cylinder can be used to completely specify the motion by adding a Cartesian frame
consisting of cylinder normal, cylinder generator and horizontal cylinder tangent. Instead
of the curve on the cylinder, we may equally well consider its image when developing the
cylinder surface. In case of a vertical Darboux motion, γ is an ellipse. Its development is a
sine curve which is scaled in direction of the developed cylinder generators in order to adapt
to the oscillation’s amplitude.
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Figure 1: Vertical Darboux motion with some elliptic trajectories, right circular cylinder, and devel-
opment.

3 Osculating Lines

In this section we demonstrate that a helical motion and a vertical Darboux motion can have
second order contact at any parameter value. Since vertical Darboux motions correspond
to straight lines in P3(D) this amounts to saying that the curve corresponding to a helical
motion has an osculating tangent at any point. This is a remarkable difference to classical
differential geometry over the real numbers where this property characterizes straight lines.
We also prove that an infinity of osculating lines not only exists for a helical motion but
for any generic motion in a cylinder group, i. e., a group generated by rotations around and
translations along a fixed axis.

A rotation around axis k with rotation angle ω is given by the dual quaternion r =
cos ω

2 +sin ω
2 k, a translation with oriented distance δ in direction of k is given by t = 1− 1

2εδk.
Thus, a helical motion and a Darboux motion d with amplitude c are obtained by substituting
pω and c sin ω, respectively, for δ in the product rt:

h = cos
(

ω
2

)
+ sin

(
ω
2

)
k + p

2ωε(sin
(

ω
2

)
− cos

(
ω
2

)
k),

d = cos
(

ω
2

)
+ sin

(
ω
2

)
k + c

2 sin ωε(sin
(

ω
2

)
− cos

(
ω
2

)
k).

(5)

For c = p the first two derivatives of h and d are equal,
dh

dω
(0) = dd

dω
(0) = 1

2k − 1
2pεk and d2h

dω2 (0) = d2d

dω2 (0) = −1
4 + 1

2pε,

while the third derivatives differ,
d3h

dω3 (0) = −1
8k + 3

8pεk ̸= −1
8k + 7

8pεk = d3d

dω3 (0).

Thus, for p = c, the motions (5) have second order contact at ω = 0. Since this parameter
value has no particular meaning for a helical motion, we may state that for any instance of
a helical motion there exists a vertical Darboux motion with second order contact.

Let us also verify that d is actually a straight line in P3(D) by multiplying its parametric
representation (5) with a suitable dual number valued function. Indeed, we have(

1 + pε cos2
(

ω
2

))
d = cos

(
ω
2

)
(1 + pε) + sin

(
ω
2

)
k

which is a parametric representation of the straight line spanned by 1 + pε and k. Summa-
rizing, we can thus state
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P

Figure 2: Geometric interpretation of osculating lines.

Theorem 3.1. At any instance in time any helical motion, viewed as a curve in kinematic
space P3(D), has second order contact with a straight line. Yet, it is not a straight line itself.

This seemingly strange behavior allows a clear geometric interpretation that also gives
additional insight. Figure 2 displays helical motion and osculating Darboux motion via the
cylinder model we discussed earlier. In the development, the helical motion corresponds to
a straight line while the Darboux motion is a sine curve with this line as inflection tangent.
Obviously, it is possible to determine uniquely a suitable sine function in every point. It gives
rise to the unique osculating vertical Darboux motion in a point of the helical motion.

Helical motions are not the only curves in P3(D) susceptible to second order approximation
by straight lines in every point. An arbitrary motion in the cylinder group C corresponds to a
curve in the development. There, an osculating sine function can be drawn in any sufficiently
smooth point and gives rise to an osculating vertical Darboux motion. The possibility to do
so is a direct consequence of the following lemma: Among all candidate sine functions there
exist one with prescribed slope and curvature.

Lemma 3.2. Given two real numbers k, κ ∈ R, there exists a ∈ R such that some point on
the graph of the function φ 7→ a sin φ has slope k and curvature κ.

Proof. The subgraphs corresponding to parameter intervals [iπ
2 , (i + 1)π

2 ] for i ∈ {0, 1, 2, 3}
are congruent and, up to respective signs, have points of equal slope and curvature. Thus,
we may restrict to the case i = 0, k ≥ 0, κ ≤ 0 and search for a > 0. Slope and curvature
are given by

k = a cos φ and κ = − a sin φ

(1 + a2 cos2 φ)3/2

These identities can be written in the following way

k = a cos φ and − κ(1 + k2)3/2 = a sin φ.

