Angles of Isosceles Tetrahedra

Hidefumi Katsuura

San Jose State University, San Jose, USA hidefumi.katsuura@sjsu.edu

Abstract. We give three new characteristics of an isosceles tetrahedron. These three characteristics are; (i) the sum of cosines of dihedral angles of a tetrahedron at each vertex is 1, (ii) the opposing dihedral angles of a tetrahedron are pairwise same, and (iii) all four solid angles of a tetrahedron are the same. It is known that "isosceles" implies (ii) and (iii), but we think the converse of these and (i) are new. The statement (iii) suggests that a solid angle may determine an isosceles tetrahedron uniquely up to a similarity. However, we give an example to show that this is not the case unless it is a regular tetrahedron. And finally, we obtain a trigonometric identity from an isosceles tetrahedron. We use a theorem on a spherical triangle.

 $K\!ey\ W\!ords:$ isosceles tetrahedron, equifacial tetrahedron, dihedral angle, solid angle

MSC 2020: 51M04

1 Introduction

We will convert a theorem on a spherical triangle to a theorem on a tetrahedron in order to obtain relations between an isosceles tetrahedron and (angles, dihedral angles and solid angles). Let us start with definitions.

Definition 1. Let OABC be a tetrahedron. The segment joining two points O and A is denoted by OA, and its length by \overline{OA} . The *angle* between the two rays \overrightarrow{OA} and \overrightarrow{OB} is denoted by $\triangleleft AOB$. The interior angle between the triangular faces OAB and OAC of a tetrahedron OABC is called the *dihedral angle* at the edge of OA, and it is denoted by $\triangleleft OA$. The *solid angle* $\triangleleft O$ of the tetrahedron OABC at O is definited as $\triangleleft O = \triangleleft OA + \triangleleft OB + \triangleleft OC - \pi$.

A solid angle is also called a *trihedral angle* in [1].

Definition 2. Let OABC be a tetrahedron. Let S be the sphere of radius 1 centered at O. Let A', B', C' be the points on the sphere S that intersect the rays $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$, respectively. We join (A' and B'), (B' and C'), and (C' and A') by parts of great circles on S, and the

ISSN 1433-8157/\$ 2.50 © 2021 Heldermann Verlag

result is said to be a spherical triangle A'B'C'. The segment of the great circle joining A' and B' is denoted by $\widehat{A'B'}$. The arc length of $\widehat{A'B'}$ is also denoted by $\widehat{A'B'}$. (See, for example, Section 6.5 of [4] for spherical geometry.)

Then next theorem is a result on a spherical triangle.

Theorem 1 (Spherical Laws of Cosines). (See Proposition 6.5.3 and Corollary 6.5.6 of [4].) Let A'B'C' be the spherical triangle. Let α, β , and γ be its interior angles at A', B', and C', respectively. (Hence, α, β , and γ are the angle opposite to the sides $\widehat{B'C'}$, $\widehat{C'A'}$, and $\widehat{A'B'}$, respectively, and $0 \le \alpha, \beta, \gamma < \pi$.) Then

(a)
$$\cos \alpha = \frac{\cos \widehat{B'C'} - \cos \widehat{A'B'} \cos \widehat{C'A'}}{\sin \widehat{A'B'} \sin \widehat{C'A'}}$$
, and
(b) $\cos \widehat{A'B'} = \frac{\cos \gamma - \cos \alpha \cos \beta}{\sin \alpha \sin \beta}$.

The relation between the tetrahedron OABC and the spherical triangle A'B'C' is the following:

Lemma 1. We use the notations in Definitions 1 and 2 and Theorem 1. Then the dihedral angle $\triangleleft OA$ is the interior angle of the spherical triangle A'B'C' at A', i.e. $\triangleleft OA = \alpha$. Similarly, $\triangleleft OB = \beta$ and $\triangleleft OC = \gamma$. The angle $\triangleleft AOB$ is given by $\triangleleft AOB = \widehat{A'B'}$ (measured in radian). Similarly, $\triangleleft BOC = \widehat{B'C'}$ and $\triangleleft COA = \widehat{C'A'}$.

Proof. The interior angle α of the spherical triangle A'B'C' at A' is the angle between the two tangent lines at A' to the great circles $\widehat{A'B'}$ and $\widehat{A'C'}$. But the angle between these two tangent lines is the dihedral angle $\triangleleft OA$.

