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Dihedral Angles of 4-Ball Tetrahedra
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Abstract. A tetrahedron is a 4-ball tetrahedron if there are four externally
tangent spheres centered at the vertices of the tetrahedron. It is known that a
tetrahedron being a 4-ball tetrahedron is equivalent to (1) three pairs of the sum
of opposing edge lengths are the same, and to (2) there is a sphere tangent to each
edge of the tetrahedron. We will prove that a tetrahedron is a 4-ball tetrahedron
if, and only if three pairs of the sums of opposing dihedral angles are the same.
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1 Introduction

A molecule of methane CH4 has four spherical hydrogen (H) atoms, the centers of hydrogen
atoms are bonded by way of a carbon (C) atom in the center, equidistant from each H atom.
Each H − C bond is 1.09 angstroms (1 angstrom = 10−10 meters) between atom centers, and
the bond angle defined by H − C − H is cos−1 (−1

3) ≈ 109.47◦. Each face of the tetrahedron
defined by four H atoms form an equilateral triangle. The distance between the centers of H
atoms is 1.78 angstroms.

Tetra phosphorus P4 is the gaseous form of white phosphorus. White phosphorus is
pyrophoric, is very dangerous, and is the main ingredient of napalm. When white phosphorus
is polymerized, it becomes red phosphorus. Red phosphorus is much stable, and is used for
the tip of the matches. A molecule of tetra phosphorus P4 has four spherical P atoms bonded
directly to each other, the centers of P atoms forming a regular tetrahedron. Unlike the
methane molecule, the tetra phosphorus molecule has no central atom. The P − P bond
length is 2.25 angstroms.

We learned this chemistry from our chemist friend Dr. George Cabaniss recently, and this
motivated us to investigate a tetrahedron formed by connecting the centers of four mutually
tangent spheres, not necessarily of the same radius.

ISSN 1433-8157/$ 2.50 © 2021 Heldermann Verlag

https://isgg.net/jgg/


198 H. Katsuura: Dihedral Angles of 4-Ball Tetrahedra

Definition 1. A tetrahedron is a 4-ball tetrahedron [6], or a balloon tetrahedron ([2, page 146])
if there are four externally tangent spheres centered at the vertices of the tetrahedron, and
we say that these four mutually and externally tangent spheres generate a 4-ball tetrahedron.

It is possible to place three mutually and externally tangent circles centered at vertices
of any triangle. However, it is not possible to place four mutually and externally tangent
spheres centered at vertices of any tetrahedron.

Definition 2. We denote by AB the segment AB as well as its length. If a tetrahedron
ABCD has the property AB + CD = AC + BD = AD + BC, then the tetrahedron ABCD
is said to be edge-additive.

Definition 3. If a tetrahedron has a unique sphere tangent to all six edges, then the sphere
is called an edge-tangent sphere of the tetrahedron, and the tetrahedron is said to be circum-
scriptable [1] or edge-incentric [4]. (In [4], a “3-intouch sphere” is used for a three-dimensional
edge-tangent sphere since the author was considering higher dimensional spaces.)

The following basic result can be found in [1, Chapter IX, B].

Theorem 1. Let ABCD be a tetrahedron. The following statements are equivalent.
1. The tetrahedron ABCD is a 4-ball tetrahedron.
2. The tetrahedron ABCD is edge-additive.
3. The tetrahedron ABCD has an edge-tangent sphere.

There are many more basic theorems on a 4-ball tetrahedron. In order to make the
narrative simpler and concise, we summarize them in the next Remarks. For more detail,
please see [6] in addition to [1]. For more detail and for higher dimensional analog, please
see [4].
Remarks: Let SA, SB, SC , SD be the four spheres that generate a 4-ball tetrahedron ABCD
centered at A, B, C, D, respectively. Let E, F , G, H, I, J be the points of tangency of the
generating spheres on the edges AB, BC, CA, DB, DC, DA, respectively. So, SA∩SB = {E},
SB ∩ SC = {F}, SC ∩ SD = {G}, SD ∩ SB = {H}, SD ∩ SC = {I}, SD ∩ SA = {J}. Thus, for
example, AE = AG = AJ is the radius of the sphere SA. Let S be the edge-tangent sphere
of a 4-ball tetrahedron ABCD. Then S meets edges AB BC, CA, DB, DC, DA at E, F ,
G, H, I, J,respectively. The intersection of the edge-tangent sphere S with the surface of the
tetrahedron ABCD are four incircles UA, UB, UC , UD on the faces BCD, ACD, ABD, and
ABC, respectively. For each X = E, F , G, H, I, J , let ΓX be the plane through the point X
normal to the edge of the tetrahedron that contains X. Then for example, ΓE ∩ ΓF ∩ ΓG is a
line normal to the face ABC, and intersection of this normal line with the face ABC, denoted
by D′, is the center of UD. The intersection of the six planes ΓE ∩ ΓF ∩ ΓG ∩ ΓH ∩ ΓI ∩ ΓJ is
a point P , and this point P is the center of the edge-tangent sphere S. Thus, for example,
E, F , G are the feet of the normal line from P to the edges AB, BC, and CA, respectively,
and D′E = D′F = D′G is the radius of UD.

