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Abstract. Throughout the history configurations obtained by constructing three
similar figures on the sides of a triangle were studied from several different view-
points. The Pythagorean theorem shows a relation between their area, the case
of equilateral triangles is related to the Napoleon triangle and the existence of
Toricelli (or Fermat) point, while the case of squares is connected to the existence
of the Vecten point of the triangle. Moreover the Kiepert perspectors are obtained
by constructing similar isosceles triangles to the sides of a triangle. In this paper
we study the case of similar isosceles trapezoids. This is a generalization of all
the previously mentioned cases, so the obtained results are natural generaliza-
tions of several well known classical geometry properties. We emphasize several
pairs of perspective triangles and we prove that some of them are also orthologic
pairs (Theorem 2). Moreover we give a characterization for some of the orthology
centers and in the special case when regular pentagons are constructed we give a
characterization for a center of perspectivity. The necessary calculations are made
using complex numbers and matrices.
Key Words: centroid, orthocenter, Euler-line, perspective triangles, orthologic tri-
angles
MSC 2020: 51M04 (primary), 51N20

1 Introduction

Configurations obtained by constructing three similar figures on the sides of a triangle were
studied from ancient times. Despite of the fact that the Pythagorean theorem (see [5]) gives
a relation between the area of three constructed arbitrary but similar figures, the known ge-
ometric properties depend on the shape of the constructed figures. Some general properties
of such figures can be found in [3]. The centers of the equilateral triangles A′BC, B′CA and
C ′AB constructed on the sides of a triangle form a new equilateral triangle, the so called
Napoleon triangle (see [1]), which is perspective to the reference triangle and the center of
perspectivity is the first Napoleon point (X(17) in Kimberling’s Encyclopedia of triangle
centers, see [4] or [8]). Moreover in this case the triangles ABC and A′B′C ′ are perspective
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and the center of perspectivity is the Toricelli (or Fermat) point of the triangle (X(13) in
Kimberling’s notation) and this point is also a Kiepert type perspector (see [10]). The cen-
troids of other regular polygons constructed on the sides of the triangle do not determine an
equilateral triangle, but the perspectivity property remains true as a special case of Kiepert’s
perspectivity property (see [10]). A special case of this property can be obtained if in the ex-
terior (or towards the interior) of a triangle we construct squares on the sides of a triangle. In
this case the triangle determined by the center of these squares is perspective to the reference
triangle and the center of perspectivity is the Vecten point (X(485) in Kimberling’s notation).
Some further properties of this configuration are established in [9]. By constructing similar
isosceles trapezoids on the sides of a triangle we obtain a configuration which includes both
the case of equilateral triangles (as a degenerated case), the case of squares and also the case
of isosceles triangles. Our aim is to establish some properties of these configurations and to
emphasize the connections with the above mentioned properties. Moreover we study not only
the perspectivity of the triangles, but also the orthogonality of them and we emphasize some
connections with well known results.

2 Main results

Our main results are formulated in Theorem 1 and Theorem 2. In Theorem 3 we included
some results concerning the special case when regular pentagons are constructed on the sides
of a triangle. However the pentagon is not a trapezoid, this case can be considered as a special
case because four adjacent vertices of a regular pentagon determine an isosceles trapezoid, so
the obtained figure can be viewed as containing the trapezoids on the sides of a triangle and
three more points (the fifth vertex in each pentagon).

Theorem 1. On the sides of the triangle ABC as bases we construct the similar isosceles
trapezoids BCMN , CAPQ and ABRS (see Figure 1).

a) The perpendiculars from A, B, C to the segments SP, RN and QM are concurrent in a
point K1.

b) The perpendicular bisectors of SP, RN and QM are concurrent in K2.
c) The centroid of the triangle ABC belongs to the line K1K2.
d) If AP ∩ CQ = {Y }, AS ∩ BR = {Z}, BN ∩ CM = {X}, then the line K1K2 is the

Euler-line of the triangle XY Z and centroids of the triangles ABC and XY Z are the
same.

e) Moreover if m(P̂AC) = α and AP
AC

= ρ, then

OK1

OH
= − cos α

cos 3α
and OK2

OH
= cos α

cos 3α
(2ρ cos α − 1),

where O and H are the circumcenter and the orthocentre of the triangle XY Z and
O ̸= H.