This allows us to view a and φ as the polar coordinates of the point (k, −κ(1 + k2)3/2) which
lies, due to our assumptions, in the first quadrant. As its polar coordinates are determined
(and even unique if k and κ are not both zero), we can find a ≥ 0 and φ ∈ [0, π

2 ].

Corollary 3.3. Any sufficiently smooth motion in a cylinder group has an osculating Darboux
motion in any of its points (at any instance).
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4 Conic Sections

We now turn our attention to conic sections in P3(D). We study them as rational curves
of degree two. A parametric representation is simply a polynomial c of degree two in one
indeterminate t that serves as a real parameter. We assume that c has no scalar polynomial
factor of positive degree and also that its coefficients are linearly independent, as otherwise
it would parametrize a straight line or a point. A conic parameterizes a rational motion with
trajectories of degree at most four.

In line with the general philosophy of this article we should consider a polynomial c
up to multiplication with a dual number valued function. However, here it is sufficient to
consider only dual number multiples, that is, we consider only polynomial representations of
minimal degree. In projective differential geometry over the real numbers, a generic smooth
space curve admits a two parametric set of osculating conics in a generic point. In projective
geometry over the dual numbers, a further degree of freedom is added:

For the case of interpolating conics for three finitely separated points [c0], [c1], [c2] ∈
P3(D), this is easy to see. An interpolating conic may be parameterized as [c(t)] where

c(t) = c0 + (c1 − c0 − c2)t + c2t
2.

The points [c0], [c1], [c2] correspond to parameter values t = 0, t = 1, and t = ∞, respectively.
Obviously, different dual number multiples of c0, c1 and c2 yield different conics, unless the
dual factor is the same for all three points. We may use this freedom to have the dual factor
1 for c1 whence a general parametric representation for interpolating conics can be written as

c(t) = γ0c0 + (c1 − γ0c0 − γ2c2)t + γ2c2t
2 (6)

where γ0 and γ2 are invertible dual numbers. This gives the claimed four degrees of freedom.
In view of Section 3 it is natural to ask for space curves that admit a conic with even

higher order contact in every point. We will not pursue this question any further at this point.
Instead, we present two examples of osculating conics in this set with a special meaning for
space kinematics. In Section 4.3 we discuss their factorization in the sense of [4] and use it
for the construction of linkages.

4.1 Bennett Motions
The Bennett motion is a well-known example of a quartic space motion whose kinematic image
in the “classical” sense is a conic section on the Study quadric S and which is determined by
three general finitely separated or infinitesimally neighboring points in the Study quadric. In
fact, we may simply define it as a regular conic in the Study quadric that does not intersect
the exceptional generator E [2, 3]. In our context, we can re-derive the motion from the
following observation:

Lemma 4.1. Given an invertible dual quaternion p there exists an invertible dual number a
such that ap has real norm. The dual number a is determined up to a real multiple.

Proof. Write p = p′ + εp′′ and a = a′ + εa′′ with quaternions p′, p′′ and real numbers a′, a′′.
The dual part of the norm of ap then reads as a′2(p′p′′⋆ +p′′p′⋆)+2a′a′′p′p′⋆. Both, p′p′′⋆ +p′′p′⋆

and p′p′⋆ are real numbers and the latter is different from zero (because p is invertible). We
may divide by a′ (because we want to find an invertible dual number a) so that ultimately
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Figure 3: Circles through three points (left and middle) and osculating circle in elliptic geometry
(right).

a = a′ + εa′′ is determined, up to a real multiple, by one non-vanishing homegeneous linear
equation. A (non-trivial) solution with a′ = 0 is not possible because p is invertible whence
p′p′⋆ ̸= 0.

Returning to (6), we may assume [c0], [c1], [c2] ∈ S as otherwise we can multiply with
suitable dual numbers by Lemma 4.1. Now we are still free to multiply c0, c1, and c2 with
real numbers and it is well-known (c. f. for example [2]) that this freedom is enough to ensure
that [c(t)] lies on the Study quadric S.

Bennett motions are rational motions with entirely circular trajectories of degree four.
They appear as coupler motions of Bennett linkages, that is, spatial four-bar linkages with
exceptional mobility [2]. An example for a Bennett motion can be found later in Figure 4.

