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Abstract. We start with a special Steiner’s generation of a conic section based
on a quadratic mapping, which is connected to a well-known theorem of Frégier.
The paper generalises this construction of a conic to higher dimensions and to
algebraic mappings of higher order.
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1 Introduction: Frégier’s Involution

The Theorem of Frégier (see for example [11]) states that,

given a conic c in the Euclidean plane, all right angled triangles inscribed into
c such that the vertex G at their right angle is fixed, have hypotenuses passing
through one point, the Frégier point F of G with respect to c.

With this theorem we connect an involutoric quadratic mapping φ, which is called “Frégier
involution”, c.f. [10].

We put F to the origin of a Cartesian frame and G as unit point of the x-axis and use
homogeneous coordinates, as

F = (1, 0, 0)R, G = (1, 1, 0)R, P = (1, p, q)R, P ′ := P φ = (1, p′, q′)R.

We must intersect line f = FP with a line g′ ⊥ g = GP through G (see Figure 1):

f . . . y = q

p
x, g′ . . . y = −p − 1

q
(x − 1) =⇒ p′ = p(p − 1)

p2 + q2 − p
, q′ = q(p − 1)

p2 + q2 − p
.
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Figure 1: The Frégier mapping φ transforms a line
l to a conic lφ.

Figure 2: By replacing γ by rotations γ(α),
(−π

2 < α < π
2 ), the set of φ(α)-

images of a line l is a pencil of conics.

Omitting ideal points to be mapped by φ we get the coordinate representation of φ as

φ : (1, p, q)R 7→ (p2 + q2 − p, p(p − 1), q(p − 1))R. (1)

It is obvious, how to extend (1) to ideal points, too, when using the coordinates (x0, x1, x2)R
for a general point P1 in a projectively extended Euclidean plane:

φ : (x0, x1, x2)R 7→ (x2
1 + x2

2 − x0x1, x1(x1 − x0), x2(x1 − x0))R.

Remark 1. As a special Euclidean case we consider the ideal line u of the plane of action
as directrix line l. Here we get f ∥ g1, f ⊥ g2, and Steiner’s construction becomes the
interpretation as the “Theorem of Thales”. For no other position of line l, there occurs a
circle as φ-image of a line.

Furthermore, since the Frégier mapping φ is involutoric, the Thales circle u′ over segment
[F, G] maps to the ideal line u′′ = u. We conclude that the number of real intersections of a
directrix line l with u′ is responsible for the type of the image conic l′. In case of l intersecting
line FG in an inner point of segment [F, G], this conic l′ can only be a hyperbola.

The singularity object of φ consists of the points F and the twice to count point G, and
line FG (y = 0) with multiplicity two and the line normal to FG through G (x = 1), (c.f.
[10]). As the construction is based on right angles which define an involutoric projectivity γ
in the pencil of lines through G, the mapping φ is involutoric, too. In [10] it is therefore called
“Frégier involution”. The isotropic lines through G are the only fixed lines of γ, therefore the
points P = (1, 1, ±i)R are the only fixed points of φ.

We focus on the fact that φ maps a line l, (G, F /∈ l), to a regular conic through G, F
(intersecting FG orthogonally in G), see Figure 1. Obviously the pencils F (f) and G(g′) are
related in a projectivity σ, which is the product of a perspectivity π : g 7→ f (with perspectivity
axis l) and the rotation γ : g 7→ g′. Therefore, lφ is the result of Steiner’s generation of a
conic via projective pencils of lines.

In the following sections we shall deal with generalisations of this Steiner-construction
based on projective pencils at different places of action.

A first, still Euclidean generalisation of the construction shown in Figure 1 might replace
the right-angle rotation γ by an arbitrary rotation, see Figure 2. As a rather projective
geometric generalisation, which directly follows from that, we replace line l by a conic and
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Figure 3: l intersects GF in an inner point of
[G, F ], m is an ellipse.

Figure 4: For l ∥ GF the pencil of conics gener-
ated by γ(α) has collinear midpoints.

γ by an arbitrary projectivity. This way it is possible to generalise the quadratic Frégier
involution also to higher degree transformations.

A second generalisation deals with 3D-versions of the original construction, Figure 1.
Here we can expect quadratic mappings again, which can be further generalised to higher
degree algebraic mappings.