The angle $\triangleleft AOB$ is the arc length $\widehat{A'B'}$ of the great circle by the definition of the radian measurement.

Hence, Lemma 1 allows us to rewrite Theorem 1 as follows:

Theorem 2. Let OABC be a tetrahedron. Then we have the following two equations.

$$(a') \quad \cos \triangleleft OA = \frac{\cos \triangleleft BOC - \cos \triangleleft COA \cos \triangleleft AOB}{\sin \triangleleft COA \sin \triangleleft AOB}$$
$$(b') \quad \cos \triangleleft BOC = \frac{\cos \triangleleft OA + \cos \triangleleft OB \cos \triangleleft OC}{\sin \triangleleft OB \sin \triangleleft OC}.$$

The next Lemma 2 may be the motivation for a solid angle in Definition 1.

Lemma 2. (See Theorem 6.4.7 of [4].) The area of the spherical triangle A'B'C' with interior angles α, β and γ (as in Definition 2 and Theorem 1) is given by $\alpha + \beta + \gamma - \pi$.

Definition 3. A tetrahedron ABCD is an *isosceles tetrahedron* if AB = CD, AC = BD, and AD = BC.

For basic information on an isosceles tetrahedron, see pages 94–102 in [1]. The next lemma is what we need most from [1].

Lemma 3. A tetrahedron has four congruent triangle faces if, and only if, the tetrahedron is isosceles. (An isosceles tetrahedron is also called equifacial.)

Proof. The faces of an isosceles tetrahedron are congruent by Theorem 293 of [1]. The converse is not difficult to prove, and we leave the proof of the converse to the readers. A stronger statement of this converse is given in Corollary 307 of [1]. That is, if the four faces of a tetrahedron have the equal area, then it must be isosceles. \Box

Now, we can state our result. Theorem 3 will give three characterizations of an isosceles tetrahedron in terms of dihedral angles and solid angles. Let us make the following four statements: (1) A tetrahedron is isosceles, (2) the sum of cosines of three dihedral angles of a tetrahedron at each vertex equals 1, (3) the opposing dihedral angles of a tetrahedron are equal, and (4) all four solid angles of a tetrahedron are equal. We will prove that these four statements are equivalent in Theorem 3. Exercises 14 and 15 in [1, Page 102] asks to prove the implications (1) \implies (3) and (1) \implies (4), and therefore, these implications are known. However, to the best of our knowledge, the converses (3) \implies (1) and (4) \implies (1), and the equivalence (1) \iff (2) are new. For a comparison, it is interesting to note that a tetrahedron is isosceles if, and only if, the sum of three angles of a tetrahedron at each vertex is equal to π (See Lemma 5 below).

Corollary 1 will show that the sum of all six cosines of dihedral angles of an isosceles tetrahedron is 2. But we do not know if the converse of Corollary 1 is true (see Conjecture 1).

In Corollary 2, we will show that the largest solid angle of an isosceles tetrahedron is $2(\pi - 3\cos^{-1}\frac{1}{\sqrt{3}})$. The equivalence (1) \iff (4) suggests that a solid angle may determine an isosceles tetrahedron uniquely up to a similarity. In general, this is shown to be false in Example 1. However, in Corollary 3, we will show that a tetrahedron has four equal solid angles $(\pi - 3\cos^{-1}\frac{1}{\sqrt{3}})$ if, and only if, it is a regular tetrahedron. Finally, we will prove a trigonometric identity in Theorem 4 using the sum of the three

Finally, we will prove a trigonometric identity in Theorem 4 using the sum of the three angles at a vertex of an isosceles tetrahedron is π (Lemma 5).

To the best of our knowledge, Corollaries 1, 2 and 3, Example 1, and Theorem 4 are all new.

2 Isosceles Tetrahedra

Let us begin with a lemma on a triangle.