Proof. In order to prove the previous statements we use complex numbers. We consider O
as the origin and the radius of the circumcircle of the triangle XY Z to be 1. The points of
the complex plane are denoted by capital letters (A, B, ...) and the corresponding complex
numbers with the same small letters (a, b, ...). So if G is the centroid of the triangle XY Z, g
denotes the corresponding complex number to G. Due to our notations we have

x · x = y · y = z · z = 1.
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Figure 1: K1 and K2 are on the Euler-line of the triangle XY Z

It is well-known (see [2]) that g = x+y+z
3 and h = x + y + z, so a point T is on the Euler-line

of the triangle XY Z if and only if there is a real number λ such that

t = λ(x + y + z).

In what follows we use the notation u = cos α + i sin α and in the following four lemmas
we suppose α /∈ {30◦, 90◦}.
Lemma 1. If z0 = 1

cos α
· u and x, y, z, a, b, c are the corresponding complex numbers to the

points X, Y, Z, A, B, C constructed as in Theorem 1, thenx
y
z

 =

 0 z0 z0
z0 0 z0
z0 z0 0

 ·

a
b
c

 .

Proof of Lemma 1. If we denote by A1 the midpoint of the side BC, then X can be obtained
from C by applying a rotation of 90◦ and a dilation from A1 and scaling factor XA1

CA1
=

tan(π − α) = − tan α, so
x − a1 = i · (− tan α) · (c − a1).

Since a1 = b+c
2 , we obtain

x = b + c

2 + i · tan α · b − c

2 = z0 · b + z0 · c.

In a similar way we deduce

y = z0 · c + z0 · a and z = z0 · a + z0 · b,

which gives Lemma 1.
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Lemma 2. Using the previous notations we havea
b
c

 = cos α

cos 3α

−1 u2 u2

u2 −1 u2

u2 u2 −1

 ·

x
y
z

 .

Proof of Lemma 2. We calculate the inverse of the matrix

M =

 0 z0 z0
z0 0 z0
z0 z0 0

 .

det(M) = z3
0 + z0

3 = cos 3α

4 cos3 α
, so

M−1 = 1
det(M) ·

−|z0|2 z0
2 z2

0
z2

0 −|z0|2 z0
2

z0
2 z2

0 −|z0|2

 = cos α

cos 3α

−1 u2 u2

u2 −1 u2

u2 u2 −1

 ,

hence Lemma 2 follows from Lemma 1.

Lemma 3. Using the previous notations we have p
r
m

 =

1 − ρ · u 0 ρ · u
ρ · u 1 − ρ · u 0

0 ρ · u 1 − ρ · u

 ·

a
b
c

 and

s
n
q

 =

1 − ρ · u ρ · u 0
0 1 − ρ · u ρ · u

ρ · u 0 1 − ρ · u

 ·

a
b
c

 .

Proof of Lemma 3. Since the constructed trapezoids are similar to each other, P is obtained
from C by applying a counterclockwise rotation of angle α around A and a dilation with
scaling factor ρ. Using complex numbers this can be written as

p − a = ρ · u · (c − a)

so we have p = (1−ρ ·u) ·a+ρ ·u · c. Using a similar argument we have r = b+ρ ·u · (a− b) =
(1 − ρ · u) · b + ρ · u · a and m = c + ρ · u · (b − c) = (1 − ρ · u) · c + ρ · u · b, which gives the first
equality from Lemma 3. For the points S, N, Q the rotation is a clockwise rotation, so if we
replace α by −α in the previous relations, we obtain the affixes of the points S, N , Q. This
gives the second relation from Lemma 3.

Combining the previous two lemmas and calculating the product of the corresponding
matrices we obtain
Lemma 4. With the previous notations we have p

r
m

 = cos α

cos 3α

 2ρ cos α − 1 u2 − ρ · u + ρ · u3 u2 − ρ · u3 − ρ · u
u2 − ρ · u3 − ρ · u 2ρ cos α − 1 u2 − ρ · u + ρ · u3

u2 − ρ · u + ρ · u3 u2 − ρ · u3 − ρ · u 2ρ cos α − 1

 ·

x
y
z

 and

s
n
q

 = cos α

cos 3α

 2ρ cos α − 1 u2 − ρ · u − ρ · u3 u2 − ρ · u + ρ · u3

u2 − ρ · u + ρ · u3 2ρ cos α − 1 u2 − ρ · u − ρ · u3

u2 − ρ · u − ρ · u3 u2 − ρ · u + ρ · u3 2ρ cos α − 1

 ·

x
y
z

 .
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In order to prove a) and the first relation of e) it is sufficient to prove that if k1 =
− cos α

cos 3α
(x + y + z), then AK1 ⊥ SP and similarly BK1 ⊥ RN , CK1 ⊥ QM. But AK1 ⊥ SP

is equivalent to the fact that k1 − a is obtained from s − p by a multiplication with a purely
imaginary number. From Lemma 3 we deduce

s − p = −2ρ · cos α · (y − z)

and due to Lemma 2

k1 − a = cos α

cos 3α
(−x − y − z + x − u2 · y − u2 · z)

