Dihedral Angles of 4-Ball Tetrahedra

Hidefumi Katsuura
San Jose State University, San Jose, USA
hidefumi.katsuura@sjsu.edu

Abstract

A tetrahedron is a 4-ball tetrahedron if there are four externally tangent spheres centered at the vertices of the tetrahedron. It is known that a tetrahedron being a 4 -ball tetrahedron is equivalent to (1) three pairs of the sum of opposing edge lengths are the same, and to (2) there is a sphere tangent to each edge of the tetrahedron. We will prove that a tetrahedron is a 4 -ball tetrahedron if, and only if three pairs of the sums of opposing dihedral angles are the same.

Key Words: 4-ball tetrahedron, balloon tetrahedron, edge-additive tetrahedron, edge-tangent sphere, circumscriptable tetrahedron, edge-incentric tetrahedron, dihedral-angle-additive tetrahedron
MSC 2020: 51M15 (primary), 51M04

1 Introduction

A molecule of methane CH_{4} has four spherical hydrogen (H) atoms, the centers of hydrogen atoms are bonded by way of a carbon (C) atom in the center, equidistant from each H atom. Each $H-C$ bond is 1.09 angstroms (1 angstrom $=10^{-10}$ meters) between atom centers, and the bond angle defined by $H-C-H$ is $\cos ^{-1}\left(-\frac{1}{3}\right) \approx 109.47^{\circ}$. Each face of the tetrahedron defined by four H atoms form an equilateral triangle. The distance between the centers of H atoms is 1.78 angstroms.

Tetra phosphorus P_{4} is the gaseous form of white phosphorus. White phosphorus is pyrophoric, is very dangerous, and is the main ingredient of napalm. When white phosphorus is polymerized, it becomes red phosphorus. Red phosphorus is much stable, and is used for the tip of the matches. A molecule of tetra phosphorus P_{4} has four spherical P atoms bonded directly to each other, the centers of P atoms forming a regular tetrahedron. Unlike the methane molecule, the tetra phosphorus molecule has no central atom. The $P-P$ bond length is 2.25 angstroms.

We learned this chemistry from our chemist friend Dr. George Cabaniss recently, and this motivated us to investigate a tetrahedron formed by connecting the centers of four mutually tangent spheres, not necessarily of the same radius.

Definition 1. A tetrahedron is a 4-ball tetrahedron [6], or a balloon tetrahedron ([2, page 146]) if there are four externally tangent spheres centered at the vertices of the tetrahedron, and we say that these four mutually and externally tangent spheres generate a 4 -ball tetrahedron.

It is possible to place three mutually and externally tangent circles centered at vertices of any triangle. However, it is not possible to place four mutually and externally tangent spheres centered at vertices of any tetrahedron.

Definition 2. We denote by $A B$ the segment $A B$ as well as its length. If a tetrahedron $A B C D$ has the property $A B+C D=A C+B D=A D+B C$, then the tetrahedron $A B C D$ is said to be edge-additive.

Definition 3. If a tetrahedron has a unique sphere tangent to all six edges, then the sphere is called an edge-tangent sphere of the tetrahedron, and the tetrahedron is said to be circumscriptable [1] or edge-incentric [4]. (In [4], a " 3 -intouch sphere" is used for a three-dimensional edge-tangent sphere since the author was considering higher dimensional spaces.)

The following basic result can be found in [1, Chapter IX, B].
Theorem 1. Let $A B C D$ be a tetrahedron. The following statements are equivalent.

1. The tetrahedron $A B C D$ is a 4 -ball tetrahedron.
2. The tetrahedron $A B C D$ is edge-additive.
3. The tetrahedron $A B C D$ has an edge-tangent sphere.