4.2 Motions Based on Osculating Circles of Elliptic Geometry
An important object for the kinematic geometry in P3(D) is the null cone N . It consists
of points represented by non-invertible dual quaternions, a property that is preserved under
coordinate changes and thus makes N a geometric invariant. With this in mind, it is natural
to look for osculating conics in special position with respect to N . For a general parametric
representation of the shape (6) it is possible to determine the dual factors γ0, γ2 ∈ D in such
a way that the conic parameterized by [c(t)] is tangent to N in two points. In fact, if we
only consider real factors, this amounts to determining a circle through three points in the
real elliptic plane with absolute conic N ∩ φ where φ is the conic’s plane. For three finitely
separated points this problem has four solutions as can be seen in the spherical model of
elliptic geometry (Figure 3). But this property does not translate to three infinitesimally
neighboring points as in the limit three of the four circles converge to the curve tangent so
that the osculating circle is unique. This is also visualized in Figure 3.

In lack of a better name, we refer to the motions in question as quadratic null cone
motions. The four-dimensional set of osculating conics contains a two-dimensional set of
these motions. Their generic trajectories are rational of degree four, not circular in general
but tangent to the plane at infinity in two points. Figure 4 displays a null cone motion and
a Bennett motion that osculate at one pose which is drawn a little larger.

4.3 Factorization of Bennett Motions and Null Cone Motions
It is well known that a general conic section on the Study quadric (a Bennett motion) occurs
as the coupler motion of a closed spatial four-bar linkage (Bennett linkage) [2, 3]. One
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Bennett motion

osculating null cone motion

Figure 4: A Bennet motion and an osculating null cone motion.

way to find the corresponding linkage to a given Bennett motion is to compute different
factorizations of a parametric representation into linear polynomials over the ring of dual
quaternions. Each factor parametrizes a straight line on the Study quadric and therefore,
generically, a rotation [4]. It can be realized mechanically via a revolute joint. Combining
the joints of two factorizations yields the spatial four-bar linkage. For special conic sections
on the Study quadric, factorization and construction of linkages can be more involved. It is
possible that revolute joints have to be replaced by prismatic (translation) joints [3, 4]. It
may also be the case that only one or infinitely many factorizations exist.

The case of only one factorization is briefly mentioned in [12]. This happens precisely if
the Bennett motion is also a null cone motion. Since essentially everything is known about
the factorization of Bennett motions, we now have a closer look at factorizability of null
cone motions. We also discuss how to construct a linkage to generate this motion, provided
factorizations exist. In P3(D), straight lines no longer correspond to rotations but to vertical
Darboux motions with rotations and translations as special cases. Since a vertical Darboux
motion is a composition of a rotation and a harmonic oscillation along the same axis, it can
be realized by a cylindrical joint which allows an independent rotation around and translation
along a fixed axis. When constructing linkages one will have to ensure that the cylindrical
joints do not introduce unwanted degrees of freedom.

Let c(t) = c0 + (c1 − c0 − c2)t + c2t
2 = p(t) + εd(t) be a conic section which is tangent to

N . We will assume that c2 = 1 which can be achieved by a change of coordinates. Since c is
tangent to the null cone in two points, we know that the norm polynomial’s primal part pp⋆

is a real polynomial with two roots of multiplicity two.
If the two roots coincide, i.e. pp⋆ has one root with multiplicity four, we deduce that this

root is actually real. But then there exists a real parameter value t0 at which the norm of p
is zero whence p(t0) = 0. This implies that p is the square of a linear polynomial s ∈ R[t].
The underlying motion is the translation along a quadratic curve with one point at infinity,
that is, a parabola or a quadratically parametrized half-line. A factorization necessarily is of
the form c = (s + εd1)(s + εd2). But in this case s is a factor of c and therefore c does not
parametrize a conic but a line and it cannot be a quadratic translation. Therefore we assume
for the remainder of this section that the two roots of pp⋆ are distinct.
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Theorem 4.2. If c = p+εd parametrizes a quadratic null-cone motion, a factorization exists
precisely if pp⋆ has two distinct roots t0, t1 ∈ C of multiplicity two and the points [c(t0)],
[c(t1)] lie on the Study quadric.

Proof. We distinguish between three cases:
(a) p does not have a real polynomial factor,
(b) p is an irreducible quadratic real polynomial, or
(c) p is the product of two distinct linear real polynomials.

The seemingly missing case of just one linear real factor is not compatible with the assumption
of c parametrizing a null cone motion. It can only happen in Case (a) that the points [c(t0)],
[c(t1)] don’t lie on the Study quadric since both (b) and (c) ensure that the dual part of
cc⋆ has a real polynomial factor with roots t0, t1. Thus it suffices to show the existence of
factorizations in Case (b) and Case (c).