= − cos α

cos 3α
[(1 + cos 2α − i · sin 2α)y + (1 + cos 2α + i · sin 2α)z]

= − cos α

cos 3α
· 2 cos α · (u · y + u · z),

so it is sufficient to prove that E = y − z

u · y + u · z
is purely imaginary. On the other hand

E = y − z

u · y + u · z
=

1
y

− 1
z

u · 1
y

+ u · 1
z

= −E,

so E is purely imaginary. By a similar calculation we deduce BK1 ⊥ RN and CK1 ⊥ QM ,
so we have a) and the first relation from e).

To prove b) and the second relation from e) it is sufficient to prove that the point K2
whose affix is k2 = cos α

cos 3α
(2ρ · cos α − 1)(x + y + z) belongs to the three perpendicular bisector.

But if z1 and z2 corresponds to two arbitrary points Z1, Z2 in the plane, the perpendicular
bisector of Z1Z2 is the loci of points T for which TZ1 = TZ2. Using complex numbers this
relation can be written as |t − z1|2 = |t − z2|2 or (t − z1) · (t − z1) = (t − z2) · (t − z2), which
gives the equation of the perpendicular bisector in complex numbers:

t · (z1 − z2) + t · (z1 − z2) + z2 · z2 − z1 · z2 = 0.

So we have to check that t = k2 satisfies the previous relation for z1 = p and z2 = s (and
two more corresponding relations). First we calculate s · s − p · p. Using Lemma 3. and the
notation c0 = 2 cos2 α

cos 3α
, we have

s · s − p · p = s · (s − p) + p · (s − p) =
= c0 ·

[
((2ρ cos α − 1) · x + (u2 − ρ · u − ρ · u3) · y + (u2 − ρ · u + ρ · u3) · z) · (z − y)

+((2ρ cos α − 1) · x + (u2 − ρ · u + ρ · u3) · y + (u2 − ρ · u − ρ · u3) · z) · (z − y)
]

= ρ · c0 · (2ρ · cos α − 1) · [x · (z − y) + x · (z − y)].

Based on this result and Lemma 3. the relation

k2 · (p − s) + k2 · (p − s) + s · s − p · p = 0

holds if and only if

2ρ · cos α ·
[
k2 · (y − z) + k2 · (y − z) + cos α

cos 3α
(2ρ · cos α − 1)(x · (z − y) + x · (z − y))

]
= 0.
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Replacing k2 with cos α
cos 3α

(2ρ · cos α − 1)(x + y + z) this relation is equivalent to

2ρ cos2 α

cos 3α
(2ρ · cos α − 1)((x + y + z)(y − z) + (x + y + z)(y − z) + x · (z − y) + x · (z − y)) = 0

and this is true.
To prove c) and d) it is sufficient to prove that the centroid of the triangle ABC is the

same as the centroid of the triangle XY Z. But this is equivalent to a + b + c = x + y + z. But
using Lemma 2, we have

a + b + c = cos α

cos 3α
(u2 + u2 − 1)(x + y + z) = (x + y + z)

since
u2 + u2 − 1 = 2 · cos 2α − 1 and cos α · (2 · cos 2α − 1) = cos 3α.

This concludes the proof.

Remark. 1. For α = 60◦ and ρ = 1 the trapezoids degenerate into triangle and we obtain
an additional property of the figure constructed for emphasizing the Napoleon and
the Torriceli points. Similarly if α = 60◦ and ρ = 1 the trapezoids are squares and
we obtain an additional property of the figure constructed for emphasizing the Vecten
point. Moreover in this case a) and b) remain true without the similarity assumptions,
the triangle XY Z vanishes and we have K1 = G. The existence of the point K2 for
squares appeared in a selection test for the Romanian IMO team in the ’90s.

2. The case α = 108◦ and ρ = 1 (regular pentagons are constructed on the sides of the
triangle ABC) was proposed by Puiu Braica in a Geometry Research forum. In this
case it is also easy to prove from Theorem 1 that K1 and K2 are symmetric with
respect to the center of the nine-point circle. Indeed in this case OK1

OH
= cos 72◦

cos 36◦ and
OK2
OH

= cos 72◦

cos 36◦ · (2 cos 72◦ + 1), so OK1
OH

+ OK2
OH

= 1 because of 4 · sin 18◦ · cos 36◦ = 1.
3. If α = 120◦ and ρ = 1 (regular hexagons are constructed outside the triangle ABC),

then K2 = H and K1 is the center of the nine-point circle in the triangle XY Z.
4. If α = 30◦ or α = 150◦, the triangle XY Z is equilateral, so it has no Euler-line, but

K1, K2 and G are still collinear.

