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Abstract. The usual Poncelet porisms deal with polygons which are inscribed
into one conic and circumscribed to another conic. A more general form of Pon-
celet porisms considers polygons whose sides are tangent to more than one conic
of a pencil of conics. We shall study the case of poristic triangles inscribed into a
circle c1 with sides tangent to two further circles c2, c3 and all three circles shall
be contained in a hyperbolic pencil of circles. In order to allow poristic triangle
families, the radii and central distances of the circles are subject to certain alge-
braic relations. The main contribution of this article is to derive these relations
for two special cases: In the first case, only proper circles are involved, while in
the second case, we allow one circle to shrink to a point. We also pay attention to
traces of triangle centers of the poristic families. Finally, we also provide closing
conditions for three more types of circle pencils.
Key Words: Poncelet transverse, hyperbolic pencil of circles, closing condition,
point orbit, 3-periodic billiard.
MSC 2020: 51M04 (primary), 51D30

1 Introduction

The incircle and the circumcircle of a triangle define a poristic family of triangles. To put
it in another way: A triangle determines a poristic familiy of triangles sharing the incircle
and the circumcircle (cf. [9]). On the other hand, two circles cannot be chosen independently
in order to determine a poristic family. The inradius r, the circumradius R, and the central
distance d have to satisfy the equation
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Figure 1: The tree of polygons interscribed to four circles of a hyperbolic pencil. Since there are two
tangents from each point to each circle, the polygons spread out from P1 and close after a
given number of steps if the radii are subject to a certain relation.
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which is usually ascribed to L. Euler (who published this result in 1765), but it was given
in 1746 by W. Chapple (cf. [1]). Therefore, these kinds of porisms are frequently referred
to as Chapple’s porisms.

The Euler triangle formula (1) is just a special case of the many closing conditions for
bicentric polygons. For some n ∈ N\{0, 1, 2, 3}, one may find these polynomial conditions on
the radii R, r, and the central distance d in [5]. All the cases treated in [5] deal with bicentric
n-gons, i.e., n-sided polygons inscribed into one circle and circumscribed to another.

In the original version of Poncelet’s porism (cf. [2]), the poristic families of bicentric
n-gons appear to be a very special case described in one Lemma. Poncelet even showed
that it is possible to find one-parameter families of interscribed n-gons to a (finite) sequence
of conics in a pencil: Assume that ci (with i ∈ {1, . . . , N}) are conics of a pencil.1 Let now
P1 be a point on c1. A tangent from P1 to c2 may intersect c1 in a point P2, from which a
tangent to c3 is drawn and intersects c1 in a point P3 ̸= P1, . . . . This results in a sequence of
points Pi ∈ c1 and lines [PiPi+1] tangent to ci+1 and a last point PN+1, see Fig. 1.

In the case of an n-gon, we shall not forget that the polygon is not unique whether it
closes (i.e., P1 = PN+1) or not.

Poncelet’s most general result states:
If the polygon P1 . . . PN+1 closes for one particular choice of P1, then it closes for any choice
of P1.

1The type of pencil does not matter. From the projective point of view there are five different types, cf. [4].
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In fact, the polygon closes anyhow: Poncelet also showed that the line [P1, PN+1]
envelopes a conic which belongs to the pencil.

Poncelet’s general result contains the very special (and by no means trivial) configura-
tion of a triangle with its incircle and circumcircle (Chapple’s porism) in two ways: On one
hand, any triangle is interscribed between its incircle and its circumcircle, and on the other
hand, the incircle and the circumcircle span a hyperbolic pencil of circles (which are of course
conics).

In the following, we shall study triangles interscribed between three circles of a hyperbolic
pencil. There are two cases to be distinguished:

(i) no circle is of radius zero,
(ii) exactly one circle is a zero circle.

These two cases have to be treated separately, at least in the algebraic approach. As is the
case with Chapple’s porisms, the choice of circles is not free if we want the polygons to close
without introducing a further circle.

Therefore, and motivated by the many experimental results given in [3], we determine
conditions on the radii or central distances of the involved circles. It is sufficient to have a
condition on the radii of the circles since the radii and the distances of the centers of the circles
in the hyperbolic pencil determine each other mutually. Further, it means no restriction to
construct triangles in a normal form of the hyperbolic pencil (with the zero circles placed at
(±1, 0)), since each hyperbolic pencil can be mapped to the standard pencil via a similarity
transformation. In Sec. 2, we deal with the case of three circles none of which is allowed to
be a zero circle. We first determine the closing condition, and then, we sketch how to derive
the algebraic equations of the paths of the centroid and the orthocenter. We will not write
down the algebraic equations of these traces due to their complexity.

It turns out that the algebraic approach delivers more than we expected in the beginning.
Besides the path of a particular triangle center of the moving triangle (principal triangle), we
find the path of the same center of the opportunistic triangles which occur with the principal
triangle since we can draw two tangents from an exterior point to a circle. The latter fact
causes the interscribed polygons to spread (as is illustrated in Fig. 1). Motivated by numerical
experiments (cf. [3]), we shall have a closer look at the traces of incenters and excenters. In
some special cases, these traces contain (parts of) circles.