The center P of the edge-tangent sphere S can be inside as well as outside of the tetra-
hedron ABCD. The tetrahedron ABCD in Figure 1 is a regular tetrahedron, so it is a
4-ball tetrahedron. Hence, the point P is its center, and is inside of the tetrahedron ABCD.
The vertices of the tetrahedron ABCD in Figure 2 are B = (4, 0, 0), C = (−2, 2

√
3, 0),

D = (−2, −2
√

3, 0), and A = (0, 0, 1). Since the face BCD is an equilateral triangle, and
since AB = AC = AD, ABCD is a 4-ball tetrahedron by Theorem 1.2. The point F is the
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midpoint of BC. Since BF = BE, it can be shown that E =
(
4 − 8

(
3
17

) 1
2 , 0, 16 − 32

(
3
17

) 1
2
)
.

Thus, the point P is the intersection of ΓE and the z-axis. From this, we can show that
P = (0, 0, 2

√
51 − 16). Because 2

√
51 − 16 < 0, P is outside of the tetrahedron ABCD. The

radius r of the edge-tangent sphere S is given by r2 = 464 − 64
√

51.
We need two additional definitions.

Definition 4. The dihedral angle at the edge AB of a tetrahedron ABCD is the inside angle
between the triangular faces CAB and DAB, and it is denoted by (C, AB, D) or AB when
there is no confusion.

Definition 5. A tetrahedron ABCD is said to be dihedral-angle-additive if AB + CD =
AC + BD = AD + BC.

Our main theorem is to prove that a tetrahderon is a 4-ball tetrahedron if, and only if
it is dihedral-angle-additive (Theorem 2). Please contrast this to Theorem 1.2. As far as we
can tell, this result seems new.

2 The Main Result

Theorem 2. A tetrahedron is a 4-ball tetrahedron if, and only if it is dihedral-angle-additive.

We divide the proof into two parts. We use the notations introduced in Remarks.

Proof of Theorem 2, Part 1: Suppose ABCD is a 4-sphere tetrahedron. We will show that
it is dihedral-angle-additive. Let D′, C ′, B′, A′ be the centers of the incircles UD, UC , UB,
UA of triangular faces ABC, ABD, ACD, BCD, respectively. Recall P is the center of the
edge-tangent sphere S, and E, F , G are the feet of normal lines from P to the edge AB, BC,
CA, respectively.

Consider the tetrahedron ABCP . The planes ΓE = PD′E, ΓF = PD′F , ΓG = PD′G
are normal to the edges AB, BC, CA, respectively. So, we have (P, AB, C) = ∠PED′,
(P, BC, A) = ∠PFD′, and (P, CA, B) = ∠PGD′. D′E = D′F = D′G is the radius of the
incircle UD. The segment PD′ is shared by the triangles PED′, PFD′, PGD′. Hence, the
triangles PED′, PFD′, PGD′ are congruent. So, we have ∠PED′ = ∠PFD′ = ∠PGD′.
This shows that (P, AB, C) = (P, BC, A) = (P, CA, B). Like Figures 1 and 2, P and D can
be on the same side of the plane ABC, or P and D can be on opposite sides of the plane
ABC. Let θ(D′) = (P, AB, C) = (P, BC, A) = (P, CA, B) if P and D are on the same side of
the plane ABC, and θ(D′) = −(P, BC, A) = −(P, CA, B) if P and D are on opposite sides
of the plane ABC.

Similarly, we have

(P, AB, D) = (P, BD, A) = (P, DA, B), (P, AC, D) = (P, CD, A) = (P, DA, C),
and (P, CB, D) = (P, BD, C) = (P, DC, B).