Lemma 4. Let ABC be a triangle. If A, B, and C are the angles $\triangleleft CAB$, $\triangleleft ABC$, and $\triangleleft BCA$, respectively, then we have

$$(c) \quad \frac{\cos A - \cos B \cos C}{\sin B \sin C} + \frac{\cos B - \cos A \cos C}{\sin A \sin C} + \frac{\cos C - \cos A \cos B}{\sin A \sin B} = 1$$

Proof. The identity $\cot A \cot B + \cot B \cot C + \cot C \cot A = 1$ is known and it is not difficult to prove it. (See [5], for example.) Since $A + B + C = \pi$, we have $\cos C = -\cos (A + B)$. So, we have

$$\frac{\cos C - \cos A \cos B}{\sin A \sin B} = \frac{-\cos (A + B) - \cos A \cos B}{\sin A \sin B}$$
$$= \frac{-\cos A \cos B + \sin A \sin B - \cos A \cos B}{\sin A \sin B} = 1 - 2 \frac{\cos A \cos B}{\sin A \sin B} = 1 - 2 \cot A \cot B.$$

Similarly,

$$\frac{\cos A - \cos B \cos C}{\sin B \sin C} = 1 - 2 \cot B \cot C \quad \text{and} \quad \frac{\cos B - \cos A \cos C}{\sin A \sin C} = 1 - 2 \cot A \cot C.$$

Hence,

$$\frac{\cos A - \cos B \cos C}{\sin B \sin C} + \frac{\cos B - \cos A \cos C}{\sin A \sin C} + \frac{\cos C - \cos A \cos B}{\sin A \sin B}$$
$$= (1 - 2 \cot A \cot B) + (1 - 2 \cot B \cot C) + (1 - 2 \cot A \cot C)$$
$$= 3 - 2(\cot A \cot B + \cot B \cot C + \cot A \cot C) = 3 - 2 = 1. \square$$

Now, we are ready to state and prove our theorem.

Theorem 3. Let ABCD be a tetrahedron. The following statements are equivalent.

1. The tetrahedron ABCD is isosceles. 2. $\cos \triangleleft AB + \cos \triangleleft AC + \cos \triangleleft AD = 1$, $\cos \triangleleft AB + \cos \triangleleft BC + \cos \triangleleft BD = 1$ $\cos \triangleleft AC + \cos \triangleleft BC + \cos \triangleleft CD = 1$, and $\cos \triangleleft AD + \cos \triangleleft BD + \cos \triangleleft CD = 1$. (This (2) is equivalent to

$$\cos \triangleleft AB + \cos \triangleleft BC + \cos \triangleleft CA = 1, \quad \cos \triangleleft AB + \cos \triangleleft BD + \cos \triangleleft AD = 1,$$
$$\cos \triangleleft AC + \cos \triangleleft CD + \cos \triangleleft AD = 1, \quad and \quad \cos \triangleleft BC + \cos \triangleleft CD + \cos \triangleleft BD = 1.$$

See Remark 1 below.) 3. $\triangleleft AB = \triangleleft CD, \ \triangleleft AC = \triangleleft BD, \ and \ \triangleleft AD = \triangleleft BC.$ 4. $\triangleleft A = \triangleleft B = \triangleleft C = \triangleleft D.$

Proof. Proof of (1) \implies (2): Suppose the tetrahedron *ABCD* is isosceles. Let $\alpha = \triangleleft BDC$, $\beta = \triangleleft ADC$, $\gamma = \triangleleft ADB$. By (a'), we have

$$\cos \triangleleft DA = \frac{\cos \alpha - \cos \beta \cos \gamma}{\sin \beta \sin \gamma}, \quad \cos \triangleleft DB = \frac{\cos \beta - \cos \alpha \cos \gamma}{\sin \alpha \sin \gamma},$$

and
$$\cos \triangleleft DC = \frac{\cos \gamma - \cos \alpha \cos \beta}{\sin \alpha \sin \beta}.$$

Since all faces are congruent by Lemma 3, the angles α, β, γ are angles of a triangular face. In particular, we have $\alpha = \triangleleft BAC$, $\beta = \triangleleft ABC$, $\gamma = \triangleleft ACB$ on the face ABC. Hence, by (c), we have $\cos \triangleleft DA + \cos \triangleleft DB + \cos \triangleleft DC = 1$. Similarly, we have

$$\cos \triangleleft AB + \cos \triangleleft BC + \cos \triangleleft BD = 1, \quad \cos \triangleleft AC + \cos \triangleleft BC + \cos \triangleleft CD = 1,$$

and
$$\cos \triangleleft AD + \cos \triangleleft BD + \cos \triangleleft CD = 1.$$