Let us consider Case (a) at first. Here, the two roots t0, t1 are complex conjugates and we
have pp⋆ = s2 for the irreducible quadratic polynomial s = (t− t0)(t− t1) ∈ R[t] (recall that c
is assumed to be monic). An obviously necessary condition for c to admit a factorization into
linear polynomials is that cc⋆ = s2 + ε(pd⋆ + dp⋆) is a product of two quadratic polynomials
with dual coefficients, that is cc⋆ = (s + ελ1)(s + ελ2) for some λ1, λ2 ∈ R[t]. This implies
pd⋆ +dp⋆ = s(λ1 +λ2) so that s is a factor of cc⋆ and the two points [c(t0)], [c(t1)] of tangency
of the conic c and the nullcone also lie on the Study quadric. For the converse statement, we
appeal to [4, Lemma 3] which ensures existence of a factorization.

Next, let us consider Case (b) where p is an irreducible quadratic real polynomial, that
is c = p + εd with d ∈ H[t]. A suitable parameter transformation allows us to assume
p = t2 + 1. In this case, c describes a translation along a bounded quadratic curve (an ellipse
or line segment). After a change of coordinates we can assume that all trajectories lie in
planes orthogonal to the third coordinate axis and their major axes are parallel to the first
coordinate axis. Thus, the parametrization is of the form c = t2+1+ε(γ1t+γ0+bjt+ai), where
a ≥ b ≥ 0, a ̸= 0 are the lengths of their semi-axes and γ1, γ0 are arbitrary real numbers. As
in [6], we solve the equation c = F1F2 for arbitrary linear factors F1, F2 ∈ DH[t]. Since the
primal part of c is a real polynomial, we get that the primal parts of F1 and F2 are conjugates
of each other. Let us write

F1 = t + p1i + p2j + p3k + ε(u0 + u1i + u2j + u3k),
F2 = t − p1i − p2j − p3k + ε(v0 + v1i + v2j + v3k).

Comparing coefficients in c = F1F2, we obtain a system of nine algebraic equations:

u0 + v0 = γ1, u1 + v1 = 0, u2 + v2 = b, u3 + v3 = 0, p2
1 + p2

2 + p2
3 = 1,

p1(u1 − v1) + p2(u2 − v2) + p3(u3 − v3) = γ0, p1(v0 − u0) + p2(u3 + v3) − p3(u2 + v2) = a,

−p1(u3 + v3) + p2(v0 − u0) + p3(u1 + v1) = 0, p1(u2 + v2) − p2(u1 + v1) + p3(v0 − u0) = 0.

For a > b, this system has two two parametric families of solutions:

p1 = ±
√

a2 − b2

a
, p2 = 0, p3 = − b

a
, u2 = −v2 + b, u3 = −v3

u0 = γ1

2 ∓
√

a2 − b2

2 , u1 = −v1 = ±aγ0 − 2bv3

2
√

a2 − b2
, v0 = γ1

2 ±
√

a2 − b2

2 .

(7)
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If a = b > 0, which is the case if and only if c is a circular translation, there is only one family
of solutions, namely

p1 = p2 = 0, p3 = −1, u0 = v0 = γ1

2 , u1 = −v1, u2 = −v2 + b, u3 = −v3 = −γ0

2 .

In case of γ0 = γ1 = 0, these solutions correspond to the ones found in [6] for quadratic
motion polynomials.

In the final Case (c) the polynomial p is the product of two distinct linear real polynomials
s1, s2 ∈ R[t]. Let us find the reduced polynomial c̃ which parametrizes the same motion and
fulfills the Study condition. Following the proof of Lemma 4.1 we can find the polynomial
a = s1s2(2s1s2 − ε(d + d⋆)) ∈ D[t] with dual number coefficients such that ac has a real
norm polynomial. This product has the real polynomial factor (s1s2)2, so after reducing ac
and dividing off the leading coefficient we end up with c̃ := (1 − ε(d + d⋆)/(2s1s2))c. The
norm polynomial of c̃ equals s2

1s
2
2. Thus we can apply Lemma 3 of [4] to infer existence of a

factorization c̃ = F1F2 such that F1F
⋆
1 = s2

1 and F2F
⋆
2 = s2

2. As c̃ is the product of c with
a rational dual function, we can multiply c̃ with the inverse of this function to obtain c, i. e.
c = (1+ε(d+d⋆)/(2s1s2))F1F2. Let us use partial fraction decomposition for the dual part of
the first factor such that (1+ε(d+d⋆)/(2s1s2)) = (1+ελ1/s1)(1+ελ2/s2) for some λ1, λ2 ∈ R.
This now yields a factorization of c as we obtain c = (1 + ελ1/s1)F1(1 + ελ2/s2)F2.

