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Abstract. We give three new characteristics of an isosceles tetrahedron. These
three characteristics are; (i) the sum of cosines of dihedral angles of a tetrahedron
at each vertex is 1, (ii) the opposing dihedral angles of a tetrahedron are pairwise
same, and (iii) all four solid angles of a tetrahedron are the same. It is known
that “isosceles” implies (ii) and (iii), but we think the converse of these and (i) are
new. The statement (iii) suggests that a solid angle may determine an isosceles
tetrahedron uniquely up to a similarity. However, we give an example to show
that this is not the case unless it is a regular tetrahedron. And finally, we obtain
a trigonometric identity from an isosceles tetrahedron. We use a theorem on a
spherical triangle.
Key Words: isosceles tetrahedron, equifacial tetrahedron, dihedral angle, solid
angle
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1 Introduction

We will convert a theorem on a spherical triangle to a theorem on a tetrahedron in order
to obtain relations between an isosceles tetrahedron and (angles, dihedral angles and solid
angles). Let us start with definitions.

Definition 1. Let OABC be a tetrahedron. The segment joining two points O and A is
denoted by OA, and its length by OA. The angle between the two rays #    »

OA and #    »

OB is denoted
by ∢AOB. The interior angle between the triangular faces OAB and OAC of a tetrahedron
OABC is called the dihedral angle at the edge of OA, and it is denoted by ∢OA. The solid
angle ∢O of the tetrahedron OABC at O is definted as ∢O = ∢OA + ∢OB + ∢OC − π.

A solid angle is also called a trihedral angle in [1].

Definition 2. Let OABC be a tetrahedron. Let S be the sphere of radius 1 centered at O.
Let A′, B′, C ′ be the points on the sphere S that intersect the rays #    »

OA, #    »

OB, #    »

OC, respectively.
We join (A′ and B′), (B′ and C ′), and (C ′ and A′) by parts of great circles on S, and the
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result is said to be a spherical triangle A′B′C ′. The segment of the great circle joining A′ and
B′ is denoted by Ā′B′. The arc length of Ā′B′ is also denoted by Ā′B′. (See, for example,
Section 6.5 of [4] for spherical geometry.)

Then next theorem is a result on a spherical triangle.

Theorem 1 (Spherical Laws of Cosines). (See Proposition 6.5.3 and Corollary 6.5.6 of [4].)
Let A′B′C ′ be the spherical triangle. Let α, β, and γ be its interior angles at A′, B′, and C ′,
respectively. (Hence, α, β, and γ are the angle opposite to the sides B̄′C ′, C̄ ′A′, and Ā′B′,
respectively, and 0 ≤ α, β, γ < π.) Then

(a) cos α = cos B̄′C ′ − cos Ā′B′ cos C̄ ′A′

sin Ā′B′ sin C̄ ′A′
, and

(b) cos Ā′B′ = cos γ − cos α cos β

sin α sin β
.

The relation between the tetrahedron OABC and the spherical triangle A′B′C ′ is the
following:

Lemma 1. We use the notations in Definitions 1 and 2 and Theorem 1. Then the dihedral
angle ∢OA is the interior angle of the spherical triangle A′B′C ′ at A′, i.e. ∢OA = α.
Similarly, ∢OB = β and ∢OC = γ. The angle ∢AOB is given by ∢AOB = Ā′B′ (measured
in radian). Similarly, ∢BOC = B̄′C ′ and ∢COA = C̄ ′A′.

Proof. The interior angle α of the spherical triangle A′B′C ′ at A′ is the angle between the
two tangent lines at A′ to the great circles Ā′B′ and Ā′C ′. But the angle between these two
tangent lines is the dihedral angle ∢OA.

The angle ∢AOB is the arc length Ā′B′ of the great circle by the defintion of the radian
measurement.

Hence, Lemma 1 allows us to rewrite Theorem 1 as follows:

Theorem 2. Let OABC be a tetrahedron. Then we have the following two equations.

(a′) cos∢OA = cos∢BOC − cos∢COA cos∢AOB

sin∢COA sin∢AOB
.

(b′) cos∢BOC = cos∢OA + cos∢OB cos∢OC

sin∢OB sin∢OC
.

The next Lemma 2 may be the motivation for a solid angle in Definition 1.

Lemma 2. (See Theorem 6.4.7 of [4].) The area of the spherical triangle A′B′C ′ with interior
angles α, β and γ (as in Definition 2 and Theorem 1) is given by α + β + γ − π.