Theorem 2. If in the previous theorem A1, B1 and C1 are the midpoints of the segments
SP, RN respectively MQ and Oa, Ob, Oc are the circumcenters of the triangles ASP , BRN
and CMQ respectively, then

a) AA1, BB1 and CC1 are concurrent in a point K3 (see Figure 2).
b) AX, BY and CZ are concurrent in a point K4 (see Figure 2).
c) A1X, B1Y and C1Z are concurrent in a point K5 (see Figure 3).
d) AOa, BOb and COc are concurrent in a point K6 (see Figure 3).

In other words the triplet of triangles (ABC, A1B1C1, OaObOc) and (XY Z, ABC, A1B1C1)
are formed by pairwise perspective triangles. Moreover the triangles from the second triplet
are pairwise orthologic.

Proof. a) The equation of the line passing through the points Z1 and Z2 is

z · (z1 − z2) − z · (z1 − z2) + z1 · z2 − z1 · z2 = 0,
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so a necessary and sufficient condition for the lines AA1, BB1 and CC1 to be concurrent is∣∣∣∣∣∣∣
a − a1 a − a1 a · a1 − a · a1
b − b1 b − b1 b · b1 − b · b1
c − c1 c − c1 c · c1 − c · c1

∣∣∣∣∣∣∣ = 0. (1)

Based on Lemma 3 the triangles PRM and SNQ have the same centroid as ABC, so
A1B1C1 has also the same centroid. Hence the sum of elements in the first two columns of
the determinant (1) is 0. This implies that it is sufficient to prove that

a · a1 − a · a1 + b · b1 − b · b1 + c · c1 − c · c1 = 0.

This is equivalent to S ∈ R, where S = a · a1 + b · b1 + c · c1. For this reason we show that
S = S. But

2S =a(p + s) + b(r + n) + c(m + q)
=a((2 − ρ(u + u))a + ρuc + ρub) + b((2 − ρ(u + u))b + ρua + ρuc)

+ c((2 − ρ(u + u))c + ρub + ρua)
=S1 + ρ · [uac + uba + ucb + uab + ubc + uca],

where S1 = (aa + bb + cc)(2 − ρ(u + u)) is real and S2 = uac + uba + ucb + uab + ubc + uca is
also a real number, so S ∈ R and this completes the proof.

b) Since XY Z and ABC have the same centroid we can use the same technique as in a),
so we need to prove that S = ax + by + cz is real. Due to Lemma 3 we have

S =(−x + u2y + u2z)x + (−y + u2z + u2x)y + (−z + u2x + u2y)z
=S3 + u2(xy + yz + zx) + u2(xy + yz + zx),

where S3 = −xx − yy − zz is real and S4 = u2(xy + yz + zx) + u2(xy + yz + zx) is also real.
This completes the proof.

c) The triangles XY Z and A1B1C1 have also the same centroid, so it is sufficient to prove
S5 ∈ R, where S5 = a1 · x + b1 · y + c1 · z.

Due to Lemma 3 we have

2S5 =(p + s)x + (r + n)y + (m + q)z
=(2 − ρ(u + u)(ax + by + cz) + ρu(bx + cy + az) + ρu(cx + ay + bz)

The first term is real because of b), so we have to deal with the sum

S6 = u(bx + cy + az) + u(cx + ay + bz).

Using Lemma 4 we obtain

S6 = |u|2 · (u + u)(xx + yy + zz) + S7,

where
S7 = (u3 − u)(yx + zy + xz) + (u3 − u)(xy + yz + zx) ∈ R,

so S5 is real and the proof is complete.
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Figure 4: For pentagons K3 is the orthocenter of the triangle A1B1C1

d) Observe that according to the construction the lines AOa, BOb and COc are isogonals
of the perpendiculars from A, B, C to SP, RN and MQ respectively. Due to Theorem 1, a)
they are concurrent and the point K6 is isogonal conjugate to K1.

Since SP ∥ Y Z, RN ∥ XZ and MQ ∥ XY , the orthology of the pairs (XY Z, ABC) and
(XY Z, A1B1C1) is proved in Theorem 1, a) and b).

The orthology of the triangles ABC and A1B1C1 can be proved in a similar manner, the
calculations are left to the reader. A special case (when α = 108◦ and ρ = 1) is proved in
Theorem 3.

