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Abstract. This article provides a new perspective on the geometry of a projective
line, which helps clarify and illuminate some classical results about projective
plane. As part of the same train of ideas, the article also provides a proof of the
nine-point circle theorem valid for any affine plane over a commutative field of
characteristic different from 2.
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1 Introduction

In this note, we want to show the readers a different way to think about the geometry of a
projective line that the readers will not see in any projective geometry textbook. This new
perspective will greatly clarify a number of classical results about the geometry of a projective
plane, and it will also help us outline a proof of the nine-point circle theorem that applies to
any affine plane over a commutative field of characteristic ̸= 2.

Let K be any commutative field. (Please keep in mind that all coordinate fields in this
article are assumed to be commutative.) The projective line K ∪{∞} can be described as the
affine line K extended by adjoining a point at infinity denoted by the symbol ∞. It can also
be regarded as P(K2) = the set of lines through the origin in the affine plane K2, where each
element x of K is identified with the line passing through the point (x, 1), and ∞ is identified
with the horizontal line consisting of all the points (u, 0) (u running through K) in K2.

A projective transformation of a projective line is a transformation of K ∪ {∞} induced
by an invertible linear transformation of K2 (viewed as a vector space of dimension 2 over K).
All such projective transformations can be described as the fractional linear transformations
of K ∪ {∞} described by:

x 7→ x′ = ax + b

cx + d
where a, b, c, d are numbers in K such that ad − bc ̸= 0.
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A major focus of the classical geometry of projective line is the study of involutions, de-
fined as projective transformations of order two. These involutions are precisely the fractional
linear transformations where a + d = 0.1 In this note, we will outline a different way to view
these involutions when the field K has characteristic ̸= 2.

2 Involution

Specifically, we can think of involutions on a projective line as the 1-dimensional versions of
the familiar inversions and reflections in Euclidean plane geometry.

Recall that in the extended Euclidean plane R2 ∪ {∞}, we can define reflections (across
a line) and inversions (across a circle) as follows.

Definition 1 (Reflection). Consider the line defined by the equation L(x) = b·x+c = 0 where
b is a nonzero vector and b · x is the standard dot product of two vectors. The corresponding
affine reflection is the transformation of R2 ∪{∞} that sends ∞ to itself, and any finite point
x to a finite point x′ = x − 2bL(x)

b·b . Note that b · b is a nonzero number because b is a nonzero
vector and the standard dot product in R2 is anisotropic.

Definition 2 (Inversion). Any circle in R2 can be defined by an equation a(x–b) · (x–b)–as =
0, where a is a nonzero real number. The center of the circle is the point represented by the
vector b, and the radius of the circle is zero when s is zero. Take any circle with nonzero
radius, i.e. s is nonzero. For such a circle, we can define an inversion mapping R2 ∪ {∞} to
itself as follows:

• b ↔ ∞
• for any finite point x ̸= b, x 7→ the finite point x′ collinear with b and x, and such that

(x–b) · (x′–b) = s.

The collinear condition and dot product equation are equivalent to x′ − b = s(x−b)
(x−b)·(x−b) .

Note that (x–b) · (x–b) is a non-zero number because (x–b) ̸= 0. Incidentally, this shows
that inversion is a well-defined transformation regardless of whether or not there is any point
x in the plane satisfying the circle equation a(x–b).(x–b)–as = 0.

Any non-zero scalar multiple of a line or circle equation defines the same transformation,
and any reflection or inversion so defined is a transformation of R2 ∪ {∞} that is its own
inverse. If x and x′ are mapped to each other by such a transformation, we will call these
points inverse points or conjugate points relative to the defining line or circle.

For a projective line over any field K of characteristic ̸= 2, we can define reflections and
inversions in the same way.