Finally we consider the original construction in non-Euclidean and Minkowskian planes.
While, because of the projective geometric nature of the Steiner generation, non-Euclidean
versions do not deliver essentially new results, Minkowskian versions depend on the gauge-set
and the orthogonality concept.

As the topic belongs to Elementary Geometry in a wider sense, we might proceed in
the following way: What do we observe, if modifying the original recipe? Can we extract
properties from these observations? This means to find sufficiently good arguments for an
observation such that one can consider it finally as a theorem-like statement. Due to classical
results in Projective Geometry (see e.g. [4] or [2]) and of conics (see e.g. [5]) it is possible to
deduce such statements via coordinate-free synthetic reasoning, a proving method, which is
typical for (Elementary) Geometry.

2 Euclidean Versions of Frégier’s Mapping and Steiner’s
construction

We start with replacing the 90°-rotation γ : g → g′ by a rotation γ(α) by an arbitrary but
fixed angle α. As such a rotation still is a projectivity within the pencil {g}, the final result
of l due to Steiner’s construction is again a conic through F , G. By varying α we receive a
pencil of conics, see Figure 2. This pencil contains l ∪ GF as real singular 2nd degree curve.
Besides the fixed points F , G, the fixed points on l are conjugate imaginary.

The Frégier mappings φ(α), −π
2 < α < π

2 , modified by the rotations γ(α) mentioned
above, deliver a pencil of conics as the images of line l, and the mappings φ(α) map also each
conic of this pencil again to this fixed pencil. The poles of a line with respect to a pencil of
conics fulfil a conic, (see [5]), therefore, the conics of our fixed pencil have centres fulfilling a
conic m (see Figures 2 and 3). According to Remark 1, if l intersects GF in an inner point of
[G, F ], the fixed pencil consists only of hyperbolas. As there is no parabola, m has no ideal
points and therefore is an ellipse. If l is parallel to GF , then m degenerates into a line, (see
Figure 4).
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Figure 5: For G, F symmetric to l Steiner’s
construction γ(α) generates a pencil
of concentric equilateral hyperbolas.

Figure 6: Steiner’s construction in the case of F
being an ideal point. The midpoints of
the resulting conics fulfil a parabola m.

Remark 2. Again we consider the ideal line u of the plane of action as directrix line l and
apply the Frégier mappings φ(α) to it. Here Steiner’s construction becomes the interpretation
as the “Inscribed Angle Theorem”. The pencil of conics then becomes a pencil of circles. For
no other position of line l, due to rotations γ(α), there occurs a circle in the resulting pencil
of conics.
Remark 3. If we choose line l as the symmetry line of segment [G, F ], the pencils of lines {f},
{g1}, {g2(α)} are congruent, and Steiner’s construction based on φ(α) delivers a pencil of
equilateral hyperbolas, see Figure 5. In this case m degenerates to a point, i.e., the hyperbolas
are concentric.
Remark 4. Let F be an ideal point. By a little synthetic reasoning we get that the conics,
which are the images of line l under φ(α), then have midpoints on a parabola m through F
and l ∩ GF , see Figure 6.

As long as we use Euclidean rotations at G, putting G into an ideal point does not make
sense.
Remark 5. As a rather trivial generalisation we mention the dual φ∗ of the Frégier involution
φ: Let a pair of lines f = F ∗, g = G∗ and an involutoric projectivity γ : g → g be given. A
line p = P ∗ intersects f in F and g in G. Its φ∗-image p′ connects F with Gγ ∈ g. Then
φ∗ maps a point l∗ = L, considered as a pencil of lines, to the set of tangents of a conic
L′. Figure 7, left, shows the generic case of the givens in a projectively closed Euclidean
plane. Thereby involution γ is the reflection in g with fixed point G0. Figure 7, right, shows
a case, where g is the ideal line of the plane and γ the “absolute involution” ruling Euclidean
orthogonality.

This allows to interpret a well-known classical kinematic construction of a parabola as
the dual of a Frégier mapping: The φ∗-image of a point L is the envelope of a leg of a right
angle, if the vertex slides along a line f , while the other leg passes through L.