Definition 3. A tetrahedron ABCD is an isosceles tetrahedron if AB = CD, AC = BD,
and AD = BC.

For basic information on an isosceles tetrahedron, see pages 94–102 in [1]. The next
lemma is what we need most from [1].

Lemma 3. A tetrahedron has four congruent triangle faces if, and only if, the tetrahedron is
isosceles. (An isosceles tetrahedron is also called equifacial.)
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Proof. The faces of an isosceles tetrahedron are congruent by Theorem 293 of [1]. The
converse is not difficult to prove, and we leave the proof of the converse to the readers. A
stronger statement of this converse is given in Corollary 307 of [1]. That is, if the four faces
of a tetrahedron have the equal area, then it must be isosceles.

Now, we can state our result. Theorem 3 will give three characterizations of an isosceles
tetrahedron in terms of dihedral angles and solid angles. Let us make the following four
statements: (1) A tetrahedron is isosceles, (2) the sum of cosines of three dihedral angles of
a tetrahedron at each vertex equals 1, (3) the opposing dihedral angles of a tetrahedron are
equal, and (4) all four solid angles of a tetrahedron are equal. We will prove that these four
statements are equivalent in Theorem 3. Exercises 14 and 15 in [1, Page 102] asks to prove
the implications (1) =⇒ (3) and (1) =⇒ (4), and therefore, these implications are known.
However, to the best of our knowledge, the converses (3) =⇒ (1) and (4) =⇒ (1), and
the equivalence (1) ⇐⇒ (2) are new. For a comparison, it is interesting to note that a
tetrahedron is isosceles if, and only if, the sum of three angles of a tetrahedron at each vertex
is equal to π (See Lemma 5 below).

Corollary 1 will show that the sum of all six cosines of dihedral angles of an isosceles
tetrahedron is 2. But we do not know if the converse of Corollary 1 is true (see Conjecture 1).

In Corollary 2, we will show that the largest solid angle of an isosceles tetrahedron is
2(π − 3 cos−1 1√

3). The equivalence (1) ⇐⇒ (4) suggests that a solid angle may determine
an isosceles tetrahedron uniquely up to a similarity. In general, this is shown to be false in
Example 1. However, in Corollary 3, we will show that a tetrahedron has four equal solid
angles (π − 3 cos−1 1√

3) if, and only if, it is a regular tetrahedron.
Finally, we will prove a trigonometric identity in Theorem 4 using the sum of the three

angles at a vertex of an isosceles tetrahedron is π (Lemma 5).
To the best of our knowledge, Corollaries 1, 2 and 3, Example 1, and Theorem 4 are all

new.

2 Isosceles Tetrahedra

Let us begin with a lemma on a triangle.

Lemma 4. Let ABC be a triangle. If A, B, and C are the angles ∢CAB, ∢ABC, and
∢BCA, respectively, then we have

(c) cos A − cos B cos C

sin B sin C
+ cos B − cos A cos C

sin A sin C
+ cos C − cos A cos B

sin A sin B
= 1.

Proof. The identity cot A cot B + cot B cot C + cot C cot A = 1 is known and it is not difficult
to prove it. (See [5], for example.) Since A + B + C = π, we have cos C = − cos (A + B). So,
we have

cos C − cos A cos B

sin A sin B
= − cos (A + B) − cos A cos B

sin A sin B

= − cos A cos B + sin A sin B − cos A cos B

sin A sin B
= 1 − 2cos A cos B

sin A sin B
= 1 − 2 cot A cot B.

Similarly,

cos A − cos B cos C

sin B sin C
= 1 − 2 cot B cot C and cos B − cos A cos C

sin A sin C
= 1 − 2 cot A cot C.
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Hence,

cos A − cos B cos C

sin B sin C
+ cos B − cos A cos C

sin A sin C
+ cos C − cos A cos B

sin A sin B
= (1 − 2 cot A cot B) +(1 − 2 cot B cot C) + (1 − 2 cot A cot C)

= 3 − 2(cot A cot B + cot B cot C + cot A cot C) = 3 − 2 = 1.

Now, we are ready to state and prove our theorem.