There are many more basic theorems on a 4-ball tetrahedron. In order to make the narrative simpler and concise, we summarize them in the next Remarks. For more detail, please see [6] in addition to [1]. For more detail and for higher dimensional analog, please see [4].
Remarks: Let $S_{A}, S_{B}, S_{C}, S_{D}$ be the four spheres that generate a 4-ball tetrahedron $A B C D$ centered at A, B, C, D, respectively. Let E, F, G, H, I, J be the points of tangency of the generating spheres on the edges $A B, B C, C A, D B, D C, D A$, respectively. So, $S_{A} \cap S_{B}=\{E\}$, $S_{B} \cap S_{C}=\{F\}, S_{C} \cap S_{D}=\{G\}, S_{D} \cap S_{B}=\{H\}, S_{D} \cap S_{C}=\{I\}, S_{D} \cap S_{A}=\{J\}$. Thus, for example, $A E=A G=A J$ is the radius of the sphere S_{A}. Let S be the edge-tangent sphere of a 4-ball tetrahedron $A B C D$. Then S meets edges $A B B C, C A, D B, D C, D A$ at E, F, G, H, I, J,respectively. The intersection of the edge-tangent sphere S with the surface of the tetrahedron $A B C D$ are four incircles $U_{A}, U_{B}, U_{C}, U_{D}$ on the faces $B C D, A C D, A B D$, and $A B C$, respectively. For each $X=E, F, G, H, I, J$, let Γ_{X} be the plane through the point X normal to the edge of the tetrahedron that contains X. Then for example, $\Gamma_{E} \cap \Gamma_{F} \cap \Gamma_{G}$ is a line normal to the face $A B C$, and intersection of this normal line with the face $A B C$, denoted by D^{\prime}, is the center of U_{D}. The intersection of the six planes $\Gamma_{E} \cap \Gamma_{F} \cap \Gamma_{G} \cap \Gamma_{H} \cap \Gamma_{I} \cap \Gamma_{J}$ is a point P, and this point P is the center of the edge-tangent sphere S. Thus, for example, E, F, G are the feet of the normal line from P to the edges $A B, B C$, and $C A$, respectively, and $D^{\prime} E=D^{\prime} F=D^{\prime} G$ is the radius of U_{D}.

The center P of the edge-tangent sphere S can be inside as well as outside of the tetrahedron $A B C D$. The tetrahedron $A B C D$ in Figure 1 is a regular tetrahedron, so it is a 4 -ball tetrahedron. Hence, the point P is its center, and is inside of the tetrahedron $A B C D$. The vertices of the tetrahedron $A B C D$ in Figure 2 are $B=(4,0,0), C=(-2,2 \sqrt{3}, 0)$, $D=(-2,-2 \sqrt{3}, 0)$, and $A=(0,0,1)$. Since the face $B C D$ is an equilateral triangle, and since $A B=A C=A D, A B C D$ is a 4 -ball tetrahedron by Theorem 1.2. The point F is the
midpoint of $B C$. Since $B F=B E$, it can be shown that $E=\left(4-8\left(\frac{3}{17}\right)^{\frac{1}{2}}, 0,16-32\left(\frac{3}{17}\right)^{\frac{1}{2}}\right)$. Thus, the point P is the intersection of Γ_{E} and the z-axis. From this, we can show that $P=(0,0,2 \sqrt{51}-16)$. Because $2 \sqrt{51}-16<0, P$ is outside of the tetrahedron $A B C D$. The radius r of the edge-tangent sphere S is given by $r^{2}=464-64 \sqrt{51}$.

We need two additional definitions.
Definition 4. The dihedral angle at the edge $A B$ of a tetrahedron $A B C D$ is the inside angle between the triangular faces $C A B$ and $D A B$, and it is denoted by $(C, \overline{A B}, D)$ or $\overline{A B}$ when there is no confusion.

Definition 5. A tetrahedron $A B C D$ is said to be dihedral-angle-additive if $\overline{A B}+\overline{C D}=$ $\overline{A C}+\overline{B D}=\overline{A D}+\overline{B C}$.

Our main theorem is to prove that a tetrahderon is a 4-ball tetrahedron if, and only if it is dihedral-angle-additive (Theorem 2). Please contrast this to Theorem 1.2. As far as we can tell, this result seems new.