Proof of (2) \implies (3): Suppose (2) holds. Let $s = \cos \triangleleft AB$, $t = \cos \triangleleft CD$, $u = \cos \triangleleft AC$, $v = \cos \triangleleft BD$, $w = \cos \triangleleft AD$, and $x = \cos \triangleleft BC$. Then the equations in (2) become t+v+w = 1, t+u+x = 1, s+v+x = 1, s+u+w = 1. From these, we have v+w = u+x, v+x = u+w and t+w = s+x. From v+w = u+x and v+x = u+w, we have v+w = u+x and v-w = u-x. These two show that v = u and x = w. Similarly, from t+w = s+x, we have x = w and t = s. Hence, we have shown that $\cos \triangleleft AB = \cos \triangleleft CD$, $\cos \triangleleft AC = \cos \triangleleft BD$, and $\cos \triangleleft AD = \cos \triangleleft BC$. These prove that $\triangleleft AB = \triangleleft CD$, $\triangleleft AC = \triangleleft BD$, and $\triangleleft AD = \triangleleft BC$.

246

Proof of (3) \implies (1): Suppose (3) holds. Let $\rho = \triangleleft AB = \triangleleft CD$, $\sigma = \triangleleft AC = \triangleleft BD$, and $\omega = \triangleleft AD = \triangleleft BC$. By equation (b'), we have

$$\frac{\cos\rho + \cos\sigma\cos\omega}{\sin\sigma\sin\omega} = \cos\triangleleft ADB = \cos\triangleleft ACB = \cos\triangleleft CAD = \cos\triangleleft CBD,$$
$$\frac{\cos\sigma + \cos\rho\cos\omega}{\sin\rho\sin\omega} = \cos\triangleleft ADC = \cos\triangleleft ABC = \cos\triangleleft BAD = \cos\triangleleft BCD,$$
and
$$\frac{\cos\omega + \cos\rho\cos\sigma}{\sin\rho\sin\sigma} = \cos\triangleleft BDC = \cos\triangleleft BAC = \cos\triangleleft ABD = \cos\triangleleft ACD.$$

Hence, we have

These prove that triangles ABD, ABC, ACD, and BCD are congruent. Therefore, the tetrahedron ABCD is isosceles by Lemma 3.

Proof of (3) \implies (4): Suppose we have $\triangleleft AD = \triangleleft BC$, $\triangleleft BD = \triangleleft AC$, and $\triangleleft CD = \triangleleft AB$. This shows that $\triangleleft A = \triangleleft B = \triangleleft C = \triangleleft D$ by the definition of a solid angle.

Proof of (4) \implies (3): Suppose $\triangleleft A = \triangleleft B = \triangleleft C = \triangleleft D$. We have

(i)
$$\triangleleft AD + \triangleleft BD + \triangleleft CD = \triangleleft D + \pi$$
,

(ii)
$$\triangleleft AD + \triangleleft AB + \triangleleft AC = \triangleleft A + \pi = \triangleleft D + \pi$$
,

- (iii) $\triangleleft AB + \triangleleft BD + \triangleleft BC = \triangleleft B + \pi = \triangleleft D + \pi$,
- (iv) $\triangleleft AC + \triangleleft BC + \triangleleft CD = \triangleleft C + \pi = \triangleleft D + \pi$

From these, we obtain a system of three homogeneous equations

(ii) - (i):
$$(\triangleleft AB - \triangleleft CD) + (\triangleleft AC - \triangleleft BD) = 0,$$

(iii) - (i): $(\triangleleft AB - \triangleleft CD) + (\triangleleft BC - \triangleleft AD) = 0,$
(iv) - (i): $(\triangleleft AC - \triangleleft BD) + (\triangleleft BC - \triangleleft AD) = 0,$

in three variables $(\triangleleft AB - \triangleleft CD)$, $(\triangleleft AC - \triangleleft BD)$, and $(\triangleleft BC - \triangleleft AD)$. Therefore, we have $(\triangleleft AB - \triangleleft CD) = (\triangleleft AC - \triangleleft BD) = (\triangleleft BC - \triangleleft AD) = 0$, i.e., $\triangleleft AD = \triangleleft BC$, $\triangleleft BD = \triangleleft AC$, and $\triangleleft CD = \triangleleft AB$.

We will use the next lemma in the proof of Theorem 4 in the next section. But since its statement is similar to Theorem 3, we include it here for a comparison.