Let θ(C ′) = (P, AB, D) = (P, BD, A) = (P, DA, B) if P and C are on the same side of the
plane ABD, and let θ(C ′) = −(P, AC, D) = −(P, BD, A) = −(P, DA, B) if P and C are on
opposite sides of the plane ABD.

Let θ(B′) = (P, AC, D) = (P, CD, A) = (P, DA, C) if P and B are on the same side of
the plane ACD, and let θ(B′) = −(P, AC, D) = −(P, CD, A) = −(P, DA, C) if P and B are
on opposite sides of the plane ACD.
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Let θ(A′) = (P, CB, D) = (P, BD, C) = (P, DC, B) if P and A are on the same side of
the plane BCD, and let θ(A′) = −(P, CB, D) = −(P, BD, C) = −(P, DC, B) if P and A are
on opposite sides of the plane BCD. These cases are portrayed in Figures 1 and 2.

Then, we have

AB = (C, AB, D) = (P, AB, C) + (P, AB, D) = θ(D′) + θ(C ′),
and CD = (A, CD, B) = (P, CD, A) + (P, CD, B) = θ(B′) + θ(A′).

So AB + CD = θ(A′) + θ(B′) + θ(C ′) + θ(D′). Similarly, we can show that AC + BD =
θ(A′) + θ(B′) + θ(C ′) + θ(D′) = AD + BC. This proves that AB + CD = AC + BD =
AD + BC. Therefore, the 4-ball tetrahedron ABCD is dihedral-angle-additive.

The proof of the converse is Part 2, and it is long. We need the following lemmas.

Lemma 1. Let ABCD be a tetrahedron. Then we have the following equation.

cos AD = cos (∠BDC) − cos (∠CDA) cos (∠ADB)
sin (∠CDA) sin (∠ADB) . See [5, page 940].

(For your information,

cos (∠ABC) =
cos BD + cos AB cos BC

sin AB sin BC
.

See [3, page 731].)

Lemma 2. Let m be a line in a plane Γ. Let P be a point not on Γ. Let O be the point on Γ
such that PO is normal to Γ, and let X be the point on the line m such that PX is normal
to m. Then the line OX is normal to m.

Proof. Since the plane OPX is normal to the line m, the line OX is normal to m.

Lemma 3 below is the key to prove Part 2 of the proof of Theorem 2.

Lemma 3. Let ABCD be a tetrahedron.
1. Let X, Y, Z be points on the edges AD, BD, CD, respectively, such that DX = DY =

DZ in length. Let ΓX , ΓY , ΓZ be planes through X, Y, Z normal to the edges AD, BD,
CD, respectively. Let Q be the intersection of these three planes ΓX , ΓY , and ΓZ.
Then Q is a point such that (Q, AD, B) = (Q, BD, A), (Q, BD, C) = (Q, CD, B) and
(Q, CD, A) = (Q, AD, C). (See Figure 3.) (Note that Q and C may be on the opposite
sides of the plane ABD. See Example 1 below.)

2. If P is a point on the ray DQ different from D, then we have (P, AD, B) = (P, BD, A),
(P, BD, C) = (P, CD, B) and (P, CD, A) = (P, AD, C).

3. Suppose P is a point such that (P, AD, B) = (P, BD, A), (P, BD, C) = (P, CD, B),
and (P, CD, A) = (P, AD, C). Let X, Y, Z be the feet of the line through P normal to
the line AD, BD, CD respectively. Then DX = DY = DZ.

Proof. 1. Note that ∠DXQ = ∠DY Q = π
2 . Since DX = DY and the edge DQ is shared

by triangles △DQX and △DY Q, we have △DQX ≡ △DY Q (this means triangles
DQX and DY Q are congruent). So QX = QY so that △QXY is isosceles. Also,
△DXY is isosceles. Thus, ∠QXY = ∠QY X and ∠DXY = ∠DY X. As we said



H. Katsuura: Dihedral Angles of 4-Ball Tetrahedra 201

earlier, we have ∠DXQ = ∠DY Q. Now, we apply Lemma 1 to the dihedral angles
(Q, XD, B) and (Q, Y D, A) of the tetrahedron DQY X, and we have

cos (Q, XD, B) = cos (∠QXY ) − cos (∠DXQ) cos (∠DXY )
sin (∠DXQ) sin (∠DXY )

= cos (∠QY X) − cos (∠DY Q) cos (∠DY X)
sin (∠DY Q) sin (∠DY X)

= cos (Q, Y D, A).