2 The Main Result

Theorem 2. A tetrahedron is a 4-ball tetrahedron if, and only if it is dihedral-angle-additive.
We divide the proof into two parts. We use the notations introduced in Remarks.
Proof of Theorem 2, Part 1: Suppose $A B C D$ is a 4 -sphere tetrahedron. We will show that it is dihedral-angle-additive. Let $D^{\prime}, C^{\prime}, B^{\prime}, A^{\prime}$ be the centers of the incircles U_{D}, U_{C}, U_{B}, U_{A} of triangular faces $A B C, A B D, A C D, B C D$, respectively. Recall P is the center of the edge-tangent sphere S, and E, F, G are the feet of normal lines from P to the edge $A B, B C$, $C A$, respectively.

Consider the tetrahedron $A B C P$. The planes $\Gamma_{E}=P D^{\prime} E, \Gamma_{F}=P D^{\prime} F, \Gamma_{G}=P D^{\prime} G$ are normal to the edges $A B, B C, C A$, respectively. So, we have $(P, \overline{A B}, C)=\angle P E D^{\prime}$, $(P, \overline{B C}, A)=\angle P F D^{\prime}$, and $(P, \overline{C A}, B)=\angle P G D^{\prime} . D^{\prime} E=D^{\prime} F=D^{\prime} G$ is the radius of the incircle U_{D}. The segment $P D^{\prime}$ is shared by the triangles $P E D^{\prime}, P F D^{\prime}, P G D^{\prime}$. Hence, the triangles $P E D^{\prime}, P F D^{\prime}, P G D^{\prime}$ are congruent. So, we have $\angle P E D^{\prime}=\angle P F D^{\prime}=\angle P G D^{\prime}$. This shows that $(P, \overline{A B}, C)=(P, \overline{B C}, A)=(P, \overline{C A}, B)$. Like Figures 1 and $2, P$ and D can be on the same side of the plane $A B C$, or P and D can be on opposite sides of the plane $A B C$. Let $\theta\left(D^{\prime}\right)=(P, \overline{A B}, C)=(P, \overline{B C}, A)=(P, \overline{C A}, B)$ if P and D are on the same side of the plane $A B C$, and $\theta\left(D^{\prime}\right)=-(P, \overline{B C}, A)=-(P, \overline{C A}, B)$ if P and D are on opposite sides of the plane $A B C$.

Similarly, we have

$$
\begin{gathered}
(P, \overline{A B}, D)=(P, \overline{B D}, A)=(P, \overline{D A}, B), \quad(P, \overline{A C}, D)=(P, \overline{C D}, A)=(P, \overline{D A}, C), \\
\text { and } \quad(P, \overline{C B}, D)=(P, \overline{B D}, C)=(P, \overline{D C}, B) .
\end{gathered}
$$

Let $\theta\left(C^{\prime}\right)=(P, \overline{A B}, D)=(P, \overline{B D}, A)=(P, \overline{D A}, B)$ if P and C are on the same side of the plane $A B D$, and let $\theta\left(C^{\prime}\right)=-(P, \overline{A C}, D)=-(P, \overline{B D}, A)=-(P, \overline{D A}, B)$ if P and C are on opposite sides of the plane $A B D$.

Let $\theta\left(B^{\prime}\right)=(P, \overline{A C}, D)=(P, \overline{C D}, A)=(P, \overline{D A}, C)$ if P and B are on the same side of the plane $A C D$, and let $\theta\left(B^{\prime}\right)=-(P, \overline{A C}, D)=-(P, \overline{C D}, A)=-(P, \overline{D A}, C)$ if P and B are on opposite sides of the plane $A C D$.

Let $\theta\left(A^{\prime}\right)=(P, \overline{C B}, D)=(P, \overline{B D}, C)=(P, \overline{D C}, B)$ if P and A are on the same side of the plane $B C D$, and let $\theta\left(A^{\prime}\right)=-(P, \overline{C B}, D)=-(P, \overline{B D}, C)=-(P, \overline{D C}, B)$ if P and A are on opposite sides of the plane $B C D$. These cases are portrayed in Figures 1 and 2.