Reflection on a Projective Line
The analog of a line in this setting is the linear expression Bx + C in one variable x, where B
is a nonzero number in K. The equation Bx + C = 0 has exactly one zero in K, namely the
number (–C/B). The reflection defined by the line Bx + C is the transformation that sends
∞ to itself, and any finite point x to the finite point x∗ = x–2B Bx+C

B·B = −x−2(C/B). (In this
1For a projective transformation to be an involution, it is necessary and sufficient that any 2 × 2 matrix T

corresponding to such an involution satisfies a minimal equation T 2–s with s ̸= 0. At the same time, we
know from the Cayley-Hamilton theorem that T 2– tr(T )T + det(T ) = 0. So the trace of such a matrix
must be zero.
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context, the dot product notation for two numbers just means ordinary multiplication.) Such a
transformation is a combination of the symmetry x 7→ −x and the translation x 7→ x–2(C/B).
The fixed points of such a reflection are the finite point −C/B and the point ∞ at infinity.

Inversion on a Projective Line
The analog of a circle in this setting is the quadratic expression Ax2 + Bx + C, where
the leading coefficient A is a nonzero number. We can rewrite the expression as A(x +
B/(2A))2 − As where s = (B2 − 4AC)/(4A2). When the discriminant (B2 − 4AC) of this
quadratic expression vanishes, we have the analog of a zero circle (circle with zero radius).
When the discriminant (B2 − 4AC) is nonzero, we can define an inversion of the projective
line as the transformation x 7→ x∗ that exchanges the points ∞ and −B/(2A), and otherwise
(x∗ + B/(2A))(x + B/(2A)) = (B2–4AC)/(4A2). Note that this transformation is well-
defined when the right-hand side is nonzero, regardless of whether the quadratic polynomial
Ax2 + Bx + C has any root in K. If that quadratic polynomial has two distinct roots in K,
then these two roots are fixed points of the transformation.

Specifically, if we take the quadratic expression (x–U)(v–V ) = x2–(U + V )x + UV where
U and V are distinct, then the corresponding inversion as defined above has the finite points
U and V as fixed points. This is again just like the case with inversions in R2 ∪ {∞}, where
the fixed points of an inversion across a circle are the points on the circle itself, i.e., the points
whose coordinates satisfy the circle equation.

From the above definitions, it is clear that reflections and inversions are involutions.
Moreover, any involution is either a reflection or an inversion. Indeed, an involution on a
projective line is just a fractional linear transformation x 7→ x∗ = ax+b

cx+d
where a + d = 0.

If c = 0 then we have a reflection x 7→ x∗ = –x + b
d
. If c ̸= 0, then we have an inversion

defined by the equation c(x∗ + d/c)(x + d/c) = (d2 + bc)/c, i.e., the inversion across the circle
cx2 + 2dx–b.

For the rest of our discussion, we will always assume that the underlying coordinate field
K has characteristic ̸= 2.

3 The Space of Involutions

Seen as a reflection or an inversion, each involution on a projective line is represented (uniquely
up to a scalar factor) by a linear or quadratic expression. Consider the set E of all polynomials
p(X) of degree ≤ 2, with coefficients in the field K. The set E is naturally a K-vector space
of dimension 3. We will refer to a nonzero polynomial p as a 2-cycle, 1-cycle, or 0-cycle
depending on whether the degree of p is 2, 1, or 0. For convenience, we will write each
element p of E in the same form p(X) = aX2 + bX + c, with the understanding that each
coefficient a, a, and a could be zero.

We can endow the vector space E with a symmetric bilinear form ⟨·, ·⟩ as follows. If
p = aX2 + bX + c and p∗ = a∗X2 + b∗X + c∗, we define ⟨p, p∗⟩ to be bb∗–2ac∗–2a∗c.

This scalar product is clearly symmetric and bilinear. Moreover, it is nondegenerate,
because it is plainly isomorphic to the sum of K (represented by the middle coefficient, with
ordinary multiplication) and an Artinian plane (also known as a hyperbolic plane). We will
refer to this fundamental scalar product on E as the cycle pairing or cycle product.

The vector space E can be naturally identified with the vector space Q of all symmetric
bilinear forms on K2. Specifically, an element p of E can be thought of as a function from
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K to K given by p(x) = q((x, 1), (x, 1)) where q is a symmetric bilinear form on K2.2 If
p = Ax2 + Bx + C, then the matrix for the corresponding symmetric bilinear form q (relative
to the standard basis of K2) has entries A and C in the main diagonal, and entries B/2
in the cross diagonal. For convenience, we will often write a symmetric bilinear form as a
homogenous polynomial of degree 2, so that the bilinear form q corresponding to the cycle p
above is Ax2 + Bxy + Cy2.