Note that (Q, AD, B) = (Q, XD, B) and (Q, Y D, A) = (Q, BD, A). This proves that
(Q, AD, B) = (Q, BD, A). Similarly, we can prove that (Q, BD, C) = (Q, CD, B), and
(Q, CD, A) = (Q, AD, C).

2. Since P is on the ray DQ different from D, P is on the half plane QDA on the side of
the line DA as Q, so that (Q, AD, B) = (P, AD, B). Similarly, P is on the half plane
QDB on the side of the line DB as Q, so that (Q, BD, A) = (P, BD, A). By 1., we
have (Q, AD, B) = (Q, BD, A). Hence, (P, AD, B) = (P, BD, A). Similarly, we can
prove (P, BD, C) = (P, CD, B), and (P, CD, A) = (P, AD, C).

3. Let C ′ be the foot of the line through P normal to the plane DAB. Then ∠PXC ′ =
(P, AD, B) = (P, BD, A) = ∠PY C ′. Also, ∠PC ′X = ∠PC ′Y and segment PC ′ is
shared by both △PXC ′ and △PY C ′. Thus, △PXC ′ ≡ △PY C ′ so that XC ′ = Y C ′.
Since PE is normal to the plane ADB, and since PX is normal to AD, XC ′ and AD
are normal by Lemma 2. So, we have ∠DXC ′ = π

2 . Similarly, ∠DY C ′ = π
2 . Hence, we

have △DXC ′ ≡ △DY C ′. This proves that DX = DY . Similarly, we can show that
DX = DZ.

Example 1. In Lemma 3.1, let A = X = (1, 0, 0), B = Y = (0, 1, 0), C = Z = (0, 0, 1), and
D = (0, 0, 0). Then Q = (1, 1, 1), and Q and C are on the same side of the plane ABD. And
it appears that for any tetrahedron ABCD, the point Q defined in Lemma 3.1, Q and C are
on the same side of the plane ABD, but this is not the case.

Let A = X = (1, 0, 0), B = Y = (0, 1, 0), C = Z =
(√

3
4 , 3

4 , 1
2

)
, and D = (0, 0, 0). Then it

can be shown that Q =
(
1, 1, −

√
3−1
2

)
. Since the z-coordinate of Q is negative, Q and C are

on opposite sides of the ABD plane (=xy-plane).

Proof of Theorem 2, Part 2: Suppose a tetrahedron ABCD is dihedral-angle-additive, i.e.,
AB + CD = AC + BD = AD + BC. We will prove that the tetrahedron ABCD is a 4-ball
tetrahedron.

Let us denote the point Q in Lemma 3.1 by QD. Then (QD, AD, B) = (QD, BD, A),
(QD, BD, C) = (QD, CD, B), and (QD, CD, A) = (QD, AD, C).

a. If QD and C are on the same side of the plane ABD, let x = (QD, AD, B) = (QD, BD, A).
If QD and A are on opposite sides of the plane ABD, let x = −(QD, AD, B) =
−(QD, BD, A). (See Figure 3.)

b. If QD and A are on the same side of the plane BCD, let y = (QD, BD, C) = (QD, CD, B).
If QD and A are on opposite sides of the plane BCD let y = −(QD, BD, C) =
−(QD, CD, B).

c. If QD and B are on the same side of the plane ACD, let z = (QD, CD, A) = (QD, AD, C).
If QD and B are on opposite sides of the plane ACD, let z = −(QD, CD, A) =
−(QD, AD, C).

Hence, we have



202 H. Katsuura: Dihedral Angles of 4-Ball Tetrahedra

1. AD = x + z, BD = x + y, CD = y + z.
Similarly, by Lemma 3.1, there is a point QA such that

a = ±(QA, AD, B) = ±(QA, AB, D), b = ±(QA, AB, C) = ±(QA, AC, B),
and c = ±(QA, AC, D) = ±(QA, AD, C),

where the signs “±” are determined in a similar way as in a.–c. Then we have
2. AD = a + c, AB = a + b, AC = b + c. (See Figure 4.)

Again, there is a point QB such that

s = ±(QB, BD, C) = ±(QB, BC, D), t = ±(QB, BC, A) = ±(QB, AB, C),
and u = ±(QB, AB, D) = ±(QB, BD, A).

Hence,
3. BD = s + u, BC = s + t, AB = t + u (See Figure 5.)