Remark. The calculations can be made also by using the real product defined in [2].

Theorem 3. On the sides of the triangle ABC we construct the regular pentagons BCMHG,
CALKJ and ABFED in the exterior of the triangle (see Figure 4). Denote by GA, GB and
GC the centroid of the triangles ADL, BFG, respectively CMJ.

a) The lines AGA, BGB and CGC are concurent in a point K3 and they pass through the
points H, K, E. Moreover K3 is the orthocenter of the triangle A1B1C1, where A1, B1
and C1 are the midpoints of the segments DL, FG and IJ respectively.

b) If BG ∩ CM = {X}, AL ∩ CJ = {Y } and DA ∩ FB = {Z}, OA, OB, OC are the
circumcenters of triangles BCX, CAY and ABZ, then OA belongs to the perpendicular
bisector of DL.

c) The triangles OAOBOC , XY Z and ABC have the same centroid, they are pairwise
perspective and orthologic.

Proof. a) First we prove that H ∈ AA1, where A1 is the midpoint of DL. For this observe
that H is the symmetric of X with respect to BC, hence h = b + c − x. But from Lemma 1
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we have x = 1
2 cos α

(b · u + c · u), so h − a = b + c − x − a. But a − a1 = a − d+ℓ
2 , and using

Lemma 2, we obtain

2(a − a1) =2a − (1 − ρ · u) · a − ρ · u · c − (1 − ρ · u) · a − ρ · u · b

=ρ · (u + u) · a − ρ(uc + ub)
=2ρ · cos α · a − ρ · (uc + ub)

From these relations, we deduce

2(a − a1) = (−2ρ · cos α)(h − a),

so A, A1 and H are on the same line. To finish the proof it is sufficient to prove that
AA1 ⊥ B1C1. This is equivalent to b1−c1

a−a1
∈ i · R. From the above relations we have

2 cos α · (h − a) = 2 cos α · (b + c) − (b · u + c · u) − 2 cos α · a

and multiplying with −i · tan α we obtain

−2i · sin α · (h − a) = 2i sin α · a + b · u − c · u + c − b

cos α
.

On the other hand using Lemma 3, we have

2(b1 − c1) =u · a + (1 − u) · b + (1 − u) · b + u · c − u · a − (1 − u) · c − u · b − (1 − u) · c

=2i · sin α · a + b · u − c · u + (2 − 4 cos α)(b − c).

To complete the proof of this part we need to show that

2 − 4 cos α = − 1
cos α

if α = 108◦. This is equivalent to

4 sin2 β + 2 sin β − 1 = 0

for β = 18◦ and this is a consequence of the relation sin 2β = cos 3β, which is true for β = 18◦.
From the proved relation we deduce that AA1 is an altitude in the triangle A1B1C1. Using a
similar reasoning we obtain that BB1 and CC1 are also altitudes, so K3 is the orthocenter of
the triangle A1B1C1.

b) As in Lemma 3 we have

oa = b + c

2 + i · c − b

2 · tan 54◦,

so by using Lemma 3 for d and l we obtain

2(o1 − a1) = − 2a − b · u − c · u + a(u + u)
= − 4a sin2 54◦ − b · u − cu + b · (1 − i tan 54◦) + c · (1 + i tan 54◦)

On the other hand we have

d − l =b · u − c · u − a · u + a · u

=4a · i · sin 54◦ · cos 54◦ + b · u − c · u.
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These equalities suggest (by identifying the terms containing a) that

2(oa − a1) = (d − l) · i · tan 54◦.

This can be proved with a straightforward calculation since α = 108◦ = 2 · 54◦. This relation
shows that OAA1 ⊥ DL, so OA belongs to the perpendicular bisector of DL.

c) In the previous proof we saw that

oa = b + c

2 + i · tan 54◦ · c − b

2 .

By adding up this relation with the corresponding relations for ob and oc we obtain oa+ob+oc =
a + b + c, so the triangles OAOBOC and ABC have the same centroid. Using that A1, B1 and
C1 are midpoints and Lemma 3, we have

2a1 + 2b1 + 2c1 = (d + g + j) + (l + m + f) = 2(a + b + c),

so the triangle A1B1C1 has the same centroid as the triangle ABC.

Remark. 1. We can apply Sondat’s second theorem (see [6] or [7]) for the pairs of bi-
logic triangles to obtain several pairs of perpendicular lines determined by the mutual
intersections of the sides and the centers of orthology and also several triplets of centers.

2. As a further research it would be interesting to establish relations between the pos-
sible perspectivity and orthology centers, their coordinates and geometric loci if the
parameters α and ρ vary.
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