Sec. 3 treats the case with one zero circle. At least from the constructive point of view,
this seems to be a simpler case. However, from the algebraic stand point it is not. In Sec. 4,
we shall add the closing conditions for triangle porisms in a hyperbolic pencil with four circles.
The techniques used for that purpose do not differ from those in the beginning and so we do
not lay down all the details. Further, the four circle case is not a case on its own right since
the interscribed polygons do close in any case according to Poncelet’s most general form
of his theorem. Finally, we give the closing conditions for poristic families in some elliptic
and parabolic pencils of circles. We shall not treat the very elementary case of pencils of
concentric circles in detail.
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2 Three proper circles

2.1 The closing condition
Following [4, p. 323], the equations of the circles of a hyperbolic pencil can be parametrized
by one real parameter t ∈ R⋆ := R \ {−1, 0, +1} as

c(t) : x2 − 2tx + y2 + 1 = 0. (2)

The values t = ±1 change (2) into (x ± 1)2 + y2 = (x ± 1 − iy)(x ± 1 − iy) = 0, and thus, they
correspond to pairs of isotropic lines through the points N1,2 = (±1, 0) (the null circles in the
pencil). The circle c(0) : x2 + y2 + 1 = 0 carries no real point. The centers C and radii r of
the circles in the pencil are

C(t) = (t, 0) and r(t) =
√

t2 − 1. (3)

The following symbolic computations are simplified by trying to write down everything in
terms of polynomials or rational functions and by avoiding square roots whenever possible.
This not only in the sense of rational trigonometry (cf. [10]), it could also be a new approach
in the area of porisms resulting not necessarily in smooth triangle families, but rational or
discrete ones.

Therefore, we reparametrize the family of circles (2) by

t → 1 + u2

2u
with u ∈ R⋆, (4)

and thus, the centers and radii become

C(u) =
(

1 + u2

2u
, 0
)

and r(u) = u2 − 1
2u

. (5)

We assume that the vertices P1, P2, P3 of the triangles ∆ of the poristic family lie on the
circle c1 (defined by setting t = t1 in (2)). Since the circumcircle c1 of ∆ admits the rational
parametrization

c1(τ) =
(

r1
1 − τ 2

1 + τ 2 + m1, r1
2τ

1 + τ 2

)
with τ ∈ R, (6)

we can assume that P1 = c1(T ), P2 = c1(U), and P3 = c1(V ) with pairwise different real
parameters T , U , and V . In (6), the radius r1 and the coordinate m1 of the circumcenter are
to be replaced by their rational equivalents (5) depending on the parameter u1 ∈ R⋆.

The equations of the three side lines of the triangle are

[P1, P2] : u1(1 − TU)x + u1(T + U)y + TU − u2
1 = 0, (7)

where the equations of [P2, P3] and [P3, P1] are obtained from (7) by replacing first T → U ,
U → V and then U → V , V → T . Note that T , U , V have to be pairwise different in order
to define pairwise different points P1, P2, and P3 on the circle c1. Therefore, the linear forms

T − U, U − V, V − T

are not zero and can be canceled whenever they occur as factors.
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In order to obtain a poristic family of triangles, the sides [P1, P2] and [P2, P3] are tangent
to c2, while [P3, P1] touches the circle c3. The fact that [P3, P1] is tangent to c3 causes a loss
of symmetry in the geometry as well as in the computations, but the polygon has to close.

However, we could also demand that the third side has to touch a fourth circle. Then, the
computational complexity would increase dramatically. The closing condition for this case is
given in Sec. 4.

It is a rather elementary task to determine the tangency condition for [P1, P2] and c2.
For that purpose, we compute the resultant of the respective equations with respect to y and
determine the discriminant of the resulting quadratic equation. It makes no difference if we
compute the discriminant of the resultant with respect to x. Thus, the tangency between
[P1, P2], [P2, P3] and c2 is ruled by

#([P1, P2] ∩ c2)=1 ⇐⇒ C(T, U) : 4u2(u1 − u2)(u1u2 − 1)(T 2U2 + u2
1)+

+2u1(u1u
2
2 + u1 − 2u2)(2u1u2 − u2

2 − 1)TU − u2
1(u2

2 − 1)2(T 2 + U2)=0,

#([P2, P3] ∩ c2)=1 ⇐⇒ C(U, V ) : 4u2(u1 − u2)(u1u2 − 1)(U2V 2 + u2
1)+

+2u1(u1u
2
2 + u1 − 2u2)(2u1u2 − u2

2 − 1)UV − u2
1(u2

2 − 1)2(U2 + V 2)=0,

(8)

while the contact between [P3, P1] and c3 is described by

#([P3, P1] ∩ c3)=1 ⇐⇒ C(T, V ) : 4u3(u1 − u3)(u1u3 − 1)(T 2V 2 + u2
1)+

+2u1(u1u
2
3 + u1 − 2u3)(2u1u3 − u2

3 − 1)TV − u2
1(u2

3 − 1)2(T 2 + V 2) = 0.
(9)

Note that all three conditions (8) and (9) depend on u1, since all vertices of the triangle lie
on the circle c1. The contact condition (9) depends further on u3, because [P1, P2] touches c3;
while both of the two equations (8) also depend on u2, for they describe the contact with c2.

In order to derive conditions on the radii ri and the central distances mi (coordinates of
the centers) such that the three circles ci allow for a Poncelet porism, we determine conditions
on the parameters ui. The latter can be transformed into conditions on the parameters ti in
the hyperbolic pencil of circles.

For that purpose, we eliminate two of the point parameters T , U , V , for example U and
V from the contact conditions (8) and (9). (The choice of the variables to be eliminated does
not change the result.)

From the first resultant

R1 := res(C(U, V ), C(T, V ), V ),

we can cut out the factor u4
1, since u1 is not allowed to be zero.

The final resultant

R := res(R1, C(T, U), U) = 28
8∏

i=1
fi.

factors into 8 polynomials, some of which depend on T . We shall see that only a few factors
yield a condition on ui such that the thus defined three circles allow a poristic family of
triangles. The factors f1 = (u3T

2 + u1)2 and f2 = (T 2 + u1u3)2 are dispensable, since they
would only allow a closing of one particular triangle for a specific T depending on the circles
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c1, c3. The biquadratic factors

f3 =
(
4u2

2u3(u2
1 + 1) + ((u2

2 − 1)2 − 4u2u3(u2
2 + 1))u1

)2
T 4

+2u1
(
4u1u2(u2

2 − 1)2(u1u2 − 1)(u2 − u1)(u2
3 + 1) + (8u2

2(u4
2 + 1)(u4

1 + 1)