Theorem 3. Let ABCD be a tetrahedron. The following statements are equivalent.
1. The tetrahedron ABCD is isosceles.
2. cos∢AB + cos∢AC + cos∢AD = 1,

cos∢AB + cos∢BC + cos∢BD = 1
cos∢AC + cos∢BC + cos∢CD = 1, and
cos∢AD + cos∢BD + cos∢CD = 1.
(This (2) is equivalent to

cos∢AB + cos∢BC + cos∢CA = 1, cos∢AB + cos∢BD + cos∢AD = 1,

cos∢AC + cos∢CD + cos∢AD = 1, and cos∢BC + cos∢CD + cos∢BD = 1.

See Remark 1 below.)
3. ∢AB = ∢CD, ∢AC = ∢BD, and ∢AD = ∢BC.
4. ∢A = ∢B = ∢C = ∢D.

Proof. Proof of (1) =⇒ (2): Suppose the tetrahedron ABCD is isosceles. Let α = ∢BDC,
β = ∢ADC, γ = ∢ADB. By (a’), we have

cos∢DA = cos α − cos β cos γ

sin β sin γ
, cos∢DB = cos β − cos α cos γ

sin α sin γ
,

and cos∢DC = cos γ − cos α cos β

sin α sin β
.

Since all faces are congruent by Lemma 3, the angles α, β, γ are angles of a triangular face.
In particular, we have α = ∢BAC, β = ∢ABC, γ = ∢ACB on the face ABC. Hence, by
(c), we have cos∢DA + cos∢DB + cos∢DC = 1. Similarly, we have

cos∢AB + cos∢BC + cos∢BD = 1, cos∢AC + cos∢BC + cos∢CD = 1,

and cos∢AD + cos∢BD + cos∢CD = 1.

Proof of (2) =⇒ (3): Suppose (2) holds. Let s = cos∢AB, t = cos∢CD, u = cos∢AC,
v = cos∢BD, w = cos∢AD, and x = cos∢BC. Then the equations in (2) become t+v+w =
1, t+u+x = 1, s+v +x = 1, s+u+w = 1. From these, we have v +w = u+x, v +x = u+w
and t + w = s + x. From v + w = u + x and v + x = u + w, we have v + w = u + x and
v − w = u − x. These two show that v = u and x = w. Similarly, from t + w = s + x, we have
x = w and t = s. Hence, we have shown that cos∢AB = cos∢CD, cos∢AC = cos∢BD, and
cos∢AD = cos∢BC. These prove that ∢AB = ∢CD, ∢AC = ∢BD, and ∢AD = ∢BC.
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Proof of (3) =⇒ (1): Suppose (3) holds. Let ρ = ∢AB = ∢CD, σ = ∢AC = ∢BD,
and ω = ∢AD = ∢BC. By equation (b’), we have

cos ρ + cos σ cos ω

sin σ sin ω
= cos∢ADB = cos∢ACB = cos∢CAD = cos∢CBD,

cos σ + cos ρ cos ω

sin ρ sin ω
= cos∢ADC = cos∢ABC = cos∢BAD = cos∢BCD,

and cos ω + cos ρ cos σ

sin ρ sin σ
= cos∢BDC = cos∢BAC = cos∢ABD = cos∢ACD.

Hence, we have
∢ADB = ∢ACB = ∢CAD = ∢CBD,

∢BAD = ∢ABC = ∢ADC = ∢BCD,

and ∢ABD = ∢BAC = ∢ACD = ∢BDC.

These prove that triangles ABD, ABC, ACD, and BCD are congruent. Therefore, the
tetrahedron ABCD is isosceles by Lemma 3.

Proof of (3) =⇒ (4): Suppose we have ∢AD = ∢BC, ∢BD = ∢AC, and ∢CD = ∢AB.
This shows that ∢A = ∢B = ∢C = ∢D by the definition of a solid angle.

Proof of (4) =⇒ (3): Suppose ∢A = ∢B = ∢C = ∢D. We have

(i) ∢AD + ∢BD + ∢CD = ∢D + π,

(ii) ∢AD + ∢AB + ∢AC = ∢A + π = ∢D + π,

(iii) ∢AB + ∢BD + ∢BC = ∢B + π = ∢D + π,

(iv) ∢AC + ∢BC + ∢CD = ∢C + π = ∢D + π

From these, we obtain a system of three homogeneous equations

(ii) − (i): (∢AB − ∢CD) + (∢AC − ∢BD) = 0,

(iii) − (i): (∢AB − ∢CD) + (∢BC − ∢AD) = 0,

(iv) − (i): (∢AC − ∢BD) + (∢BC − ∢AD) = 0,

in three variables (∢AB − ∢CD), (∢AC − ∢BD), and (∢BC − ∢AD). Therefore, we have
(∢AB − ∢CD) = (∢AC − ∢BD) = (∢BC − ∢AD) = 0, i.e., ∢AD = ∢BC, ∢BD = ∢AC,
and ∢CD = ∢AB.