Then, we have

$$
\begin{aligned}
\overline{A B} & =(C, \overline{A B}, D)=(P, \overline{A B}, C)+(P, \overline{A B}, D)=\theta\left(D^{\prime}\right)+\theta\left(C^{\prime}\right) \\
\text { and } \overline{C D} & =(A, \overline{C D}, B)=(P, \overline{C D}, A)+(P, \overline{C D}, B)=\theta\left(B^{\prime}\right)+\theta\left(A^{\prime}\right)
\end{aligned}
$$

So $\overline{A B}+\overline{C D}=\theta\left(A^{\prime}\right)+\theta\left(B^{\prime}\right)+\theta\left(C^{\prime}\right)+\theta\left(D^{\prime}\right)$. Similarly, we can show that $\overline{A C}+\overline{B D}=$ $\theta\left(A^{\prime}\right)+\theta\left(B^{\prime}\right)+\theta\left(C^{\prime}\right)+\theta\left(D^{\prime}\right)=\overline{A D}+\overline{B C}$. This proves that $\overline{A B}+\overline{C D}=\overline{A C}+\overline{B D}=$ $\overline{A D}+\overline{B C}$. Therefore, the 4-ball tetrahedron $A B C D$ is dihedral-angle-additive.

The proof of the converse is Part 2, and it is long. We need the following lemmas.
Lemma 1. Let $A B C D$ be a tetrahedron. Then we have the following equation.

$$
\left.\cos \overline{A D}=\frac{\cos (\angle B D C)-\cos (\angle C D A) \cos (\angle A D B)}{\sin (\angle C D A) \sin (\angle A D B)} . \quad \text { See [5, page } 940\right] \text {. }
$$

(For your information,

$$
\cos (\angle A B C)=\frac{\cos \overline{B D}+\cos \overline{A B} \cos \overline{B C}}{\sin \overline{A B} \sin \overline{B C}}
$$

See [3, page 731].)
Lemma 2. Let m be a line in a plane Γ. Let P be a point not on Γ. Let O be the point on Γ such that $P O$ is normal to Γ, and let X be the point on the line m such that $P X$ is normal to m. Then the line $O X$ is normal to m.

Proof. Since the plane $O P X$ is normal to the line m, the line $O X$ is normal to m.
Lemma 3 below is the key to prove Part 2 of the proof of Theorem 2.
Lemma 3. Let $A B C D$ be a tetrahedron.

1. Let X, Y, Z be points on the edges $A D, B D, C D$, respectively, such that $D X=D Y=$ $D Z$ in length. Let $\Gamma_{X}, \Gamma_{Y}, \Gamma_{Z}$ be planes through X, Y, Z normal to the edges $A D, B D$, $C D$, respectively. Let Q be the intersection of these three planes Γ_{X}, Γ_{Y}, and Γ_{Z}. Then Q is a point such that $(Q, \overline{A D}, B)=(Q, \overline{B D}, A),(Q, \overline{B D}, C)=(Q, \overline{C D}, B)$ and $(Q, \overline{C D}, A)=(Q, \overline{A D}, C)$. (See Figure 3.) (Note that Q and C may be on the opposite sides of the plane $A B D$. See Example 1 below.)
2. If P is a point on the ray $D Q$ different from D, then we have $(P, \overline{A D}, B)=(P, \overline{B D}, A)$, $(P, \overline{B D}, C)=(P, \overline{C D}, B)$ and $(P, \overline{C D}, A)=(P, \overline{A D}, C)$.
3. Suppose P is a point such that $(P, \overline{A D}, B)=(P, \overline{B D}, A),(P, \overline{B D}, C)=(P, \overline{C D}, B)$, and $(P, \overline{C D}, A)=(P, \overline{A D}, C)$. Let X, Y, Z be the feet of the line through P normal to the line $A D, B D, C D$ respectively. Then $D X=D Y=D Z$.