−8u2(u2
2 + 1)3u1(u2

1 + 1) + (u8
2 + 28u6

2 + 38u4
2 + 28u2

2 + 1)u2
1)u3

)
T 2

+u2
1

(
u1(u2

2 − 1)2u3 + 4u2(u1u2 − 1)(u1 − u2)
)2

and

f4 =
(
4u2

2(u2
1 + 1) + (u4

2u3 − 4u3
2 − 2u2

2u3 − 4u2 + u3)u1
)2

T 4

+2u1
(
8u2

2u3(u4
2 + 1)(u4

1 + 1) − 4u2(u2(u2
2 − 1)2(u2

3 + 1)+2(u2
2 + 1)3u3)u1(u2

1 + 1)

+(4u2(u2
2 + 1)(u2

2 − 1)2(u2
3 + 1) + (u8

2 + 28u6
2 + 38u4

2 + 28u2
2 + 1)u3)u2

1

)
T 2

+u2
1

(
4u2

1u
2
2u3 + ((u2

2 − 1)2 − 4u2u3(u2
2 + 1))u1 + 4u2

2u3
)2

can be considered as polynomials in T and vanish identically (for all T ) if, and only if, all
their coefficients vanish simultaneously. For the factor f3 this is the case if, and only if,
u1 = u2 = −1, 0, 1. This would imply that at least one of the circles c1 or c2 becomes either a
zero circle or x2 +y2 +1 = 0 which carries no real points. All other trivial solutions like ui = 0
and ui = uj (with i, j ∈ {1, 2, 3} and i ̸= j) are ruled out in each step of the computation.
The same holds true for f4.

The factor f5 = (u1 − u3)2 vanishes if, and only if, u1 = u3 implying c1 = c3 which is not
allowed. Further, we have to discuss the factor f6 = (u1u3 − 1)2. From u1u3 = 1 we infer
that these values are each others reciprocals. Since the rational expression (4) for ti remains
unchanged if we replace u with u−1, u1 = 1/u3 implies that t1 = t3 and r1 = r3, i.e., the
circles c1 and c3 are identic. So far we have discussed six factors of R.

The last two factors depend on ui exclusively:

f7 = (u1(2u1u2 − u2
2 − 1)2u3 − (u1u

2
2 + u1 − 2u2)2)2,

f8 = (u1(2u1u2 − u2
2 − 1)2 − (u1u

2
2 + u1 − 2u2)2u3)2.

(10)

Both factors (although of multiplicity 2) depend linearly on u3. Setting them equal to zero
yields a condition on ui such that the circles c1, c2, c3 allow a one-parameter family of
interscribed triangles. The two conditions (10) can then be solved for u3 which gives

u3 = (u1u
2
2 + u1 − 2u2)2

u1(2u1u2 − u2
2 − 1)2 and u3 = u1(2u1u2 − u2

2 − 1)2

(u1u2
2 + u1 − 2u2)2 , (11)

which are, obviously, each others reciprocals.
In order to find a condition on the pencil parameters ti, we eliminate ui from f7 and f8

in (10). This is done by using the inverse of (4) although this mapping is not birational.
Cutting out the constant factor 232, f7 and f8 become the same factor with multiplicity 8:

(2t1t2 − t2
2 − 1)2t3 − 4t3

1 + 8t2
1t2 − t1(t4

2 + 6t2
2 − 3) + 4t2(t2

2 − 1). (12)

This is due to the fact that f7 and f8 can be transformed into each other by the algebraic
substitution u2 → u2, u1 → u−1

1 , and u3 → u−1
3 .
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Setting the latter polynomial equal to zero, we find an analog to the Euler formula (1)
relating the circumradius R, the inradius r, and the central distance of the circum- and the
incircle of a triangle. It allows to express t3 in terms of a rational function depending on t1,
t2 as

t3 = 4t3
1 − 8t2

1t2 + (t4
2 + 6t2

2 − 3)t1 − 4t2(t2
2 − 1)

(2t1t2 − t2
2 − 1)2 .

Finally, we can derive a condition on the radii ri in order to allow a poristic family of the
above described type. We use (5) in order to eliminate ui from (10) and arrive at(

(4r2
1r2

2 − r4
2 + 4r2

1)2r2
3 + 2r1(4r2

1r2
2 + r4

2 + 4r2
1)(4r2

1 − 4r2
2 − r4

2)r3+

+r2
1(r8

2 − 8r2
1r4

2 − 8r6
2 + 16r4

1 − 32r2
1r2

2)
)

·

·
(

(4r2
1r2

2 − r4
2 + 4r2

1)2r2
3 − 2r1(4r2

1r2
2 + r4

2 + 4r2
1)(4r2

1 − 4r2
2 − r4

2)r3+

+r2
1(r8

2 − 8r2
1r4

2 − 8r6
2 + 16r4

1 − 32r2
1r2

2)
)

= 0.

(13)

We shall summarize our results in

Theorem 1. Let c1, c2, c3 be three circles of a hyperbolic pencil given by the equations (2).
These circles allow a poristic one-parameter family of interscribed triangles P1P2P3 such that
c1 is the common circumcircle, [P1, P2], [P2, P3] are tangent to c2 while [P3, P1] is tangent to
c3 if their center coordinates ti satisfy (12).

The fact that the condition (13) on the radii splits into two factors mirrors the fact that
the involved circles are not necessarily nested, i.e., they may lie on different sides of the
straight circle x = 0 (corresponding to t = ∞) in the hyperbolic pencil.

2.1.1 Computing point paths

Now, we have derived the condition on the radii of the circles defining the poristic triangle
family. In order to compute the equations of the traces of at least some simple (rational)
triangle centers, we assume that u3 is related to u1 and u2 via one of the relations in (11).
From (8) and (9) (which are now dependent because of a suitable choice of ui) we cannot
easily extract expressions for U and V as functions depending on T . Therefore, it is not
possible to parametrize the families of triangles traversing the various Poncelet families.