Lemma 5. A tetrahedron ABCD is isosceles if, and only if, the sum of three angles at each vertex equal π , i.e.,

Proof. If a tetrahedron is isosceles, then the sum of angles at a vertex is π by Lemma 3. For the converse, see Problem 498 of [2].

Remark 1. Alternately, the implication $(1) \implies (2)$ in Theorem 3 can be proven without (a') and (c) as follows: If we denote the area of a triangle ABC by \mathcal{A}_{ABC} , and if ABCD is a tetrahedron, then we have $\mathcal{A}_{ABC} = \mathcal{A}_{ABD} \cos \triangleleft AB + \mathcal{A}_{BCD} \cos \triangleleft BC + \mathcal{A}_{ACD} \cos \triangleleft AC$. We can see this equation by projecting triangular faces ABD, BCD, and ACD onto the face ABC. So, if the tetrahedron ABCD is isosceles, then $\mathcal{A}_{ABC} = \mathcal{A}_{ABD} = \mathcal{A}_{BCD} = \mathcal{A}_{ACD}$ by Lemma 3. This proves that

- (d) $\cos \triangleleft AB + \cos \triangleleft BC + \cos \triangleleft CA = 1$. Similarly, we have
- (e) $\cos \triangleleft AB + \cos \triangleleft BD + \cos \triangleleft AD = 1$,
- (f) $\cos \triangleleft AC + \cos \triangleleft CD + \cos \triangleleft AD = 1$, and
- (g) $\cos \triangleleft BC + \cos \triangleleft CD + \cos \triangleleft BD = 1.$

Performing (d) + (e) + (f) - (g) gives us $\cos \triangleleft AB + \cos \triangleleft BC + \cos \triangleleft CA = 1$. We can also confirm other three identities in (2). Similarly, the four equations in (2) imply (d)–(g).

Corollary 1. An isosceles tetrahedron ABCD has the property

 $\cos \triangleleft AB + \cos \triangleleft AC + \cos \triangleleft AD + \cos \triangleleft BC + \cos \triangleleft CD + \cos \triangleleft BD = 2.$

Proof. Adding all four equations in (2) of Theorem 3, we obtain $2(\cos \triangleleft AB + \cos \triangleleft AC + \cos \triangleleft AD + \cos \triangleleft BC + \cos \triangleleft CD + \cos \triangleleft BD) = 4$. This implies this corollary.

We do not know much about the converse of Corollary 1 except to make the following conjecture.

Conjecture 1. If ABCD is a tetrahedron, then $\cos \triangleleft AB + \cos \triangleleft AC + \cos \triangleleft AD + \cos \triangleleft BC + \cos \triangleleft CD + \cos \triangleleft BD \leq 2$. The equality holds if, and only if, the tetrahedron is isosceles.

Corollary 2. The solid angle of an isosceles tetrahedron at a vertex is at most $2(\pi - 3\cos^{-1}\frac{1}{\sqrt{3}})$. The maximum value of a solid angle among all isosceles tetrahedra is attained only when an isosceles tetrahedron is regular.

Proof. Let ABCD be an isosceles tetrahedron. Then

$$\triangleleft A + \triangleleft B + \triangleleft C + \triangleleft D \le 8 \left(\pi - 3 \cos^{-1} \frac{1}{\sqrt{3}} \right)$$

by Theorem 3(1) in [3], with the equality holding only when the tetrahedron is regular. Since $\triangleleft A = \triangleleft B = \triangleleft C = \triangleleft D$ by equation Theorem 3, we have this corollary.

Definition 4. Two tetrahdra ABCD and A'B'C'D' are similar if

$$\frac{\overline{AB}}{\overline{A'B'}} = \frac{\overline{AC}}{\overline{A'C'}} = \frac{\overline{AD}}{\overline{A'D'}} = \frac{\overline{BC}}{\overline{B'C'}} = \frac{\overline{BD}}{\overline{B'D'}} = \frac{\overline{CD}}{\overline{C'D'}}$$

In other words, two tetrahedra ABCD and A'B'C'D' are similar if, and only if, $\triangle ABC \approx \triangle A'B'C'$, $\triangle ABD \approx \triangle A'B'D'$, $\triangle ACD \approx \triangle A'C'D'$, and $\triangle BCD \approx \triangle B'C'D'$. (Here, by $\triangle ABC \approx \triangle A'B'C'$, we mean the triangles ABC and A'B'C' are similar.) Hence, by Theorem 2 and by the definition of a solid angle, two similar tetrahedra have the same solid angles at each corresponding vertex. On the other hand, having the same solid angles at each corresponding vertex *does not* imply that the two tetrahedra are similar as we will show in the next example.