The cycle pairing defined on E can be carried over to a regular scalar product on the
vector space Q. If we express a symmetric bilinear form in Q as a 2×2 matrix, then the norm
of such a matrix under this cycle product is simply −4 times the determinant. Specifically,
for a cycle p = Ax2 + Bx + C in E, its norm ⟨p, p⟩ = B2 − 4AC is equal to −4 times the
determinant of the corresponding bilinear form q.

For computational purposes, it is often easier to work with cycles. However, because
symmetric bilinear forms have an intrinsic meaning independent of coordinates, it can be
helpful sometimes to think of cycles in terms of symmetric bilinear forms. For example, if we
have a change in coordinates, what will happen to the cycle pairing? If we think of cycles as
symmetric bilinear forms, the question has a straight-forward conceptual answer, as described
below.

If we change the coordinates for P(K2) by means of a general linear transformation
x = S(x′) of K2, then the matrix M of a symmetric bilinear form in the old coordinate x will
become tSMS (where tS is the transpose of S) in the new coordinates x′. The norm ⟨M, M⟩ of
M under the cycle pairing is equal to −4 det(M). With this change in coordinates, the norm
of M becomes ⟨tSMS,t SMS⟩ = −4 det(S)2 det(M). So the simple linear transformation
q 7→ (det S)q gives us an isometry between the vector space Q with the cycle pairing in the
new coordinate x′ and the vector space Q with the cycle pairing in the old coordinate x.
Accordingly, orthogonal properties in either the space Q or E under the cycle pairing are
independent of any coordinate chosen for the parametrization of the projective line.

Any 1-cycle b(X–u) seems to have just one zero point, namely u. However, if we think
of that 1-cycle as equivalent to the bilinear form b(XY –uY 2), then we have two linearly
independent isotropic vectors (u, 1) (corresponding to the point u) and (x, 0) (corresponding
to the point at infinity). Because of this fact, we will regard ∞ as the second zero point of
any 1-cycle. (This is similar to the case of the inversive plane R2 ∪{∞}, where we regard any
line in the Euclidean plane R2 as also passing through the point ∞ at infinity.) For the same
reason, we also regard ∞ as the zero point of any 0-cycle C (C a nonzero constant) in light
of the fact that the corresponding bilinear form CY 2 has any (x, 0) as an isotropic vector.

With this convention, each involution is identified (up to a scalar factor) with a non-
isotropic cycle whose zero points (if any) are the fixed points of the involution. For example,
the zero points of the 1-cycle (X − u) are the points u and ∞, which are exactly the fixed
points of the reflection defined by the 1-cycle (X − u). For the 2-cycle (X − u)(X − w) with
u and w distinct, its zero points are the distinct points u and w, which are exactly the fixed
points of the inversion defined by the 2-cycle (X − u)(X − w).

The isotropic elements of E (with respect to the cycle pairing defined above) are the 0-
cycles and the 2-cycles with zero discriminant. The nonisotropic elements of E are the 1-cycles
and the 2-cycles with nonzero discriminant, precisely the elements for which we can define
reflections and inversions. In Q, the corresponding isotropic elements are the degenerate
bilinear forms, and the nonisotropic elements are the nondegenerate bilinear forms. Because

2The elements p of E are defined as polynomials of degree 2 or less, but because the field K has 3 or more
elements, such a polynomial p can be identified with a polynomial function from K to K.
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each involution on a projective line is represented by a nonisotropic cycle in E uniquely up
to a scalar factor, we can regard all the nonisotropic elements in the projective space P(E)
or P(Q) as the space of all involutions for the projective line K ∪ {∞} = P(K2).

We say that a 2-dimensional subspace of E or Q is regular if the scalar product induced
by the cycle pairing on that subspace is nondegenerate. The corresponding projective line
(also called pencil) in the projective subspace P(E) or P(Q) is then also said to be regular.
Because the cycle pairing is nondegenerate, there is a natural bijective correspondence be-
tween nonisotropic elements of P(E) or P(Q) and regular pencils of cycles or bilinear forms.
Specifically, the orthogonal complement of any nonisotropic element is a regular pencil, and
vice versa.