For some centers (like the centroid or the orthocenter), we can go the following way: We
compute the centroid

X2 = 1
3(P1 + P2 + P3)

and the orthocenter X4 of the triangles P1P2P3 (labeling of triangle centers according to [6],
[11]) using the initial representations of the points Pi as points on c1 depending on T , U , and
V . This yields paramatrizations of X2 and X4 depending in the parameters T , U , V . Since
the center X4 is a linear combination of the fixed point X3 and the (moving) point X2, the
trace of X4 is similar to that of X2 with X3 as the center of similarity and scaling factor 3.
Analogous results hold true for all other triangle centers on the Euler line L2,3 = [X2, X3].

We first eliminate U from

X2[1] − x = 0 and X2[2] − y = 0



212 R. Alves Garcia et al.: Poncelet Porisms in Hyperbolic Pencils of Circles

P1

P2

P3

P4

P5

c1

c2

c3

C2

C ′
2

X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)X2(135)

X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)X2(123)

X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)X2(124)
X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)X2(234)

Figure 2: A triangle P1P2P3 (dark orange) with sides tangent to c2 and c3 together with two oppor-
tunistic triangles P1P2P4 (light orange) and P1P3P4 (yellow). The trace of the centroid
consists of two curves (red, violet).

using the first equation of (8). (Here and in the following, X2[i] means the ith component
of the coordinate vector X2.) Subsequently, we use (9) (where we have inserted one of the
values for u3 chosen from (11)) in order to eliminate V . In the third step, T is eliminated
from both polynomials related to either coordinate function of X2.

In the case of the centroid, we find a polynomial P2 of degree 128 (in the variables x and
y) which factors into 8 different polynomials

P2 =
8∏

i=1
pµi

i .

The degrees di and the multiplicities µi of pi are

d = (16, 16, 20, 12, 12, 20, 16, 16) and µ = (1, 1, 1, 2, 1, 1, 1, 1).

The sextic factor (i.e., the fourth factor) with multiplicity two turns out to be the equation
of a part of the trace C2 of X2 as shown in Fig. 2. This can also be checked by inserting the
parametrization X2(T, U, V ) of the centroid and subsequent simplification using the conditions
(8), (9), and u3 from (11).
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Figure 3: One circle, say c2, may lie on the other side of the straight circle in the pencil (second axis
of symmetry): The centroid traces a sextic C2 and the degree 12 curve C′

2 is the locus of
all centroids of opportunistic triangles.

Surprisingly, a second factor of P2 is annihilated by the parametrization of the centroid.
It is a factor of degree 12 which describes a curve C ′

2 of genus 1 having 6-fold points at the
absolute points of Euclidean geometry. It is the trace of centroids of opportunistic triangles,
i.e., triangles which are also results of the construction (computation) and whose sides also
fulfill the contact conditions.

As can be seen in Fig. 2, the triangle P1P2P3 can be viewed as a principal solution and
traverses one family. The triangles P2P1P4 and P3P1P5 are opportunistic: They come along
with the principal solution and satisfy closing and tangency conditions. The existence of
opportunistic triangles is caused by the fact that there exist two tangents from P1 to c2
and from each intersection of these tangents with the circumcircle c1 there exist two further
tangents to c3. The curve C ′

2 houses the traces of centroids of opportunistic triangles.

A triple of circles from a hyperbolic pencil may not necessarily be a triple of mutually
nested circles. As shown in Fig. 3, the appearance of the sextic trace C2 of the centroid may
change its shape. Nevertheless, the algebraic properties remain unchanged even if one circle
lies not in the interior of c1, i.e., it lies on the the other side.

Finally, we note that the trace C4 of the orthocenter X4 is the image of C2 under the
central similarity with the midpoint of c1 (common circumcenter X3 of the poristic triangles)
as the center, since X2, X3, and X4 are collinear for all triangles. The factor of similarity
equals X4X2 · X3X2

−1 = −2.
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Figure 4: The circular trace of the incenter X1 for nested circles c1, c2, c3.

2.1.2 Experiments

The incenter of a triangle is the first in C. Kimberling’s exhaustive list, see [6], [11]. This
is probably caused by its very simple representation

X1 = 1 : 1 : 1

in terms of trilinear coordinates. However, it is doubtful if X1 deserves this prominent posi-
tion. (In terms of barycentric coordinates, the centroid X2 would be in the first place.) The
computation as well as the construction of the incenter bear on non-rational operations, such
as the normalization of vectors, or equivalently, the construction of angle bisectors. Moreover,
the incenter as the center of a tritangent circle of a triangle is only one of four such points
which is even true in a projective setting (see [8]) and in rational trigonometry or universal
geometry (cf. [10]).

Numerical experiments have shown that the incenter of the triangle ∆ = P1P2P3 traces at
least an oval curve C1 (cf. [3]). Moreover, this trace was so close to circles in almost all cases
that it was near to suggest that C1 is a circle. As we shall see, in some special cases, we are
able to show that C1 is really a circle. Fig. 4 does not only illustrate the results of numerical
experiments which showed that the incenter X1 of P1P2P3 moves on a curve that looks like a
circle C1. It is not at all obvious that C1 is a circle and at least for the case where two sides of
P1P2P3 are tangent to the same circle, say c2, in the pencil we can give the equation of this
circle and state:

Theorem 2. Let c1, c2, c3 be three nested circles from a hyperbolic pencil of circles which
allow a one-parameter family of poristic triangles ∆ = P1P2P3 such that c1 is the common
circumcircle and the sides [P1, P2] and [P3, P1] are tangent to c2 while [P2, P3] is tangent to
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c3. Then, the trace C1 of the incenter X1 of the triangles ∆ is a circle which is not contained
in the hyperbolic pencil.

Proof. The assumption that [P1, P2] and [P3, P1] are tangent to c2 guarantees that there exist
two poses of the triangle P1P2P3 which are symmetric with respect to the axis a of the circle
pencil (cf. Fig. 4):

(i) ∆l = P l
1P l

2P l
3 with P l

1 being the left point of a ∩ c1 and
(ii) ∆r = P r

1 P r
2 P r

3 with P r
1 being the right point of a ∩ c1 .