We will use the next lemma in the proof of Theorem 4 in the next section. But since its
statement is similar to Theorem 3, we include it here for a comparison.

Lemma 5. A tetrahedron ABCD is isosceles if, and only if, the sum of three angles at each
vertex equal π, i.e.,

∢BDC + ∢CDA + ∢ADB = π,

∢ACB + ∢ACD + ∢BCD = π,

∢ABC + ∢ABD + ∢CBD = π, and
∢BAC + ∢BAD + ∢CAD = π.

Proof. If a tetrahedron is isosceles, then the sum of angles at a vertex is π by Lemma 3. For
the converse, see Problem 498 of [2].
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Remark 1. Alternately, the implication (1) =⇒ (2) in Theorem 3 can be proven without
(a’) and (c) as follows: If we denote the area of a triangle ABC by AABC , and if ABCD
is a tetrahedron, then we have AABC = AABD cos∢AB + ABCD cos∢BC + AACD cos∢AC.
We can see this equation by projecting triangular faces ABD, BCD, and ACD onto the face
ABC. So, if the tetrahedron ABCD is isosceles, then AABC = AABD = ABCD = AACD by
Lemma 3. This proves that

(d) cos∢AB + cos∢BC + cos∢CA = 1. Similarly, we have
(e) cos∢AB + cos∢BD + cos∢AD = 1,

(f) cos∢AC + cos∢CD + cos∢AD = 1, and
(g) cos∢BC + cos∢CD + cos∢BD = 1.

Performing (d) + (e) + (f) − (g) gives us cos∢AB + cos∢BC + cos∢CA = 1. We can also
confirm other three identities in (2). Similarly, the four equations in (2) imply (d)–(g).

Corollary 1. An isosceles tetrahedron ABCD has the property

cos∢AB + cos∢AC + cos∢AD + cos∢BC + cos∢CD + cos∢BD = 2.

Proof. Adding all four equations in (2) of Theorem 3, we obtain 2(cos∢AB + cos∢AC +
cos∢AD + cos∢BC + cos∢CD + cos∢BD) = 4. This implies this corollary.

We do not know much about the converse of Corollary 1 except to make the following
conjecture.
Conjecture 1. If ABCD is a tetrahedron, then cos∢AB + cos∢AC + cos∢AD + cos∢BC +
cos∢CD + cos∢BD ≤ 2. The equality holds if, and only if, the tetrahedron is isosceles.

Corollary 2. The solid angle of an isosceles tetrahedron at a vertex is at most 2(π −
3 cos−1 1√

3). The maximum value of a solid angle among all isosceles tetrahedra is attained
only when an isosceles tetrahedron is regular.

Proof. Let ABCD be an isosceles tetrahedron. Then

∢A + ∢B + ∢C + ∢D ≤ 8
Å

π − 3 cos−1 1√
3

ã
by Theorem 3(1) in [3], with the equality holding only when the tetrahedron is regular. Since
∢A = ∢B = ∢C = ∢D by equation Theorem 3, we have this corollary.

Definition 4. Two tetrahdra ABCD and A′B′C ′D′ are similar if

AB

A′B′ = AC

A′C ′ = AD

A′D′ = BC

B′C ′ = BD

B′D′ = CD

C ′D′ .

In other words, two tetrahedra ABCD and A′B′C ′D′ are similar if, and only if, △ABC ≈
△A′B′C ′, △ABD ≈ △A′B′D′, △ACD ≈ △A′C ′D′, and △BCD ≈ △B′C ′D′. (Here,
by △ABC ≈ △A′B′C ′, we mean the triangles ABC and A′B′C ′ are similar.) Hence, by
Theorem 2 and by the definition of a solid angle, two similar tetrahedra have the same solid
angles at each corresponding vertex. On the other hand, having the same solid angles at each
corresponding vertex does not imply that the two tetrahedra are similar as we will show in
the next example.
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Example 1. Equation (4) in Theorem 3 suggests that a solid angle may uniquely determine
an isosceles tetrahedron up to a similarity. However, we will show the existence of two non-
similar isosceles tetrahedra ABCD and A′B′C ′D′ such that their solid angles are equal. That
is, two non-similar isosceles tetrahedra can have the equal solid angle.

