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Abstract. We generalize Monge’s theorem for n + 1 pairwise homothetic sets (in
particular convex bodies) in En in place of three disks in E2. We also present a
version for homotheties for pairs of vertices of a non degenerate simplex in En. It
includes a reverse of Monge’s theorem. Moreover, we give an analogon of Monge’s
theorem for the n-dimensional sphere and hyperboloid model of the hyperbolic
space.
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1 Introduction

For any two circles in a plane, an external tangent is a line that is tangent to both circles but
does not pass between them. There are two such external tangent lines for any two circles.
Each such pair of external tangents for circles of different size has a unique intersection point.
The classic Monge’s theorem states that for three such pairwise disjoint circles of different size
the three intersection points of the external tangent lines given by the three pairs of circles
always lie in a straight line. For instance, see the book [4] by Gardner. Walker [9] generalized
Monge’s Theorem for n + 1 balls in the Euclidean n-space En and a hyperplane in place of
the above straight line.

First we present a version of Monge’s theorem for n + 1 linearly independent points
in place of the balls. This version includes also a reverse of Monge’s theorem. Next we
give a generalization of Monge’s theorem for n + 1 pairwise homothetic bounded sets (not
obligatory disjoint) with homothety ratios over 1 in En in place of the n + 1 balls in En. A
good visualization is obtained by taking convex bodies in place of our bounded sets.

Moreover, we give spherical and hyperbolic n-dimensional analogons of Monge’s theorem.
Our proof applies the n-dimensional Menelaus’ theorem generalization for the n-dimensional
sphere Sn and hyperbolic space Hn by Ushijma [8]. Compare also the paper [1] by Akyopyan.
Questions remain about possible analogs of Monge’s theorem in Thurston geometries (see [7]),
and in axiomatic geometry as for instance Guggenheimer [5] treats the Menelaus’ theorem.
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2 Monge’s theorem for a wide class of sets in En

Let us start with a proposition on a version of Monge’s theorem for n+1 points in En instead
of balls.

Recall that a set A of points in En is said to be independent if the affine span of any
proper subset of A is a proper subset of the span of A.

Proposition 1. Let the set of points a1, a2, . . . , an+1 ∈ En be independent. Consider the
straight line Lij containing aiaj and a point bij ∈ Lij different from ai and aj for i, j ∈
{1, . . . , n + 1}. For every i < j denote by λij the ratio of homothety with center bij which
transforms aj into ai. We claim that the n(n + 1)/2 points bij belong to one hyperplane if and
only if λ−1

ij λikλ−1
jk = 1 for every i, j ∈ {1, . . . , n + 1}.

Proof. Let us apply the variant of Theorem 2 of the paper [2] by Buba-Brzozowa in which
we take into account lengths instead of oriented lengths. Her n-dimensional generalization of
the classic Menelaus’ theorem says that points bij, where i, j = 1, . . . , n + 1 and i < j, belong
to one hyperplane of En if and only if

|aibij|
|bijaj|

· |ajbjk|
|bjkak|

· |akbik|
|bikai|

= 1.

Since |aibij |
|bijaj | = λij for every i, j ∈ {1, . . . , n + 1}, where i < j, we obtain that all our points

bij belong to one hyperplane if and only if λ−1
ij λikλ−1

jk = 1 for every i, j ∈ {1, . . . , n+1}, which
is our thesis.

Clearly, if we agree that the points a1, . . . , an+1 in Proposition 1 are dependent (but still
different), then the “if” part trivially holds true.

Theorem 1. Assume that for sets C1, . . . , Cn+1 ⊂ En and for every i, j ∈ {1, . . . , n + 1} with
i < j there are unique homotheties hij of ratios over 1 such that hij(Cj) = Ci. Then the
n(n + 1)/2 centers of these homotheties are in one hyperplane.