Without loss of generality, we may at first assume that ui > 1 (for i ∈ {1, 2, 3}) hold.
Secondly, the assumptions u1 > u2 and u1 > u3 shall guarantee that the circle c1 is the largest
one, and therefore, the points P2 and P3 are always real. Then, we have P l

1 = (u−1
1 , 0) and

P r
1 = (u1, 0). Further, P l

2,3 = (u−1
3 , ±yl) and P r

2,3 = (u3, ∓yr) with u3 being one of (11) and

yl =
2(u2

1 − 1)(u2
2 − 1)

√
u2(u1u2 − 1)(u1 − u2)

(u1u2
2 + u1 − 2u2)2 and yr = ylu3.

In order to find the incenter of ∆l and ∆r, it is sufficient to intersect the interior angle bisector
at P l

2 and P r
2 (or P l

3 and P r
3 ) with a : y = 0. This yields the surprisingly simple coordinate

representations of the left and right incenter X l
1 = (ξl, 0) and Xr

1 = (ξr, 0) with

ξl = 2u2
1 − 2u1u2 + u2

2 − 1
u1u2

2 + u1 − 2u2
and ξr = u2

1 − u2
1u

2
2 + 2u1u2 − 2

u1(2u1u2 − u2
2 − 1) .

(Note that only the substitution u1 → u−1
1 yields ξl → ξr.) Since ξl and ξr are not each

other’s reciprocals, the points X l
1 and Xr

1 cannot be joined by a circle from the underlying
hyperbolic pencil. Now, we compute the Thales circle C1 on the segment X l

1X
r
1 and find the

circle
C1 : u1(2u1u2 − u2

2 − 1)(u1u
2
2 + u1 − 2u2)(x2 + y2)

+(u3
1u

4
2− 4u4

1u2+ 6u3
1u

2
2− 8u2

1u
3
2+ u1u

4
2+ u3

1+ 6u1u
2
2+ u1− 4u2)x

−(u2
1u

2
2 − u2

1 − 2u1u2 + 2)(2u2
1 − 2u1u2 + u2

2 − 1) = 0
(14)

with the radius
ρ = 1

2
(u1u

4
2 + 4u2

1u2 − 6u1u
2
2 − 3u1 + 4u2)(u2

1 − 1)
u1(2u1u2 − u2

2 − 1)(u1u2
2 + u1 − 2u2)

.

In order to verify that the equation of C1 is the equation of the trace of X1, we can compute
a parametrization and show that it annihilates the circle equation which definitely needs a
CAS.

The circle C1 with the equation (14) is only a part of the complete picture shown in
Fig. 5. The excenters ot the triangle ∆ move on a more complicated curve that contains one
circle and two further closed loops. In comparison with Chapple’s porism (where the three
excenters of a triangle ∆ move on a single circle, cf. [9, Thm. 3.2]), the poristic trace is broken
up into three components since the tangency of ∆’s sides to the unique incircle is replaced
by tangencies to different circles. In Thm. 3 we shall give the equations of the two circles in
the case of non-nested circles c1, c2, c3.

Until now we have assumed ui > 0 (i ∈ {1, 2, 3}). Now, we shall discuss the effect of
other choices of ui. For ui ̸= 0 we observe that u−1

i leads to the same circle ci since (4) does
not change under the substitution ui → u−i

1 . This holds also true for negative ui. If now one
of the values ui is negative, say u2 < 0, then c2 is no longer in the interior of c1. Such a
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c1

c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2c2

c3
X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1

P2

P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1

P3

A1

A3

A2

Figure 5: The trace of the centers of the triangles’ tritangent circles in the case of a nested circle
triple.

case is illustrated in Fig. 6. The curves shown in Fig. 6 are determined numerically and the
coloring of the different parts of the curves correspond to different triangle shapes. Whenever
a triangle collapses, its incenter happens to lie on the common circumcircle c1. As long as the
center of the interior tritangent circle remains in the interior of c1, the path of the center is
drawn black. The red, orange, and yellow parts are the traces of centers of tritangent circles
of ∆ if these centers are excenters. The transition from an incenter to an excenter happens
precisely at the cusps of the black curve. The cusps are located at the contact points of the
common tangents of c1 and c2. Fig. 6 also indicates that the orbit of the centers of the four
tritangent circles of ∆ move on two circles and two a additional closed curves and all four
branches belong to the same algebraic curve. Situations like these are a good reason to make
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no difference between the incenter and the excenter of a triangle and to simply speak about
the four tritangent circles of a triad of lines as indicated in [7, 8].

c1

c2

c3

X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1X1

P2

P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1P1
P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3P3

A1

A3

A2

Figure 6: A circle configuration with c2 outside: The centers of some of the tritangent circles run
on a circle as long as these centers are incenters, even if the initial circles are not nested
as long as there exist symmetry poses of the triangles.

We are able to give the equations of the circular paths of the centers of ∆’s tritangent
circles if the three circles from the hyperbolic pencil are not nested:

Theorem 3. Let c1, c2, c3 be three circles of a hyperbolic pencil of circles. Assume that
c2 lies not in the interior of c1 and the triple of circles allows a poristic family of triangles
∆ = P1P2P3 such that [P1, P2] and [P2, P3] are tangent to c2 while [P2, P3] Then, the trace C1
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of the centers of tritangent circles of the contains the two circles

K1 : u1u3

(√
u1(u2

1 − 1) + u1
√

u1 − u3

) (
x2 + y2

)
−

√
u1u3

((
(u1u3 + 1)√u3 − (u1 − u3)

√
u1
)√

u2
1 − 1 −

(
u2

1 − 2√
u1u3 − 1

)√
u1 − u3

)
x

+ u3
(
1 − (u2

1 − 1)√u1u3
)√

u1 − u3 + √
u3 (u3 + u3

√
u1u3 − u1)

√
u2

1 − 1 = 0,

(15)

K2 : u1u3(u2
1 − 1)

(√
u3(u2

1 − 1) +
√

u1 − u3

) (
x2 + y2

)
−

√
u1u3(1 − u2

1)
(
(2u1

√
u1u3 + u3(u2

1 − 1))
√

u1 − u3
)

+
(√

u1(1 + u1u3) + √
u3(u1 − u3))

√
u2

1 − 1
)

x

+ √
u1u3(u2

1 − 1)
(

u1

√
u1(u2

1 − 1) +
√

u1 − u3
(
u1

√
u1u3 + u2

1 − 1
))

= 0 (16)

centered at the points

C1,2 =
√

u3

2u1u3

(
u3(u2

1 + 1) ± (√u1u3 + 1)
√

(u1 − u3)(u2
1 − 1), 0

)
.