3 Generalisations of Frégier’s Mapping and its Steiner
Construction

Remark 4 in the former section indicates to replace γ(α) by adding an arbitrary projectivity
δ : {g} 7→ {h} from the pencil G : {g} to a pencil H : {h}. A generic point P (with PF := f)
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Figure 7: Examples of dual Frégier mappings φ∗(f, g, γ) applied to a point L. Left: The involution
γ : g → g is the reflection at G0 ∈ g. Right: g is the ideal line and γ : g → g the “absolute
involution.”
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Figure 8: Projective generalisation to Frégier’s involution.

is then mapped to P φ = f ∩ h. When mapping a directrix line l we will receive a conic lφ

because Steiner’s construction of a conic via projective pencils of lines still remains valid.
Therefore, φ : P 7→ P φ is still a quadratic mapping. It is a projective generalisation to
Frégier’s involution. For the construction of δ one could e.g. use a “Steiner conic” s (c.f. [2])
through G and H, see Figure 8. (In Figure 8 a circle acts as Steiner conic s). It turns out
that a line l is mapped to a conic lφ though F , H and the intersections l ∩ s.

From Figure 8 we derive the following generalisations:
1) Let points F , G and H and an arbitrary conic s with H ∈ s, G ̸∈ s, be given and

adapt the mapping φ and construction in Figure 8 in the following way: A generic point P
defines lines f := FP , g := GP and the intersections {1, 2} = s ∩ g. Therewith, we get a pair
of image points of P , which are defined as P φ

1 := f ∩ H1, P φ
2 := f ∩ H2, see Figure 9, and

the mapping φ : P → {P φ
1 , P φ

2 } is of third degree.
In Figure 9, left, G is chosen as the centre of a circle s, even so the construction is purely of

projective nature. If G is an inner point of the conic s, a suitable collineation transforms the
givens to this special Euclidean situation. If G is outside s, a suitable collineation transforms
these givens to an ideal point G and a circle s, (Figure 8, right). The φ-image of a line l is
a rational cubic lφ with a double point (or cusp or isolated node) at H, it passes through F
and the intersections of l and GF with s. (If one of these intersection points is collinear with
FH, then lφ degenerates into FH and a conic).

2) Similar to 1) we now put G ∈ s, H ̸∈ s and adapt the mapping φ and the construction
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Figure 9: Cubic analogues of Frégier’s involution.

1

H

G

F

2

1

2

1

H
G

F

Figure 10: Another cubic analogue of Frégier’s
involution.

Figure 11: A fourth-degree analogue of Frégier’s
involution

in Figure 8 in the following way: A generic point P defines lines f := FP , g := GP and
g intersects s \ {G} in a single point 1. Therewith, we get the image point P φ of P as
P φ := f ∩H1, see Figure 10. As can be seen from the image lφ of a generic line l the mapping
φ : P → P φ is of third degree and not involutoric.

3) Now we start with G ̸∈ s, H ̸∈ s. As in Case 1) the analogue construction generates
a mapping φ : P → {P φ

1 , P φ
2 } with P φ

1 := f ∩ H1, P φ
2 := f ∩ H2, Figure 11. This figure also

shows that the image lφ of a generic line l is a rational curve of 4th degree. It has 3 double
points (in algebraic sense) at F , H and the third at line l. It passes through the intersections
of l ∩ s and GF ∩ s.
Remark 6. The constructions of the curves lφ in Figures 8-11 allow a kinematic interpretation.
There occur slider-crank mechanisms, which make tangent constructions of the lφ possible.
This rather page-consuming topic will be omitted here.

4 nD-versions of Frégier’s Involution and Steiner’s Construction

In this section we extend the quadratic mapping (1) to higher dimensions. The generalisations
shown in Figures 8-11 are then “prototypes” for obvious further generalisations.

1) Let F , G and P be arbitrary points in a Euclidean n-space, f := FP , g := GP . We
define a mapping φ : P 7→ P ′ by P ′ := P φ = f ∩ Γ with hyperplane Γ ⊥ g. If F is the origin
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Figure 12: The quadratic 3D-Frégier-involution
φ applied to a line l.