Again, there is a point QC such that

p = ±(QC , CD, A) = ±(QC , AC, D), q = ±(QC , AC, B) = ±(QC , BC, A),
and r = ±(QC , BC, D) = ±(QC , CD, B).

Hence,
4. CD = p + r, AC = p + q, BC = q + r. (See Figure 6).

From 1. through 4., we have AD = x+z = a+c, BD = x+y = s+u, CD = y+z = p+r,
AB = a + b = t + u, BC = s + t = q + r, AC = b + c = p + q.
Since AB + CD = AC + BD, we have (a + b) + (y + z) = (b + c) + (x + y), and
(t + u) + (p + r) = (p + q) + (s + u). They simplify to a − c = x − z, and t − s = q − r.
But AD = a + c = x + z, and BC = s + t = q + r. This proves that

5. a = x, c = z, t = q, and s = r.
Similarly, since AB +CD = AD +BC, we have (t+u)+(y + z) = (x+ z)+(s+ t), and
(a + b) + (p + r) = (a + c) + (q + r). They simplify to u − s = x − y, and b − c = q − p.
But BD = x + y = s + u and AC = b + c = p + q. This proves that

6. u = x, s = y, b = q, and c = p.
Again, since AC + BD = AD + BC, we have (b + c) + (s + u) = (a + c) + (s + t), and
(p + q) + (x + y) = (x + z) + (q + r). They simplify to b − a = t − u, and p − r = z − y.
But AB = a + b = t + u and CD = y + z = p + r. This proves that

7. b = t, a = u, p = z, and y = r.
From 5. through 7., we have

8. a = x = u, c = z = p, b = t = q, and s = r = y.
9. The planes AQAD and AQDD are the same since a = x. We denote these common

planes by ΩAD.
10. The planes BQBD = BQDD := ΩBD since x = u.
11. The planes CQCD = CQDD := ΩCD since z = p.
12. The planes AQAB = AQBB := ΩAB since b = t.
13. The planes BQBC = BQCC := ΩBC since t = q.
14. The planes AQAC = AQCC := ΩAC since b = q.
15. ΩAD ∩ ΩBD ∩ ΩCD = DQD because of 9., 10., and 11.
16. ΩAD ∩ ΩAB ∩ ΩAC = AQA because of 9., 12., and 14.
17. ΩBD ∩ ΩAB ∩ ΩBC = BQB because of (10), (12), and (13).
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18. ΩCD ∩ ΩBC ∩ ΩAC = CQC because of (11), (13), and (14).
At the face ABD, we have ΩAD ∩ ΩAB ∩ ΩBD ̸= ∅. That is, the intersection of the three
planes ΩAD, ΩAB, ΩBD is a point, say ΩAD ∩ ΩAB ∩ ΩBD = {P}. Hence, (15), (16), and
(17) imply that {P} = DQD ∩ AQA ∩ BQB. So we have

19. DQD ∩ AQA ∩ BQB ̸= ∅.
At the face BCD, we also have ΩBD ∩ ΩBC ∩ ΩCD ̸= ∅. This, together with (15), (17),
(18) implies

20. DQD ∩ BQB ∩ CQC ̸= ∅.
Since DQD ∩ BQB is on the left side of both (19) and (20), we have DQD ∩ AQA ∩

BQB ∩ CQC ̸= ∅. Therefore, the lines DQD, AQA, BQB, CQC concur at the point P , and
AD = x + z, BD = x + y, CD = y + z, AB = x + b, BC = y + b, AC = z + b. Hence, by
Lemma 3.2, we have

(P, AD, B) = (P, BD, A), (P, BD, C) = (P, CD, B),
and (P, CD, A) = (P, AD, C), (P, BD, C) = (P, BC, D), (P, BC, A) = (P, AB, C),

and (P, AB, D) = (P, BD, A), and (P, CD, A) = (P, AC, D), (P, AC, B) = (P, BC, A),
and (P, BC, D) = (P, CD, B).

Let E, F , G, H, I, J be the feet of the lines through P normal to the edge AB, BC,
CA, BD, CD, AD, respectively, as in Figures 1 or 2. Then by Lemma 3.3, we have rA :=
AE = AG = AJ , rB := BE = BF = BH, rC := CF = CG = CI, rD := DG = DI = DJ .
This proves that the tetrahedron ABCD is generated by four-sphere of radii rA, rB, rC , rD,
centered at A, B, C, D, respectively.

Therefore, this proves Theorem 2.
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