Proof. Due to symmetry reasons, the circular parts K1 and K2 of the curve C are centered on
the axis of the hyperbolic circle pencil. Both are Thaloids of segments on the axis bounded
by the interior and exterior angle bisectors of two triangles ∆l = P l

1P l
2P l

3 (the left one) and
∆r = P r

1 P r
2 P r

3 (the right one) in symmetry pose, cf. Fig. 7. Thus, we may assume that the
vertices of the triangles are

P l
1 = (u−1

1 , 0), P l
2,3 =

(
u3, ±

√
(u1u3 − 1)(u1 − u3)

u1

)
,

P r
1 = (u1, 0), P r

2,3 =
(

u−1
3 , ∓

√√√√(u1u3 − 1)(u1 − u3)
u1u2

3

)
.

(17)

Note that u2 does not show up in the above representations of triangle vertices. However,
this is not necessary as long as ui fulfill (11).

Now, we can compute the centers of the tritangent circles of the left and right triangle
∆l = P l

1P l
2P l

3 and ∆r = P r
1 P r

2 P r
3 which simplifies to the computation of the intersection of

a pair of bisectors with the symmetry axis y = 0 of the circle pencil. The Thaloids on the
respective intersection points are the circles given in (15) and (16) and its is elementary to
verify that the above given points C1,2 are their centers.

We can also confirm that the contact points of the four common tangents lie in pairs on
the circles K1 and K2.

If the triangles interscribed to the circles of the hyperbolic pencil do not share symmetries
with the circles, the trace C1 of the incenter also looses its symmetries. This would be the
case if one of the two lines which are tangent to c2 would touch a further circle, say c4 ̸= c2, c3.

Moreover, as we can observe in Fig. 8, the trace of the incenter X1 becomes a cusped
curve. This is also true for the traces of the incenters of the opportunistic triangles. The
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Figure 7: The construction of the circular parts of the paths of X1.

cusps (singularities) of C1 correspond to degenerate triangles: Such triangles lie in common
tangents of the involved circles and will not become entirely real if all three circles are nested.
If one circle, say c2, lies outside c1 (and c3), then there exist 8 real common tangents of which
four lead directly to the cusps of C1. The cusps are located on c1. The traces of incenters of
the opportunistic triangles share some cusps which correspond to degenerate triangles that
belong to different (combinatorial) types of opportunistic triangles.

Fig. 8 shows three more cusped curves which are the traces of incenters of opportunistic
triangles. The cusped curves are the traces of true incenters. Whenever an incenter changes
to an excenter (this happens at the cusps), its path is no longer in the interior of c1. The
fourth circle c4 which is the envelope of the third triangle side is not displayed as well as the
exterior branches of C, C ′, C ′′, and C ′′′.

3 One zero circle

3.1 The closure condition
Again, we assume that the we deal with circles in a hyperbolic pencil of circles with equations
(2). Like in the previous case, c1 shall be the circumcircle of the triangles in the poristic family.
The line [P1, P2] shall pass through the zero circle c0 = [1, 0] (the right one). Further, the
line [P2, P3] shall be tangent to the circle c2 and the terminal segment [P3, P1] shall touch the
circle c3.

We start with the point P1 which can be parametrized by

P1 =
(

T 2 + u2
1

u1(1 + T 2) ,
(u2

1 − 1)T
u1(1 + T 2)

)
with T ∈ R (18)

according to (6).
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c1

c2

c3

C1

C′

1

C′′

1

C′′′

1

Figure 8: The curve C1 of incenters of the principal triangle and the curves C′
1, C′′

1 , C′′′
1 of the oppor-

tunistic triangles: Cusps are incenters of degenerate triangles.

The line [P1, c0] = [P1, P2] intersects the circumcircle c1 at P2 which therefore obtains the
parametrization

P2 =
(

u1(1 + T 2)
T 2 + u2

1
,
T (1 − u2

1)
T 2 + u2

1

)
with T ∈ R. (19)

For the point P3 ∈ c1 there exists a parameter U ̸= T ∈ R such that

P3 =
(

U2 + u2
1

u1(1 + U2) ,
(u2

1 − 1)U
u1(U2 + 1)

)
with U ∈ R. (20)

Now, U is to be determined such that the lines [P2, P3] and [P3, P1] touch c2 and c3. For that
purpose, we first determine the equations of the latter lines and find

[P2, P3] : (u1U + T )x + (TU − u1)y − u1T − U = 0,

[P3, P1] : u1(TU − 1)x − u1(T + U)y + u2
1 − TU = 0.

Secondly, we derive the contact conditions of these lines with the circles c2 and c3, i.e., we
compute the resultants of the linear equations and the equations of the respective circles,
and subsequently, we determine the discriminants of the resulting quadratic equations. This
yields

C23 : (T 2U2 + u2
1)(u2

2 − 1)2 + 4u2(u1 − u2)(1 − u1u2)(T 2 + U2)
+ 2(u1u

2
2 + u1 − 2u2)(2u1u2 − u2

2 − 1)TU = 0,

C31 : 4(T 2U2 + u2
1)u3(u1u3 − 1)(u3 − u1) + u2

1(u2
3 − 1)2(T 2 + U2)

− 2u1(u1u
2
3 + u1 − 2u3)(2u1u3 − u2

3 − 1)TU = 0.