Example 1. Equation (4) in Theorem 3 suggests that a solid angle may uniquely determine an isosceles tetrahedron up to a similarity. However, we will show the existence of two *nonsimilar* isosceles tetrahedra ABCD and A'B'C'D' such that their solid angles are equal. That is, two non-similar isosceles tetrahedra can have the equal solid angle.

We will construct two one-parameter families of tetrahedra ABCD = T(x) and A'B'C'D' = U(t) to show this.

Let $x \ge 1$. Let A = (x, 1, 1), B = (-x, -1, 1), C = (x, -1, -1), D = (-x, 1, -1). Then $AB = CD = AD = BC = 2\sqrt{x^2 + 1}$ and $AC = BD = 2\sqrt{2}$. Let us denote the one parameter family of isosceles tetrahedra ABCD by T(x) for each $x \ge 1$. The vectors $\vec{l} = \langle 1, -x, x \rangle$, $\vec{m} = \langle -1, x, x \rangle$, $\vec{n} = \langle 1, x, -x \rangle$ are normal to the three faces ABC, ABD, and ACD, respectively. These imply that

$$\cos \triangleleft AB = -\frac{\vec{l} \cdot \vec{m}}{|\vec{l}||\vec{m}|} = \frac{1}{2x^2 + 1}, \quad \cos \triangleleft AC = -\frac{\vec{l} \cdot \vec{n}}{|\vec{l}||\vec{n}|} = \frac{2x^2 - 1}{2x^2 + 1},$$
$$\cos \triangleleft AD = -\frac{\vec{m} \cdot \vec{n}}{|\vec{m}||\vec{n}|} = \frac{1}{2x^2 + 1}.$$

Let

$$f(x) = 2\cos^{-1}\frac{1}{2x^2+1} + \cos^{-1}\frac{2x^2-1}{2x^2+1} - \pi.$$

Then, the function f(x) assigns the solid angle to the tetrahedra T(x) at the vertex A = A(x). Hence, it is the solid angle at each vertex of the isosceles tetrahedron T(x) for each $x \ge 1$ by Theorem 3.

Let $t \geq 1$. Let A' = (t, 2t, 1), B' = (-t, -2t, 1), C' = (t, -2t, -1), D' = (-t, 2t, -1). Then $A'B' = C'D' = 2t\sqrt{5}, A'D' = B'C' = 2\sqrt{t^2 + 1}$, and $A'C' = B'D' = 2\sqrt{4t^2 + 1}$. Let U(t) denote the one-parameter family of isosceles tetrahedra A'B'C'D' for each $t \geq 1$. Then, the vectors $\vec{p} = \langle 2, -1, 2t \rangle, \vec{q} = \langle -2, 1, 2t \rangle, \vec{r} = \langle 2, 1, -2t \rangle$ are normal to the three faces A'B'C', A'B'D', and A'C'D', respectively. From these, we have

$$\cos \triangleleft A'B' = -\frac{\vec{p} \cdot \vec{q}}{|\vec{p}||\vec{q}|} = \frac{-4t^2 + 5}{4t^2 + 5}, \quad \cos \triangleleft A'C' = -\frac{\vec{p} \cdot \vec{r}}{|\vec{p}||\vec{r}|} = \frac{-4t^2 - 3}{4t^2 + 5}$$
$$\cos \triangleleft A'D' = -\frac{\vec{q} \cdot \vec{r}}{|\vec{q}||\vec{r}|} = \frac{-4t^2 + 3}{4t^2 + 5}.$$

Let

$$g(t) = \cos^{-1} \frac{-4t^2 + 5}{4t^2 + 5} + \cos^{-1} \frac{4t^2 - 3}{4t^2 + 5} + \cos^{-1} \frac{4t^2 + 3}{4t^2 + 5} - \pi.$$

Then, the function g(t) assigns the solid angle to the tetrahedra U(t) at the vertex A' = A'(t), and hence, it is the solid angle at each vertex of the isosceles tetrahedron U(t) for each $t \ge 1$.