Proof. 1. Note that $\angle D X Q=\angle D Y Q=\frac{\pi}{2}$. Since $D X=D Y$ and the edge $D Q$ is shared by triangles $\triangle D Q X$ and $\triangle D Y Q$, we have $\triangle D Q X \equiv \triangle D Y Q$ (this means triangles $D Q X$ and $D Y Q$ are congruent). So $Q X=Q Y$ so that $\triangle Q X Y$ is isosceles. Also, $\triangle D X Y$ is isosceles. Thus, $\angle Q X Y=\angle Q Y X$ and $\angle D X Y=\angle D Y X$. As we said
earlier, we have $\angle D X Q=\angle D Y Q$. Now, we apply Lemma 1 to the dihedral angles $(Q, \overline{X D}, B)$ and $(Q, \overline{Y D}, A)$ of the tetrahedron $D Q Y X$, and we have

$$
\begin{aligned}
\cos (Q, \overline{X D}, B) & =\frac{\cos (\angle Q X Y)-\cos (\angle D X Q) \cos (\angle D X Y)}{\sin (\angle D X Q) \sin (\angle D X Y)} \\
& =\frac{\cos (\angle Q Y X)-\cos (\angle D Y Q) \cos (\angle D Y X)}{\sin (\angle D Y Q) \sin (\angle D Y X)} \\
& =\cos (Q, \overline{Y D}, A) .
\end{aligned}
$$

Note that $(Q, \overline{A D}, B)=(Q, \overline{X D}, B)$ and $(Q, \overline{Y D}, A)=(Q, \overline{B D}, A)$. This proves that $(Q, \overline{A D}, B)=(Q, \overline{B D}, A)$. Similarly, we can prove that $(Q, \overline{B D}, C)=(Q, \overline{C D}, B)$, and $(Q, \overline{C D}, A)=(Q, \overline{A D}, C)$.
2. Since P is on the ray $D Q$ different from D, P is on the half plane $Q D A$ on the side of the line $D A$ as Q, so that $(Q, \overline{A D}, B)=(P, \overline{A D}, B)$. Similarly, P is on the half plane $Q D B$ on the side of the line $D B$ as Q, so that $(Q, \overline{B D}, A)=(P, \overline{B D}, A)$. By 1., we have $(Q, \overline{A D}, B)=(Q, \overline{B D}, A)$. Hence, $(P, \overline{A D}, B)=(P, \overline{B D}, A)$. Similarly, we can prove $(P, \overline{B D}, C)=(P, \overline{C D}, B)$, and $(P, \overline{C D}, A)=(P, \overline{A D}, C)$.
3. Let C^{\prime} be the foot of the line through P normal to the plane $D A B$. Then $\angle P X C^{\prime}=$ $(P, \overline{A D}, B)=(P, \overline{B D}, A)=\angle P Y C^{\prime}$. Also, $\angle P C^{\prime} X=\angle P C^{\prime} Y$ and segment $P C^{\prime}$ is shared by both $\triangle P X C^{\prime}$ and $\triangle P Y C^{\prime}$. Thus, $\triangle P X C^{\prime} \equiv \triangle P Y C^{\prime}$ so that $X C^{\prime}=Y C^{\prime}$. Since $P E$ is normal to the plane $A D B$, and since $P X$ is normal to $A D, X C^{\prime}$ and $A D$ are normal by Lemma 2. So, we have $\angle D X C^{\prime}=\frac{\pi}{2}$. Similarly, $\angle D Y C^{\prime}=\frac{\pi}{2}$. Hence, we have $\triangle D X C^{\prime} \equiv \triangle D Y C^{\prime}$. This proves that $D X=D Y$. Similarly, we can show that $D X=D Z$.

Example 1. In Lemma 3.1, let $A=X=(1,0,0), B=Y=(0,1,0), C=Z=(0,0,1)$, and $D=(0,0,0)$. Then $Q=(1,1,1)$, and Q and C are on the same side of the plane $A B D$. And it appears that for any tetrahedron $A B C D$, the point Q defined in Lemma 3.1, Q and C are on the same side of the plane $A B D$, but this is not the case.