We will construct two one-parameter families of tetrahedra ABCD = T (x) and A′B′C ′D′ =
U(t) to show this.

Let x ≥ 1. Let A = (x, 1, 1), B = (−x, −1, 1), C = (x, −1, −1), D = (−x, 1, −1).
Then AB = CD = AD = BC = 2

√
x2 + 1 and AC = BD = 2

√
2. Let us denote the

one parameter family of isosceles tetrahedra ABCD by T (x) for each x ≥ 1. The vectors
#»

l = ⟨1, −x, x⟩, #»m = ⟨−1, x, x⟩, #»n = ⟨1, x, −x⟩ are normal to the three faces ABC, ABD,
and ACD, respectively. These imply that

cos∢AB = −
#»

l · #»m

| #»

l || #»m|
= 1

2x2 + 1 , cos∢AC = −
#»

l · #»n

| #»

l || #»n |
= 2x2 − 1

2x2 + 1 ,

cos∢AD = −
#»m · #»n

| #»m|| #»n |
= 1

2x2 + 1 .

Let
f(x) = 2 cos−1 1

2x2 + 1 + cos−1 2x2 − 1
2x2 + 1 − π.

Then, the function f(x) assigns the solid angle to the tetrahedra T (x) at the vertex A = A(x).
Hence, it is the solid angle at each vertex of the isosceles tetrahedron T (x) for each x ≥ 1 by
Theorem 3.

Let t ≥ 1. Let A′ = (t, 2t, 1), B′ = (−t, −2t, 1), C ′ = (t, −2t, −1), D′ = (−t, 2t, −1).
Then A′B′ = C ′D′ = 2t

√
5, A′D′ = B′C ′ = 2

√
t2 + 1, and A′C ′ = B′D′ = 2

√
4t2 + 1. Let

U(t) denote the one-parameter family of isosceles tetrahedra A′B′C ′D′ for each t ≥ 1. Then,
the vectors #»p = ⟨2, −1, 2t⟩, #»q = ⟨−2, 1, 2t⟩, #»r = ⟨2, 1, −2t⟩ are normal to the three faces
A′B′C ′, A′B′D′, and A′C ′D′, respectively. From these, we have

cos∢A′B′ = −
#»p · #»q

| #»p || #»q |
= −4t2 + 5

4t2 + 5 , cos∢A′C ′ = −
#»p · #»r

| #»p || #»r |
= −4t2 − 3

4t2 + 5 ,

cos∢A′D′ = −
#»q · #»r

| #»q || #»r |
= −4t2 + 3

4t2 + 5 .

Let
g(t) = cos−1 −4t2 + 5

4t2 + 5 + cos−1 4t2 − 3
4t2 + 5 + cos−1 4t2 + 3

4t2 + 5 − π.

Then, the function g(t) assigns the solid angle to the tetrahedra U(t) at the vertex A′ = A′(t),
and hence, it is the solid angle at each vertex of the isosceles tetrahedron U(t) for each t ≥ 1.

According to Definition 4, two similar tetrahedra must have similar triangular faces. Note
that for a fixed t > 1, U(t) is not similar to T (x) for any x > 1 since the faces of T (x) are
isosceles triangles for all x > 1 while the faces of the tetrahedron U(t) are never isosceles
triangles for any t > 1. Therefore, T (x) and U(t) are not similar. Since T (1) is a regular
tetrahedron, we have that f(1) = 3 cos−1 1

3 − π (see Corollary 2 and Remark 2, below).
So, g(1) < f(1) by Corollary 2. (Note that g(1) = 2 cos−1 1

9 + cos−1 7
9 − π ≈ 0.4569 and

f(1) ≈ 0.5512.) Since lim
x→∞

f(x) = 0 and lim
t→∞

g(t) = 0, there is an x > 1 such that f(x) = g(t)
for each t > 1 by the continuity of f . Therefore, we have shown that a solid angle does not
uniquely determine an isosceles tetrahedron up to a similarity. This also shows that having
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the same solid angles at each corresponding vertex does not imply that the two tetrahedra
are similar.

Even though two non-similar tetrahedra can have equal solid angles, the regular tetrahe-
dron is an exception.