According to Definition 4, two similar tetrahedra must have similar triangular faces. Note that for a fixed t > 1, U(t) is not similar to T(x) for any x > 1 since the faces of T(x) are isosceles triangles for all x > 1 while the faces of the tetrahedron U(t) are never isosceles triangles for any t > 1. Therefore, T(x) and U(t) are not similar. Since T(1) is a regular tetrahedron, we have that $f(1) = 3\cos^{-1}\frac{1}{3} - \pi$ (see Corollary 2 and Remark 2, below). So, g(1) < f(1) by Corollary 2. (Note that $g(1) = 2\cos^{-1}\frac{1}{9} + \cos^{-1}\frac{7}{9} - \pi \approx 0.4569$ and $f(1) \approx 0.5512$.) Since $\lim_{x\to\infty} f(x) = 0$ and $\lim_{t\to\infty} g(t) = 0$, there is an x > 1 such that f(x) = g(t) for each t > 1 by the continuity of f. Therefore, we have shown that a solid angle does not uniquely determine an isosceles tetrahedron up to a similarity. This also shows that having

the same solid angles at each corresponding vertex *does not* imply that the two tetrahedra are similar.

Even though two non-similar tetrahedra can have equal solid angles, the regular tetrahedron is an exception.

Corollary 3. A tetrahedron has four equal solid angles equal to $2\left(\pi - 3\cos^{-1}\frac{1}{\sqrt{3}}\right)$ if, and only if, it is a regular tetrahedron.

Proof. The proof is obtained by equation (4) of Theorem 3 and Corollary 2. \Box

Remark 2. Note that the dihedral angle of a regular tetrahedron can be represented by $\pi - 2\cos^{-1}\frac{1}{\sqrt{3}} = 2\tan^{-1}\frac{1}{\sqrt{2}} = \cos^{-1}\frac{1}{3}$. Hence, we have $2(\pi - 2\cos^{-1}\frac{1}{\sqrt{3}}) = 6\tan^{-1}\frac{1}{\sqrt{2}} - \pi = 3\cos^{-1}\frac{1}{3} - \pi$.

3 A Trigonometric Identity

The next theorem resembles the identity $\tan^{-1} \alpha + \tan^{-1} \frac{1}{\alpha} = \frac{\pi}{2}$ for any $\alpha > 0$. There are many known trigonometric identities. But to the best of our knowledge, we think Theorem 4 is new. We prove this theorem using Lemma 5 on an isosceles tetrahedron rather than a triangle.

Theorem 4. For any α , β , $\gamma > 0$, we have

$$\cos^{-1}\frac{\alpha}{\sqrt{(\alpha+\beta)(\alpha+\gamma)}} + \cos^{-1}\frac{\beta}{\sqrt{(\alpha+\beta)(\beta+\gamma)}} + \cos^{-1}\frac{\gamma}{\sqrt{(\alpha+\gamma)(\beta+\gamma)}} = \pi.$$

Proof. Let a, b, c > 0. Let D = (a, b, c), A = (a, -b, -c), B = (-a, b, -c), C = (-a, -b, c). Then ABCD is an isosceles tetrahedron, and $\overrightarrow{DA} = -2\langle 0, b, c \rangle$, $\overrightarrow{DB} = -2\langle a, 0, c \rangle$, $\overrightarrow{DC} = -2\langle a, b, 0 \rangle$. So $\overrightarrow{DA} \times \overrightarrow{DB} = 4 \langle 0, b, c \rangle \times \langle a, 0, c \rangle = 4 \langle bc, ca, -ab \rangle$. Thus, a normal vector to the plane DAB is $\overrightarrow{u} = \langle bc, ca, -ab \rangle$. Similarly, normal vectors to the planes DBC and DCA are $\overrightarrow{v} = \langle -bc, ca, ab \rangle$ and $\overrightarrow{w} = \langle bc, -ca, ab \rangle$, respectively. Note that these three normal vectors $\overrightarrow{u}, \overrightarrow{v}$, and \overrightarrow{w} are pointing outward of the tetrahedron ABCD. Hence,

$$\cos \triangleleft DC = -\frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|} = \frac{-a^2b^2 + b^2c^2 + c^2a^2}{a^2b^2 + b^2c^2 + c^2a^2}$$