Let $A=X=(1,0,0), B=Y=(0,1,0), C=Z=\left(\frac{\sqrt{3}}{4}, \frac{3}{4}, \frac{1}{2}\right)$, and $D=(0,0,0)$. Then it can be shown that $Q=\left(1,1,-\frac{\sqrt{3}-1}{2}\right)$. Since the z-coordinate of Q is negative, Q and C are on opposite sides of the $A B D$ plane (=xy-plane).

Proof of Theorem 2, Part 2: Suppose a tetrahedron $A B C D$ is dihedral-angle-additive, i.e., $\overline{A B}+\overline{C D}=\overline{A C}+\overline{B D}=\overline{A D}+\overline{B C}$. We will prove that the tetrahedron $A B C D$ is a 4 -ball tetrahedron.

Let us denote the point Q in Lemma 3.1 by Q_{D}. Then $\left(Q_{D}, \overline{A D}, B\right)=\left(Q_{D}, \overline{B D}, A\right)$, $\left(Q_{D}, \overline{B D}, C\right)=\left(Q_{D}, \overline{C D}, B\right)$, and $\left(Q_{D}, \overline{C D}, A\right)=\left(Q_{D}, \overline{A D}, C\right)$.
a. If Q_{D} and C are on the same side of the plane $A B D$, let $x=\left(Q_{D}, \overline{A D}, B\right)=\left(Q_{D}, \overline{B D}, A\right)$. If Q_{D} and A are on opposite sides of the plane $A B D$, let $x=-\left(Q_{D}, \overline{A D}, B\right)=$ $-\left(Q_{D}, \overline{B D}, A\right)$. (See Figure 3.)
b. If Q_{D} and A are on the same side of the plane $B C D$, let $y=\left(Q_{D}, \overline{B D}, C\right)=\left(Q_{D}, \overline{C D}, B\right)$. If Q_{D} and A are on opposite sides of the plane $B C D$ let $y=-\left(Q_{D}, \overline{B D}, C\right)=$ $-\left(Q_{D}, \overline{C D}, B\right)$.
c. If Q_{D} and B are on the same side of the plane $A C D$, let $z=\left(Q_{D}, \overline{C D}, A\right)=\left(Q_{D}, \overline{A D}, C\right)$. If Q_{D} and B are on opposite sides of the plane $A C D$, let $z=-\left(Q_{D}, \overline{C D}, A\right)=$ $-\left(Q_{D}, \overline{A D}, C\right)$.
Hence, we have

1. $\overline{A D}=x+z, \overline{B D}=x+y, \overline{C D}=y+z$.

Similarly, by Lemma 3.1, there is a point Q_{A} such that

$$
\begin{gathered}
a= \pm\left(Q_{A}, \overline{A D}, B\right)= \pm\left(Q_{A}, \overline{A B}, D\right), b= \pm\left(Q_{A}, \overline{A B}, C\right)= \pm\left(Q_{A}, \overline{A C}, B\right) \\
\text { and } \quad c= \pm\left(Q_{A}, \overline{A C}, D\right)= \pm\left(Q_{A}, \overline{A D}, C\right)
\end{gathered}
$$

where the signs " \pm " are determined in a similar way as in a. -c . Then we have
2. $\overline{A D}=a+c, \overline{A B}=a+b, \overline{A C}=b+c$. (See Figure 4.)

Again, there is a point Q_{B} such that

$$
\begin{gathered}
s= \pm\left(Q_{B}, \overline{B D}, C\right)= \pm\left(Q_{B}, \overline{B C}, D\right), \quad t= \pm\left(Q_{B}, \overline{B C}, A\right)= \pm\left(Q_{B}, \overline{A B}, C\right) \\
\text { and } \quad u= \pm\left(Q_{B}, \overline{A B}, D\right)= \pm\left(Q_{B}, \overline{B D}, A\right)
\end{gathered}
$$

Hence,
3. $\overline{B D}=s+u, \overline{B C}=s+t, \overline{A B}=t+u$ (See Figure 5.)