Corollary 3. A tetrahedron has four equal solid angles equal to 2
Ä
π − 3 cos−1 1√

3

ä
if, and

only if, it is a regular tetrahedron.

Proof. The proof is obtained by equation (4) of Theorem 3 and Corollary 2.

Remark 2. Note that the dihedral angle of a regular tetrahedron can be represented by
π − 2 cos−1 1√

3 = 2 tan−1 1√
2 = cos−1 1

3 . Hence, we have 2(π − 2 cos−1 1√
3) = 6 tan−1 1√

2 − π =
3 cos−1 1

3 − π.

3 A Trigonometric Identity

The next theorem resembles the identity tan−1 α + tan−1 1
α

= π
2 for any α > 0. There are

many known trigonometric identities. But to the best of our knowledge, we think Theorem 4
is new. We prove this theorem using Lemma 5 on an isosceles tetrahedron rather than a
triangle.

Theorem 4. For any α, β, γ > 0, we have

cos−1 α√
(α + β)(α + γ)

+ cos−1 β√
(α + β)(β + γ)

+ cos−1 γ√
(α + γ)(β + γ)

= π.

Proof. Let a, b, c > 0. Let D = (a, b, c), A = (a, −b, −c), B = (−a, b, −c), C = (−a, −b, c).
Then ABCD is an isosceles tetrahedron, and #    »

DA = −2⟨0, b, c⟩, #    »

DB = −2⟨a, 0, c⟩, #    »

DC =
−2⟨a, b, 0⟩. So #    »

DA× #    »

DB = 4 ⟨0, b, c⟩×⟨a, 0, c⟩ = 4 ⟨bc, ca, −ab⟩. Thus, a normal vector to the
plane DAB is #»u = ⟨bc, ca, −ab⟩. Similarly, normal vectors to the planes DBC and DCA are
#»v = ⟨−bc, ca, ab⟩ and #»w = ⟨bc, −ca, ab⟩, respectively. Note that these three normal vectors
#»u , #»v , and #»w are pointing outward of the tetrahedron ABCD. Hence,

cos∢DC = −
#»v · #»w

∥ #»v ∥∥ #»w∥
= −a2b2 + b2c2 + c2a2

a2b2 + b2c2 + c2a2 .

Similary,
cos∢DA = −

#»u · #»w

∥ #»u∥∥ #»w∥
= a2b2 − b2c2 + c2a2

a2b2 + b2c2 + c2a2 and

cos∢DB = −
#»u · #»v

∥ #»u∥∥ #»v ∥
= a2b2 + b2c2 − c2a2

a2b2 + b2c2 + c2a2 .

Also, we have

sin2 ∢DC = 1 −
Å−a2b2 + b2c2 + c2a2

a2b2 + b2c2 + c2a2

ã2

= 4a2b2c2(a2 + b2)
(a2b2 + b2c2 + c2a2)2 .

Thus, we have

sin∢DC = 2abc
√

a2 + b2

a2b2 + b2c2 + c2a2 .
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Similary,

sin∢DA = 2abc
√

b2 + c2

a2b2 + b2c2 + c2a2 , and sin∢DB = 2abc
√

a2 + c2

a2b2 + b2c2 + c2a2 .

By (a′), we have

cos∢BDC = cos∢DA + cos∢DB cos∢DC

sin∢DB sin∢DC

= (a2b2 + b2c2 + c2a2)(a2b2 − b2c2 + c2a2) + (a2b2 + b2c2 − c2a2)(−a2b2 + b2c2 + c2a2)
(2abc

√
a2 + c2)(2abc

√
a2 + b2)

= a2√
(a2 + c2)(a2 + b2)

.

Let α = a2, β = b2, γ = c2. Hence,

∢BDC = cos−1 a2√
(a2 + c2)(a2 + b2)

= cos−1 α√
(α + β)(α + γ)

.

Similarly,

∢CDA = cos−1 b2√
(a2 + b2)(b2 + c2)

= cos−1 β√
(α + β)(β + γ)

and

∢ADB = cos−1 c2√
(a2 + c2)(b2 + c2)

= cos−1 γ√
(α + γ)(β + γ)

.

Since the tetrahedron ABCD is isosceles, we have that ∢BDC + ∢CDA + ∢ADB = π by
Lemma 5. This implies

cos−1 α√
(α + β)(α + γ)

+ cos−1 β√
(α + β)(β + γ)

+ cos−1 γ√
(α + γ)(β + γ)

= π.
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