Similary,

$$\cos \triangleleft DA = -\frac{\vec{u} \cdot \vec{w}}{\|\vec{u}\| \|\vec{w}\|} = \frac{a^2b^2 - b^2c^2 + c^2a^2}{a^2b^2 + b^2c^2 + c^2a^2} \quad \text{and}$$
$$\cos \triangleleft DB = -\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{a^2b^2 + b^2c^2 - c^2a^2}{a^2b^2 + b^2c^2 + c^2a^2}.$$

Also, we have

$$\sin^2 \triangleleft DC = 1 - \left(\frac{-a^2b^2 + b^2c^2 + c^2a^2}{a^2b^2 + b^2c^2 + c^2a^2}\right)^2 = \frac{4a^2b^2c^2(a^2 + b^2)}{(a^2b^2 + b^2c^2 + c^2a^2)^2}.$$

Thus, we have

$$\sin \triangleleft DC = \frac{2abc\sqrt{a^2 + b^2}}{a^2b^2 + b^2c^2 + c^2a^2}.$$

Similary,

$$\sin \triangleleft DA = \frac{2abc\sqrt{b^2 + c^2}}{a^2b^2 + b^2c^2 + c^2a^2}, \quad \text{and} \quad \sin \triangleleft DB = \frac{2abc\sqrt{a^2 + c^2}}{a^2b^2 + b^2c^2 + c^2a^2}.$$

By (a'), we have

$$\cos \triangleleft BDC = \frac{\cos \triangleleft DA + \cos \triangleleft DB \cos \triangleleft DC}{\sin \triangleleft DB \sin \triangleleft DC}$$
$$= \frac{(a^2b^2 + b^2c^2 + c^2a^2)(a^2b^2 - b^2c^2 + c^2a^2) + (a^2b^2 + b^2c^2 - c^2a^2)(-a^2b^2 + b^2c^2 + c^2a^2)}{(2abc\sqrt{a^2 + c^2})(2abc\sqrt{a^2 + b^2})}$$
$$= \frac{a^2}{\sqrt{(a^2 + c^2)(a^2 + b^2)}}$$

Let $\alpha = a^2, \, \beta = b^2, \, \gamma = c^2$. Hence,

$$\triangleleft BDC = \cos^{-1} \frac{a^2}{\sqrt{(a^2 + c^2)(a^2 + b^2)}} = \cos^{-1} \frac{\alpha}{\sqrt{(\alpha + \beta)(\alpha + \gamma)}}.$$

Similarly,

$$\triangleleft CDA = \cos^{-1} \frac{b^2}{\sqrt{(a^2 + b^2)(b^2 + c^2)}} = \cos^{-1} \frac{\beta}{\sqrt{(\alpha + \beta)(\beta + \gamma)}} \quad \text{and} \\ \triangleleft ADB = \cos^{-1} \frac{c^2}{\sqrt{(a^2 + c^2)(b^2 + c^2)}} = \cos^{-1} \frac{\gamma}{\sqrt{(\alpha + \gamma)(\beta + \gamma)}}.$$

Since the tetrahedron ABCD is isosceles, we have that $\triangleleft BDC + \triangleleft CDA + \triangleleft ADB = \pi$ by Lemma 5. This implies

$$\cos^{-1}\frac{\alpha}{\sqrt{(\alpha+\beta)(\alpha+\gamma)}} + \cos^{-1}\frac{\beta}{\sqrt{(\alpha+\beta)(\beta+\gamma)}} + \cos^{-1}\frac{\gamma}{\sqrt{(\alpha+\gamma)(\beta+\gamma)}} = \pi.$$

References

- [1] N. ALTSHILLER-COURT: *Modern Pure Solid Geometry*. The Macmillan Co., New York, 1935.
- [2] E. J. BARBEAU, E. BARBEAU, M. S. KLAMKIN, W. O. MOSER, W. MOSER, ET AL.: *Five Hundred Mathematical Challenges.* The Mathematical Association of America, 1995.
- [3] H. KATSUURA: Solid Angle Sum of a Tetrahedron. J. Geom. Graph. 24(1), 29–34, 2020.
- [4] A. N. PRESSLEY: *Elementary Differential Geometry*. Springer Science & Business Media, 2010.

Internet Sources

[5] S. MOHAMMAD: Proof of cot A cot B + cot B cot C + cot C cot A = 1, 2015. https: //www.askiitians.com/forums/Trigonometry/proof-of-cotacotb-cotbcotc-cotcc ota-1_97408.htm.

Received October 26, 2021; final form January 31, 2022.