Again, there is a point Q_{C} such that

$$
\begin{gathered}
p= \pm\left(Q_{C}, \overline{C D}, A\right)= \pm\left(Q_{C}, \overline{A C}, D\right), \quad q= \pm\left(Q_{C}, \overline{A C}, B\right)= \pm\left(Q_{C}, \overline{B C}, A\right) \\
\text { and } \quad r= \pm\left(Q_{C}, \overline{B C}, D\right)= \pm\left(Q_{C}, \overline{C D}, B\right)
\end{gathered}
$$

Hence,
4. $\overline{C D}=p+r, \overline{A C}=p+q, \overline{B C}=q+r$. (See Figure 6).

From 1. through 4., we have $\overline{A D}=x+z=a+c, \overline{B D}=x+y=s+u, \overline{C D}=y+z=p+r$, $\overline{A B}=a+b=t+u, \overline{B C}=s+t=q+r, \overline{A C}=b+c=p+q$.
Since $\overline{A B}+\overline{C D}=\overline{A C}+\overline{B D}$, we have $(a+b)+(y+z)=(b+c)+(x+y)$, and $(t+u)+(p+r)=(p+q)+(s+u)$. They simplify to $a-c=x-z$, and $t-s=q-r$. But $\overline{A D}=a+c=x+z$, and $\overline{B C}=s+t=q+r$. This proves that
5. $a=x, c=z, t=q$, and $s=r$.

Similarly, since $\overline{A B}+\overline{C D}=\overline{A D}+\overline{B C}$, we have $(t+u)+(y+z)=(x+z)+(s+t)$, and $(a+b)+(p+r)=(a+c)+(q+r)$. They simplify to $u-s=x-y$, and $b-c=q-p$. But $\overline{B D}=x+y=s+u$ and $\overline{A C}=b+c=p+q$. This proves that
6. $u=x, s=y, b=q$, and $c=p$.

Again, since $\overline{A C}+\overline{B D}=\overline{A D}+\overline{B C}$, we have $(b+c)+(s+u)=(a+c)+(s+t)$, and $(p+q)+(x+y)=(x+z)+(q+r)$. They simplify to $b-a=t-u$, and $p-r=z-y$. But $\overline{A B}=a+b=t+u$ and $\overline{C D}=y+z=p+r$. This proves that
7. $b=t, a=u, p=z$, and $y=r$.

From 5. through 7., we have
8. $a=x=u, c=z=p, b=t=q$, and $s=r=y$.
9. The planes $A Q_{A} D$ and $A Q_{D} D$ are the same since $a=x$. We denote these common planes by $\Omega_{A D}$.
10. The planes $B Q_{B} D=B Q_{D} D:=\Omega_{B D}$ since $x=u$.
11. The planes $C Q_{C} D=C Q_{D} D:=\Omega_{C D}$ since $z=p$.
12. The planes $A Q_{A} B=A Q_{B} B:=\Omega_{A B}$ since $b=t$.
13. The planes $B Q_{B} C=B Q_{C} C:=\Omega_{B C}$ since $t=q$.
14. The planes $A Q_{A} C=A Q_{C} C:=\Omega_{A C}$ since $b=q$.
15. $\Omega_{A D} \cap \Omega_{B D} \cap \Omega_{C D}=D Q_{D}$ because of $9 ., 10$., and 11 .
16. $\Omega_{A D} \cap \Omega_{A B} \cap \Omega_{A C}=A Q_{A}$ because of $9 ., 12$., and 14 .
17. $\Omega_{B D} \cap \Omega_{A B} \cap \Omega_{B C}=B Q_{B}$ because of (10), (12), and (13).

Figure 1

$$
Q=Q_{D}
$$

Figure 3

Figure 5

Figure 2

Figure 4

Figure 6
18. $\Omega_{C D} \cap \Omega_{B C} \cap \Omega_{A C}=C Q_{C}$ because of (11), (13), and (14).