Figure 13: The 3D-Frégier-involution φ applied
to a line l, visualised as top-view pro-
jection onto plane F ∨ l.

of a Cartesian frame and if we write vectors from F to a point X as X⃗ and from a point Y

to X as −−→
Y X, then, with F = (0, 0, 0), G = (1, 0, 0) and

Γ . . . (X⃗ − G⃗) · (P⃗ − G⃗) = 0, f . . . X⃗ = tP⃗ , t ∈ R,

follows

P⃗ ′ = G⃗(P⃗ − G⃗)
P⃗ (P⃗ − G⃗)

· P⃗ , (2)

as the n-dimensional equivalent to (1), and φ turns out to be a quadratic mapping for any
dimension n. A line l ⊂ R3 with X(r) ∈ l, X⃗(t) = P⃗ + rQ⃗ transforms into X⃗ ′(r) as

X⃗ ′(r) =

x′
1(r)

x′
2(r)

x′
3(r)

 = p1 + rq1 − 1∑3
i=1 (pi + rqi)2 − (p1 + rq1)

p1 + rq1
p2 + rq2
p3 + rq3

 , (3)

and we show such an image of a line in Figure 12 for n = 3.
For the case n = 2 the φ-image of the ideal line is the Thales-circle over segment [F, G],

for dimensions n > 2 it follows therefore that the image of the ideal hyperplane becomes the
Thales-hypersphere over [F, G].
Remark 7. Because f(P ) ⊂ F ∨ l, the image curve lφ lies in the plane F ∨ l. This allows
a construction of lφ via the antipolarity of the distance-circle dG of G in the plane F ∨ l
with simple descriptive geometric methods (and again Steiner’s construction of a conic).
This antipolarity π rules the orthogonality between lines and planes through G, c.f. [2]. In
Figure 13 the top-view projection onto plane F ∨ l is shown.

Figure 13 gives rise to a new possibility for a generalisation of the nD-Frégier-involution
φ: Replace the singular polarity, ruling the orthogonality within the bundle of lines and
(hyper-) planes through G by a regular one π : P → ΓP (ΓP the “polar hyperplane” to P ).
Then P ′ = P φ := FP ∩ ΓP , and we again get a quadratic mapping φ.

2) Another generalisation might replace the hyperplane Γ (used for (1)) by a hypercone
of revolution Γ(α) with the (one-dimensional) axis g = GP and halve apex angle α, and we
intersect it with f = FP getting two image points P ′, P ′′ of P . (By the way, this gives a new
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Figure 14: Frégier-mapping based on a hyperbolic line-congruence F (axes f1, f2 and the right-angle
involution π within the pencil of planes through line g).

interpretation of the Figures 3-6, when taking the rotations by α and −α as forming a “cone
in the plane”.) Obviously, as equations of Γ(α) and of f and with F as origin one has

Γ(α) . . .
(X⃗ − G⃗)(P⃗ − G⃗)
|X⃗ − G⃗||P⃗ − G⃗|

= cos α, f . . . X⃗ = tP⃗ , t ∈ R.

3) More abstractly formulated, the original Frégier-involution is based on a linear set of
lines, namely the pencil {FP}, and a singular polarity, namely the right-angle involution
within the pencil {GP}. This interpretation opens up for a set of further generalisations for
n-dimensional projective spaces Pn:

Definition 1. In Pn let a linear set of lines F = {f} and a regular or singular polarity π be
given. A Frégier-mapping φ : Pn → Pn maps a generic point P (of the space spanned by F )
to the intersection P ′ of the line fP ⊂ F with the polar hyperplane P π of P

P ′ = P φ := fP ∩ P π. (4)

For example, in the case of the projectively closed Euclidean 3-space P3
e we use a linear

line-congruence F , (i.e. a hyperbolic or parabolic or elliptic net, see [8]) instead of {FP},
and we replace the right-angle involution in {GP} e.g. by a singular polarity π with a line g
as exceptional set of points, (π maps each plane through g to its orthogonal plane through g
and we visualise this in Figure 14.) The Frégier-image of a generic line l is a curve of third
degree lφ ⊂ P3

e.
To end with this sort of generalisations we mention that it is possible to generate algebraic

Frégier mappings of higher degree, when admitting F = {f} to be an algebraic manifold of
lines in Pn, meaning that through each proper point P there are, in the algebraic sense, k
lines f i

P , i = 1 . . . k. Furthermore, if one replaces the (real or complex, regular or singular)
hyperquadric Γ defining a polar system π by an algebraic hypersurface Γ(m) of degree m, the
former polar hyperplane P π has to be replaced by the “first polar hyperplane” Γ(m−1)

P

P 7→ {P ′
1, . . . , P ′

k(m−1)} = P φ = {f i
P ∩ Γ(m−1)

P , i = 1 . . . k}. (5)

5 Cayley-Klein and Minkowskian Versions of Frégier’s Mapping

a) Classical Non-Euclidean Spaces We have covered this topic with Definition 1 already
in projective planes, and it is therefore obvious that all sub-geometries of the projective



G. Weiß, P. Pech: A Quadratic Mapping Related to Frégier’s Theorem . . . 135

GF

O

∥∥

Figure 15: The Frégier-image of a line l in a hy-
perbolic plane (Cayley-Klein model).