(21)

The two equations (21) have to be fulfilled by infinitely many pairs of (T, U), and therefore,
they have to be linearly dependent. Thus, the resultant of R = res(C23, C31, U) with respect
to one circle parameter, say U , has to be fulfilled by all T in R. (It is also possible to eliminate
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T and discuss the resulting polynomial in U . This leads to the same closing condition.) We
compute

R = res(C23, C31, U)
and observe that R = φ2

1 · φ2, i.e., it factors into two polynomials with

φ1 = 4u2u3(u2
1 + 1) − u1((u3 + 1)2(u2

2 + 1) + 2u2(u3 − 1)2) (22)

and the nearly symmetric polynomial

φ2 =
4∑

i=0
c2iu

4−i
1 T 2i with c2i = c8−2i for i = 0, 1, 2, 3, 4.

Herein, the coefficients c2i are

c8 = (4(u2
1 + 1)u2u3 + ((u3 − 1)2(u2

2 + 1) − 2(u3 + 1)2u2)u1)2,

c6 = 4(2u3(u2
2 + 1)(u2

1 + 1) − ((u2
2 + 1)(u3 + 1)2 − 2u2(u3 − 1)2)u1)

· (2u2(u2
3 + 1)(u2

1 + 1) − ((u2
2 + 1)(u3 − 1)2 + 2u2(u3 + 1)2)u1),

c4 = 2(8(u4
1 + 1)(u2

2u
2
3(u2

2 + u2
3 + 2) + u2

2 + u2
3) − 8u1(u2

1 + 1)(u4
2 + 1)(u3 + 1)2

+ u2(u2
2 + 1)(u2

3 − u3 + 1)(u3 − 1)2 + 2u2
2(u2

3 + 1)(u3 + 1)2).

It turns out that the polynomial φ2 is independent of T if, and only if, all coefficient vanish
simultaneously. This is only the case if ui = ±1 which implies ti = ±1 (for all i ∈ {1, 2, 3})
which is excluded by assumption (otherwise ci are only zero circles).

Therefore, the only relevant part of R is the factor φ1 from (22). With (4), we can rewrite
(22) in terms of ti which yields the surprisingly simple relation

t2t3 − 2t1 + t2 + t3 − 1 = 0. (23)

Assuming that u3 = c = const. and c ̸= 0, ±1, then φ1(u1, u2, c) = 0 from (22) describes
a cubic curve in the [u1, u2]-plane. Independent of u3 = c, the cubic curve has a singularity
at (−1, −1), and thus, it admits a rational parametrization(

(c + 1)2(τ + 1)τ
(c + 1)2τ + (c − 1)2 ,

4cτ

(τ + 1)((c + 1)2τ + (c − 1)2)

)
, with τ ∈ R.

From (22), we can derive a condition on the radii of the circles c1, c2, and c3 to allow for
a porism. For that purpose, we eliminate ui using (5) and find

r8
2r8

3 − 16r4
3(r2

1r2
3 + 2r2

1 + 3r2
3 + 4)r6

2

+25(3r4
1r4

3 − r2
1r6

3 + 8r4
1r2

3 − 4r2
1r4

3 − 2r6
3 + 8r4

1 − 8r2
1r2

3)r4
2

−28r2
1(r2

1 − r2
3)(r2

1r2
3 + 2r2

1 − r2
3)r2

2 + 28r4
1(r2

1 − r2
3)2 = 0.

(24)

Collecting our results, we can formulate in analogy to Thm. 1 the following:

Theorem 4. Let c1, c2, c3 be three circles of a hyperbolic pencil given by the equations (2)
with the (right) zero circle c0 = (1, 0). These circles allow a poristic one-parameter family of
interscribed triangles P1P2P3 such that c1 is the common circumcircle, [P2, P3] is tangent to
c2, [P3, P1] is tangent to c3, and [P1, P2] passes through c0 if their center coordinates ti satisfy
(23), which implies that their radii satisfy (24).
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Figure 9: Circles c1, c2, c3 from a hyperbolic pencil including a zero circle: poristic trace C2 of the
centroid (left), poristic trace C1 and C4 of the incenter and the orthocenter (right).

3.2 The other zero circle
In the previous subsection, we have chosen the zero circle c0 = (1, 0) (on the right side). If
we replace c0 with c′

0 = (−1, 0), i.e., the left zero circle, then the equation equivalent to (22)
relating the pencil parameters ui of the three circles reads

4u2u3(u2
1 + 1) + u1((u3 − 1)2(u2

2 + 1) − 2u2(u3 + 1)2) = 0 (25)

and is a planar cubic curve for fixed u3 = c = const. with c ̸= 0, ±1 with an isolated double
point at (1, 1). Therefore, the totality of circle triples allowing a Poncelet porism in the above
mentioned sense can be parametrized by(

−(c − 1)2(t + 1)t
(t(c − 1)2 + (c + 1)2 ,

4tc

(t + 1)(t(c − 1)2 + (c + 1)2)

)
.

Eliminating ui with (4) from (25) we obtain the analog to (23) for the Poncelet variant with
the left zero circle

t2t3 + 2t1 − t2 − t3 − 1 = 0. (26)

Similar to 4, we can summarize our results in:

Theorem 5. Let c1, c2, c3 be three circles of a hyperbolic pencil given by the equations (2)
with the (left) zero circle c′

0 = (−1, 0). These circles allow a poristic one-parameter family of
interscribed triangles P1P2P3 such that c1 is the common circumcircle, [P2, P3] is tangent to
c2, [P3, P1] is tangent to c3, and [P1, P2] passes through c0 if their center coordinates ti satisfy
(26), which implies that their radii satisfy (24).