At the face $A B D$, we have $\Omega_{A D} \cap \Omega_{A B} \cap \Omega_{B D} \neq \emptyset$. That is, the intersection of the three planes $\Omega_{A D}, \Omega_{A B}, \Omega_{B D}$ is a point, say $\Omega_{A D} \cap \Omega_{A B} \cap \Omega_{B D}=\{P\}$. Hence, (15), (16), and (17) imply that $\{P\}=D Q_{D} \cap A Q_{A} \cap B Q_{B}$. So we have
19. $D Q_{D} \cap A Q_{A} \cap B Q_{B} \neq \emptyset$.

At the face $B C D$, we also have $\Omega_{B D} \cap \Omega_{B C} \cap \Omega_{C D} \neq \emptyset$. This, together with (15), (17), (18) implies
20. $D Q_{D} \cap B Q_{B} \cap C Q_{C} \neq \emptyset$.

Since $D Q_{D} \cap B Q_{B}$ is on the left side of both (19) and (20), we have $D Q_{D} \cap A Q_{A} \cap$ $B Q_{B} \cap C Q_{C} \neq \emptyset$. Therefore, the lines $D Q_{D}, A Q_{A}, B Q_{B}, C Q_{C}$ concur at the point P, and $\overline{A D}=x+z, \overline{B D}=x+y, \overline{C D}=y+z, \overline{A B}=x+b, \overline{B C}=y+b, \overline{A C}=z+b$. Hence, by Lemma 3.2, we have

$$
(P, \overline{A D}, B)=(P, \overline{B D}, A),(P, \overline{B D}, C)=(P, \overline{C D}, B)
$$

and $\quad(P, \overline{C D}, A)=(P, \overline{A D}, C), \quad(P, \overline{B D}, C)=(P, \overline{B C}, D), \quad(P, \overline{B C}, A)=(P, \overline{A B}, C)$, and $\quad(P, \overline{A B}, D)=(P, \overline{B D}, A), \quad$ and $\quad(P, \overline{C D}, A)=(P, \overline{A C}, D), \quad(P, \overline{A C}, B)=(P, \overline{B C}, A)$, and $\quad(P, \overline{B C}, D)=(P, \overline{C D}, B)$.

Let E, F, G, H, I, J be the feet of the lines through P normal to the edge $A B, B C$, $C A, B D, C D, A D$, respectively, as in Figures 1 or 2. Then by Lemma 3.3, we have $r_{A}:=$ $A E=A G=A J, r_{B}:=B E=B F=B H, r_{C}:=C F=C G=C I, r_{D}:=D G=D I=D J$. This proves that the tetrahedron $A B C D$ is generated by four-sphere of radii $r_{A}, r_{B}, r_{C}, r_{D}$, centered at A, B, C, D, respectively.

Therefore, this proves Theorem 2.

References

[1] N. Altshiller-Court: Modern Pure Solid Geometry. The Macmillan Company, 1935.
[2] C. Bradley: Challenges in Geometry. Cambridge University Press, Cambridge, 2005.
[3] L. Craine and D. N. Yetter: Tetrahedral Geometry from Area. Amer. Math. Monthly 127(8), 726-733, 2020. doi: 10.1080/00029890.2020.1793636.
[4] M. Hajua: Coincidences of Centers of Edge-Incentric, or Balloon, Simplices. Results Math. 49, 237-263, 2006. doi: 10.1007/s00025-006-0222-4.
[5] M. Hampton: Cosines and Cayley, Triangles and Tetrahedra. Amer. Math. Monthly 121(10), 973-941, 2014. doi: 10.4169/amer.math.monthly.121.10.937.

Internet Sources

[6] A. Oldknow: Exploring 4-ball tetrahedra with Cabri 3D. http://www.adrianoldknow. org.uk/Exploring\ 4-balls.doc. Last Accessed: October 5, 2021.

Received June 30, 2021; final form October 1, 2021.