As we have seen in the proof, polynomials which fulfill Case (b) parametrize bounded
quadratic translations. In Case (c) they parametrize quadratic translations along a curve
which intersects the plane at infinity for two real parameters. Thus, these polynomials
parametrize translations along a hyperbola.
Remark 4.3. The proof of Theorem 4.2 shows that all bounded quadratic translations admit
a factorization. But only circular translations which fulfill the Study condition can be decom-
posed into two rotations, that is, they have factors which satisfy the Study condition. This
confirms results of [6].

The proof of Theorem 4.2 together with Lemma 4.1 shows that in Case (b) and Case (c)
there exist infinitely many quadratic polynomials which parametrize the same motion. In
Case (b) choosing different representations allows us to decompose the given motion into linear
polynomials in infinitely many different ways. In Case (c) however, the linear factors obtained
from different representations only differ by dual rational factors. While the factorizations
are different in algebraic sense, the underlying kinematic decompositions are all the same.
The obtained factors parametrize translations and therefore can be realized by prismatic
joints. As all quadratic translations have trajectories parallel to a plane, they can always be
realized by coupling two prismatic joints with axes parallel to this plane but non-parallel to
each other. Therefore, factorization does not allow for the construction of an overconstrained
linkage performing motions of type (c).

For Case (a) and (b) however we have seen in the proof of Theorem 4.2 that we can find
(at least) two different factorizations. For the construction of overconstrained linkages we
need factorizations where one linear factor has a real norm polynomial, hence parametrizes
a rotation. The other factors are linear polynomials with non-real norm polynomial and
therefore parametrize vertical Darboux motions which can be realized by cylindrical joints.
Using these types of factorization we can construct four-bar linkages consisting of two revolute
and two cylindrical joints which are able to perform the given motion. The degree of freedom
according to the formula of Chebyshev-Grübler-Kutzbach [1, Chapter 5] equals 0, thus the
linkages are overconstrained.
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F1

F2

G1

G2

Figure 5: Spatial four-bar linkage with revolute joints F1, G2 and cylindrical joints F2, G1 whose
coupler performs an elliptic translation.

As a linkage corresponding to a motion of Case (a) is described in [12], we focus on the
construction of a linkage corresponding to Case (b). Let c = t2 +1+ε(γ1t+γ0 +bjt+ai) be an
elliptic translation with a > b ≥ 0. Note that varying γ0 and γ1 yield different representations
of the same underlying motion. The linear factors obtained in the proof of Theorem 4.2 have
the norm polynomials t2 + 1 + ε(t(γ1 ±

√
a2 − b2) + γ0). Thus, we can choose γ0 = 0 and

γ1 = ∓
√

a2 − b2 such that either the first, or the second factor has real norm.
All factors of one family of factorizations parametrize motions around parallel axes.

Choosing two different factorizations from the same family therefore would yield a four-bar
linkage with two revolute and two cylindrical joints with parallel axes. Such linkages however
have in general two degrees of freedom. Therefore we need to choose one factorization from
each family. The two different choices of γ1 determine, which joints are the revolute joints.
Example 4.4. Let us consider a translation along an ellipse with semi-major axis of length a =
2 and semi-minor axis of length b = 1. For γ1 =

√
a2 − b2 we have c = t2 +1+ε(

√
3t+ jt+2i).

Choosing v2 = 0, v3 = 1/
√

3 in Equation (7) we obtain the factorizations c = F1F2 = G1G2
with

F1 = t +
√

3i − k
2 − ε

i − 3j +
√

3k
3 , F2 = t −

√
3i − k

2 + ε
3
√

3 + i +
√

3k
3 ,

G1 = t −
√

3i + k
2 + ε

3
√

3 + i + 3j −
√

3k
3 , G2 = t +

√
3i + k

2 + ε
−i +

√
3k

3 .

The axes of the motions parametrized by F1 and F2 as well as G1 and G2, respectively, are
parallel. The angle between the non-parallel axes is π/3. The distance between the parallel
axes is 1 while the distance between the other axes is 4/3. The obtained linkage is depicted
in Figure 5. It can be shown that it has two operation modes, both are elliptic translations.

5 Conclusion

We have related space kinematics to the geometry of the projective space P3(D) over the ring
of dual numbers. This interpretation seems well suited for kinematic visualization of certain
differential geometric aspects and it also provides the proper mathematical framework for
the systematic study of osculating motions. We presented results for ordinary and osculating
tangents and some ideas about osculating conics and their factorizability. Factorization with-
out the Study condition opens additional possibilities for the construction of linkages with
cylindrical joints.
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