Figure 16: Frégier image of a line l in a
Minkowski plane Mc with unit-circle
c and Birkhoff left-orthogonality ⊣.

geometry will deliver a quadratic Frégier involution φ. We content ourselves with visualising
the classical Frégier-involution φ in a hyperbolic plane, Figure 15, as an example of a classical
Cayley-Klein geometry.

Similar to the Euclidean plane (Figure 1), the type of the conic lφ depends on the position
of l with respect to the φ-image ω′ of the “conic at infinity” ω, the limit conic of the hyperbolic
plane. For proper points F , G the curve ω′ is rational of fourth degree and lies completely
within the hyperbolic disk. It has a node in F and touches itself at G with a tangent normal
to FG, see Figure 15. The φ-image of line l, which intersects FG at an inner point of segment
[F, G] will therefore always intersect ω in four points.

It is obvious, how to adapt the generalisations above to Cayley-Klein-spaces, so we can
omit further considerations of this topic.

b) Minkowski Planes Finally, we introduce Frégier’s mapping in (projectively enclosed) affine
planes endowed with a Banach-Minkowski norm, see [9]. Well-known examples for norms in an
affine plane endowed with a coordinate frame are the so-called p-norms ∥(x, y)∥p := p

√
xp + yp,

p ∈ R∪∞. For p = 1 one receives the “Manhattan norm”, p = 2 describes the Euclidean case,
p = ∞ means the “maximum norm” ∥(x, y)∥∞ := max (x, y). But any centrally symmetric,
closed convex curve c can act as unit-circle and defines a norm.

There are several possibilities to define orthogonality concepts in Minkowski plane Mc

with unit-circle c, (see e.g. [1, 3, 6, 7]). Some are more adapted to a certain problem than
others, some are symmetric, i.e., for two lines p, q it holds p ⊥ q ⇒ q ⊥ p, some are not
symmetric and one distinguishes “left-orthogonality” p ⊣ q and “right-orthogonality” q ⊢ p.
A geometric orthogonality relation, which will be used here, is “Birkhoff-orthogonality” with
respect to a unit-circle c ⊂ Mc.

Definition 2 (Birkhoff [1]). The radius p of the unit circle c at P ∈ c (and all parallel lines)
are left-orthogonal to the support (tangent) q of c at P (and all parallel lines).

If c is C1-smooth and strictly convex, ⊣ is a 1-1 relation of the parallel pencils of Mc. If
c contains segments, there is an interval of directions with the same left-normal, and if P is
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a corner of c, then the radius p is left-orthogonal to an interval of directions.

Definition 3. The Frégier mapping φ : Mc → Mc with respect to F , G and ⊣ maps P to
P ′ := f ∩ g⊣, f = FP , g = GP , g ⊣ g⊣.

In Figure 16, for practical constructive reasons, the unit-circle c is the union of two
symmetric circular arcs and therefore has corners. If we map a line l, the image lφ will
therefore contain a segment. Because of the special givens in Figure 16 lφ consists of a line
segment and an arc of a curve of only 4th degree, even so l is chosen arbitrarily.

Many of the former generalisations can surely be adapted for Frégier mappings in normed
spaces of arbitrary dimensions. As a start for further investigations we content ourselves with
this introduction to the topic.

6 Final Remarks and Conclusion

In the paper Frégier mapping and its properties are described and generalised. Frégier map-
ping is derived from the Frégier theorem [10], which proved to be very fruitful. The basic
construction transforms a straight line to a conic which is the result of Steiner’s generation of
a conic via projective pencils of lines. It turns out that the projective geometry approach is
very powerful compared to analytical approach when for instance the right-angle rotation is
replaced by an arbitrary rotation. In this way it is possible to generalise the quadratic Frégier
involution also to higher degree transformations.

Another generalisation deals with 3D-versions of the original construction, which is gen-
eralised to higher degree algebraic mappings. Investigation of further 3D-versions seems to
be promising in future work of the authors.

Finally the original construction is described in non-Euclidean and Minkowskian planes.
We are very grateful to the reviewer for his valuable hints and suggestions.
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