Proof. Consider the 1
2n(n+1) homotheties hij such that hij(Cj) = Ci, where i, j ∈ {1, . . . , n+

1} and i < j (for three convex bodies in E2 see Figure 1). Of course, for every three ho-
motheties hpq, hpr, hqr, where p < q < r we have hpr(h−1

qr (h−1
pq (Cp))) = Cp. By the unique-

ness of the homotheties hij, there are points o1, . . . , on+1 such that hij(oj) = oi for every
i, j ∈ {1, . . . , n + 1} with i < j. From the “if” part of Proposition 1 we get our thesis.

If C1, . . . , Cn+1 from Theorem are centrally-symmetric convex bodies, we may say that
Monge’s theorem holds for n + 1 balls of different sizes of a normed n-dimensional space in
place of n+1 balls of Euclidean space. A particular case is for the two-dimensional Lp spaces
in the paper [3] by Ermiş and Gelişgen. The author thanks them for sharing their preprint
[3] which was mobilizing for formulating the above theorem.

The assumption that homotheties hij are unique holds if the sets are bounded and non-
empty. It also holds for some unbounded sets. For instance when in E2 we take Ci as the
intersection of half-planes x ≥ 0, y ≥ 1/i, x + y ≥ 4 − i, where i = 1, 2, 3. Then all bij are
different and lie on the line x = 0. If we exchange y ≥ 1/i into y ≥ 0 here, all bij coincide
and still are on x = 0. For example the assumption does not hold for any family of n + 1
translates of a half-space in En; the thesis may be not true for some homotheties with ratios
over 1 between them. We let the reader to show that if the assumption does not hold then
there are some positive homotheties for which Theorem is still true.
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Figure 1: Illustration of Theorem in case of three convex bodies in E2

3 Analogons of Monge’s theorem in spherical and hyperbolic
spaces

Below by Xn we denote both the sphere Sn and the hyperboloid model Hn of the hyperbolic
n-dimensional space. By a hyperplane and a line of Xn we mean a subset of Xn isometric to
Xn−1 and X1, respectively. Usually, for Sn they are called an (n − 1)-dimensional subsphere
and a great circle, respectively. By the distance |xy| of points x, y ∈ Xn (which are not
opposite if Xn = Sn) we mean the length of the geodesic joining x and y. By the arc xy
between x and y we mean the set of points p such that |xp| + |py| = |xy|. We say that any
such p is between x and y.

For different points c, p, r ∈ Xn such that p is between c and r, and |cr| = λ · |cp|, we say
that r is the image of p under the Xn-homothety with center c and ratio λ. Clearly λ ≥ 0.
Observe that λ < π

2 for Sn.
We call a set A ⊂ Xn (embedded in En+1) to be independent if the set A ∪ {o}, where o

is the origin of En+1, is independent in En+1.
The Menelau’s theorem on S2 is recalled in Proposition 66 of the book [6] by Rashed

and Papadopoulos. Recently their generalizations for Sn and Hn are given in Theorem 4 of
Ushijima [8]. From this result, similarly to the proof of our Proposition 1 for En, we get the
following Proposition 2 (illustrated in Figure 2 for S2) on the analogous variant of Monge’s
theorem for n + 1 points on Sn and Hn. Here by λij we mean sin |aibij |

sin |bijaj | for Sn and sinh |aibij |
sinh |bijaj |

for Hn.

Proposition 2. Let a1, a2, . . . , an+1 be independent points of Xn. Take into account the line
Lij containing aiaj. Denote by bij a point different from ai and aj in Lij such that aj ∈ aibij

for i, j ∈ {1, . . . , n + 1}. For every i < j denote by λij the ratio of the Xn-homothety with
center bij which transforms aj into ai. Then the 1

2n(n + 1) points bij are in one hyperplane
of Hn if and only if λ−1

ij λikλ−1
jk = 1 for all i, j ∈ {1, . . . , n + 1}.
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Figure 2: Illustration of Proposition 2 for S2
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