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Abstract. Extra dimensions can be utilized to simplify problems in classical
mechanics, offering new insights. Here we show a simple example of how the
motion of a test particle under the influence of an 1D inverse-quadratic potential
is equivalent to that of another test particle moving freely in 2D Euclidean space
and 3D Minkowskian space.
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1 Introduction

Broadly speaking, physics questions are often defined by or complicated by their dimensions.
On the surface, there seems to be a trend that physical questions become more difficult as the
dimensionality increases. For example, collisions in two dimensions are harder to deal with
than in one dimension, because the velocity becomes a two-dimensional vector not a scalar
[13, 17]. Rigid body rotation in three dimensions is much more complicated than in two
dimensions, since the angular velocity becomes a three-dimensional vector not a scalar [13, 17].
In quantum mechanics, any potential-well in one dimension and two dimensions has at least
one bound state, but that claim is no longer correct in three dimensions [1, 24]. However, many
findings in modern theoretical physics indicate that it is also possible to simplify problems
by adding more dimensions. In the theory of general relativity, electromagnetism and gravity
can be unified by adding an extra compact dimension [9, 10]. In condensed matter physics,
quasicrystals can be treated as projections of a higher-dimensional lattice [8, 11, 14]. Finally,
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in string theory, a strongly interacting system can be more easily understood by considering
a gravitational system in one more dimension [7, 21] via gauge/string duality [16].

Though typically used in more advanced topics, the addition of extra dimensions can help
to simplify problems in classical physics. For example, the electrostatic problem of finding the
charge distribution on a thin conducting circular disk, can be easily solved by an orthogonal
projection of the charge distribution of a conducting sphere onto an equatorial plane [23].
But, those are rare. To students of classical and applied geometry, this curious use of extra
dimension can appear in creative solutions of some well-known challenges, such as the proof
of Desargues’ theorem by Conway and Ryba, [2] and the cyclographic-projected solution
of Apollonian circle problem by Stachel [22]. Some other interesting examples can also be
found as exercises in The Universe of Conics [6, Exercise 4.1.1, pp. 132 and Exercise 4.4.4,
pp. 167–168] and The Universe of Quadrics [20, Exercise 2.2.7 and 2.2.8, pp. 51].

In this note, we will concretely show how adding extra dimensions simplifies the classical
mechanics problem of motion under the influence of an inverse-quadratic potential. To the
best of our knowledge, this curious physical example has not been demonstrated elsewhere.

2 From 1D to 2D Euclidean Space

Consider a point particle of mass m in one-dimensional space moving under the influence of
an inverse-quadratic potential V1(x) = α/x2. This potential appears in experimental atomic
physics [4, 15] and also is of many theoretical interests because it gives a scale-invariant
Schrodinger’s equation [3, 5, 18, 19]. For now, let us focus on a repulsive potential with
α > 0. Initially, when t = 0, the particle is at position x0 with no velocity. The motion of
the particle can be described by applying conservation of energy to arrive at the following
integral:

m(dx/dt)2/2 + V1(x) = V1(x0)

=⇒ dx/dt =
(

2
(
V1(x0) − V1(x)

)/
m

)1/2

=⇒
∫ x(t)

x0
dx

(
2α(x−2

0 − x−2)/m
)−1/2

= t .

(1)

However, doing this integration is non-trivial. The solution requires changing variables to
y = (x2

0 − x2)1/2, at which point the integral becomes
∫

dyy−1/2 up to a multiplication factor.
We can get the equation of motion:(

mx2
0

(
x2(t) − x2

0

)/
2α

)1/2
= t

=⇒ x(t) = (x2
0 + 2αt2/mx2

0)1/2 .

(2)

While this solution is tractable, there exists another way to describe the motion of the particle
without the need of calculus. A “magic” from an extra dimension.

Consider a general central potential V2 in a two-dimensional space. In the polar coordi-
nates r⃗ = (r, θ) where the origin is the center of the potential, we have rotational symmetry.
The kinetic energy Kθ stored in the compact angular dimension depends on the angular
momentum pθ and the moment of inertia mθ = mr2:

Kθ = p2
θ/2mθ = p2

θ/2mr2 = Kθ(r) . (3)
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The effective potential in the radial dimension [13, 17] is just the sum of the central potential
V2(r) and the kinetic energy Kθ(r). It should be noted that Kθ(r) and V1(x) are both inverse-
quadratic functions.

We note now an exact correspondence between this 2D scenario and the 1D problem con-
sidered above. The motion of the point particle in one-dimensional space under V1 potential
is dual to the radial motion of its counterpart moving freely in two-dimensional space (no
potential V2 = 0), given that the angular momentum is exactly pθ = (2mα)1/2:

x(t)
∣∣∣∣
V1=α/x2

⇐⇒ r(t)
∣∣∣∣
V2=0,pθ=(2mα)1/2

. (4)

In other words, with an extra angular dimension we can eliminate the potential.

Figure 1: The 1D/2D duality. A repulsive inverse-quadratic potential in an 1D space is dual to no
potential in a 2D space.

Using x(0) = x0 and dx/dt(0) = 0, we have the corresponding radial position r(0) = x0
and radial velocity dr/dt(0) = 0. The tangent velocity is given by:

vθ ≡ rdθ/dt(0) = pθ/mr(0) = (2α/mx2
0)1/2 . (5)

See Fig. 1 for the detail of this 1D/2D duality. We can arrive at the same answer (2) with
the Pythagorean theorem:

r(t) =
(
r2(0) + (vθt)2

)1/2
= (x2

0 + 2αt2/mx2
0)1/2 . (6)

While we arrived at the same answer, the solution this time is purely geometric and does not
involve any calculus.

3 From 1D to 3D Minkowskian Space

The tools developed here can also be used for an arbitrary inverse-quadratic potential. How-
ever, it is more complicated and requires generalization to three dimensions. For an attractive



268 T. V. Phan, A. Doan: A Curious Use of Extra Dimension in Classical Mechanics

potential, we can directly use α = −|α| < 0 to get the equation of motion x(t) and also the
lifetime τ until the point particle meets the singularity at position x = 0:

x(t) =
(
x2

0 − 2|α|t2/mx2
0

)1/2
,

x(τ) = 0 =⇒ τ =
(
mx4

0/2|α|
)1/2

.
(7)

However, as we re-examine the problem from a two-dimensional perspective as explained
above, this indicates an imaginary value of angular momentum pθ = i

(
2m|α|

)1/2
. To gener-

alize this extra-dimensional trick for all real values of α, we need to complexify the angular
dimension θ = θR + iθI (with θR and θI are real). Thus the corresponding space will be
three-dimensional with (+, +, −) metric signature [12]. Note that there are now two extra
dimensions instead of one: while θR is a compact dimension, θI is an open one. The particle
moves in the (+, +) Euclidean plane when α > 0, and in the (+, −) Minkowskian plane when
α < 0. See Fig. 2 for the detail of this 1D/3D duality.

Figure 2: The 1D/3D duality. An inverse-quadratic potential in an 1D space is dual to no potential
in a 3D space with (+, +, −) metric signature. Different signs of the potential correspond
to different planes of motion: (+, +) plane when the potential is repulsive and (+, −) plane
when the potential is attractive.
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