Surprisingly, the condition on the radii of the circles ci mentioned in Thm. 5 equals the
condition in Thm. 4, i.e., the choice of the zero circle does not effect the condition on the
radii.
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Fig. 9 shows the two different versions of Poncelet porisms with three proper circles an
a zero circle c0. The left-hand side of Fig. 9 shows the variant with the right zero circle c0.
The trace C2 of the centroid is also displayed. The right-hand side of Fig. 9 displays a porism
with the left zero circle c′

0 and a circle c3 encircling the point c′
0. The traces C1 (black) and

C4 (violet) of the incenter and the orthocenter are also shown. The locus C1 of the incenter
has six cusps (two are two-fold) which stem from degenerate triangles in the poristic family.

In any case, the loci of the centers X1, X2, X4 (and most probably of many others) consist
of two branches and can, therefore, never be rational curves.

Surprisingly, the limits of the orthocenters of the flat triangles are proper points, and
thus, the curve C4 shown in Fig. 9 (right) has no real points at infinity.

3.3 Equations of point orbits
In the present case (with one zero circle), it is possible to parametrize the traces of the
triangle vertices explicitly in terms of one real parameter T . By virtue of (18) and (19), this
is obvious for the points P1 and P2. Assuming that ui are chosen such that the equations
(21) are dependent, then we can solve (for example) the first equation with respect to the
parameter U and find

U = (u1u
2
2 + u1 − 2u2)(2u1u2 − u2

2 − 1)T ± 2(u2
2−1)

√
u2(u1u2−1)(u1−u2)(T 2+1)(T 2+u2

1)
T 2(u2

2−1)2−4u2(u1u2−1)(u1−u2) .

Note that C23 and C31 given in (21) are elliptic quartic curves with their only singularities
(ordinary double points) at the points 0 : 1 : 0 and 0 : 0 : 1 in the projectively closed
[T, U ]-plane.

With the presence of algebraic parametrizations of the triangle vertices P1, P2, P3 it is
possible to parametrize the trace of any triangle center. The crucial point is the implicitization
(which cannot be done automatically, even with Maple) and it is not so easy to prove that
the degree of the curves C2 and C4 equals 12.

4 Further closing conditions

In this section, we give the closing condition for poristic triangles interscribed between four
circles in a hyperbolic pencil. Further, we deliver two closing conditions for parabolic pencils
of circles. This list is far from being complete.

It is not necessary to write down the computation of these conditions in detail, since the
techniques used for that purpose do not differ very much from those used in Sec. 2 and Sec. 3.

4.1 Four circles of a hyperbolic pencil
As we have promised earlier, we also give the closing condition for four different circles of a
hyperbolic pencil. The four circles ci (i ∈ {1, 2, 3, 4}) with centers (ti, 0) and radii ri =

√
t2
i − 1

of the hyperbolic standard pencil allow a one-parameter family of interscribed triangles if ti

are subject to

4t4
1 − 4(σ + π)t3

1 + (ω2 + 6ω − 3)t2
1 − 2(ω − 1)(σ + π)t1 + (π + σ)2 − 4ω = 0,

where we have used the abbreviations

σ = t2 + t3 + t4, ω = t2t3 + t3t3 + ttt2, π = t2t3t4.
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Again, we have assumed that c1 is the circumcircle of P1P2P3 and the each other circle is
tangent to exactly one line of the triangle. A condition on the four radii can also be computed
by eliminating ti from the latter equation with (4). It turns out to be of degree 24.

4.2 Some simple examples from parabolic pencils
The following examples of closing conditions were just bycatch and yield comparably simple
relations between circle parameters (in the pencil) or radii of the circles.

4.2.1 Four generic circles

The circles c1 of a parabolic pencil can be given by their equations as
ci : x2 − 2tix + y2 = 0

with ti ∈ R \ {0} and i ∈ {1, 2, 3, 4} (see [4]). Again c1 is assumed to be the common
circumcircle of the triangles. In this case, the circles ci are centered at (ti, 0) and have the
radii ti. Poristic families of triangles P1P2P3 whose sides [P1, P2], [P2, P3], [P3, P1] are tangent
to the circles c2, c3, c4 show up if the four radii satisfy

4δt3
1 − σ2t2

1 + 2δσt1 − δ2 = 0,

where δ = t2t3t4 and σ = t2t3 + t2t4 + t3t4.

4.2.2 Concentric circles

Let c1 be the circumcircle with radius r1 and the concentric circles ci with radii ri and
i ∈ {2, 3, 4}. Then, it is obvious that the sides of the triangle P1P2P3 inscribed into c1 with
sides [P1, P2], [P2, P3], [P3, P1] tangent to the circles c2, c3, c4 has the following side lengths:
P1Pi = 2

√
r2

1 − r2
i for all i ∈ {2, 3, 4}. Therefore, the triangles of the poristic family are of

equal size and perform a pure rotation about X3 (the center of c1). Consequently, all centers
(except X3) of the triangle P1P2P3 move on circles while the triangle traverses the poristic
family.

The well-known formula 4RF = abc (relating the three side lengths a, b, c with the area
F and the circumradius of a triangle) yields the relation

(r3
1 − r1r

2
2 − r1r

2
3 − r1r

2
4 − 2r2r3r4)(r3

1 − r1r
2
2 − r1r

2
3 − r1r

2
4 + 2r2r3r4) = 0

between the four radii in order to allow a poristic family.

4.2.3 Final remarks

There are still many metric special types of pencils of conics left to discus and to look
for closing conditions for poristic triangles and n-gons with arbitrary numbers of vertices.
The computational approach towards these conditions shown so far may cause troubles for
sufficiently high n. It is also questionable whether our approach is an efficient one. For low
n, we are at least able to give closing conditions, and in some simple or special cases, we
can derive equations of poristic traces of triangle centers. We cannot expect that the traces
and their computation are as simple as it is for the Chapple porism in [9]. At least from
the number theoretic point of view, an entirely rational approach and a search for entirely
rational solutions (families of poristic n-gons) may be interesting. However, this could be
done in a future paper.
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