Proposition 1. There is a natural bijection between involutions of a projective line and
regular pencils of bilinear forms on that projective line. Each pair of conjugate points in an
involution are the zero points of a symmetric bilinear form in the regular pencil corresponding
to that involution.3

Proof. Recall that each involution is either a reflection or an inversion. These involutions
are parametrized by the set of nonisotropic elements in the projective space P(E) or P(Q).
Moreover, each such nonisotropic element corresponds exactly to a regular pencil if we look
at the orthogonal complement. So involutions on a projective line correspond bijectively to
regular pencils of bilinear forms.

Consider first the case of a reflection defined by the 1-cycle (X–c). The fixed points of
this reflection are the finite point c and the point at infinity ∞. The finite point c is the zero
point of the 2-cycle (X − c)2 = X2 − 2cX + c2. The cycle pairing of that 2-cycle with the
1-cycle (X–c) is simply −2c + 2c = 0. Similarly, the point at infinity is the zero point of any
0-cycle, which is easily seen to be orthogonal to any 1-cycle. Accordingly, the proposition is
certainly true for the fixed points in this case.

If u and w are two distinct points that are conjugate under this reflection, then they are
finite points such that w = −u + 2c or u + w = 2c. The points u and w are the zero points of
the 2-cycle (X − u)(X − w). We need to show that the pairing of the 1-cycle (X − c) and the
2-cycle (X − u)(X − w) is zero. But under the formula for the cycle pairing product, their
cycle pairing is simply just −(u + w) + 2c = 0.

Now consider the case when the involution in question is an inversion defined by a 2-cycle
(X2–2bX + c) with nonzero discriminant 4b2–4c. The conjugate points ∞ and b are the zero
points of the 1-cycle (X − b). The 1-cycle (X − b) and the 2-cycle (X2 − 2bX + c) have the
pairing −2b + 2b = 0 and so are clearly orthogonal.

Other pairs of conjugate points u and w are related by the equation (u−b)(w−b) = b2 −c.
That can be written as uw − b(u + w) + c = 0. We want to show that the pairing of
the 2-cycle (X2 − 2bX + c) and the 2-cycle (X − u)(X − w) is zero. But that pairing is
2b(u + w) − 2uw − 2c = 0 in light of the relationship between u and w.

In the above correspondence, the fixed points of an involution correspond (up to a scalar
factor) to degenerate bilinear forms. Because a reflection or an inversion on a projective
line will either have no fixed point or exactly two fixed points, a regular pencil of bilinear
forms will either have no degenerate element or exactly two degenerate elements. This is
a geometrical interpretation of the well-known fundamental result that a regular symmetric

3For another proof of this proposition, see [2] at Proposition 1.
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bilinear space of dimension 2 is either anisotropic (no isotropic vectors) or an Artinian plane
(with two linearly independent isotropic vectors).

Another consequence of Proposition 1 is that two involutions with the same two fixed
points must be the same transformation. That is because the bilinear forms corresponding
to these fixed points will generate the same pencil of bilinear forms, and therefore we must
have the same involution.

4 The Eleven-Point Conic

A nondegenerate symmetric bilinear form on the two-dimensional vector space K2 gives us a
natural involution of the projective line P(K2) which maps a point on the line to its polar
conjugate. This is well-defined because the bilinear form is nondegenerate. We will refer to
this involution as the polar involution defined by a nondegenerate bilinear form.

The orthogonal complement of such a nondegenerate bilinear form is a regular pencil of
bilinear forms, and therefore gives us an involution on the projective line under the correspon-
dence of Proposition 1. We will refer to this involution as the Desargue involution defined by
a nondegenerate bilinear form.

Proposition 2. The Desargue involution and the polar involution defined by a nondegenerate
symmetric bilinear form are the same transformation.

Proof. Let the nondegenerate symmetric bilinear form be q((x, y), (x′, y′)) = Axx′ + Byx′ +
Bxy′ + Cyy′, and let (u, v) be the homogeneous coordinates of the projective line in question.
The polar involution (u, v) 7→ (u∗, v∗) is defined by the equation:

q((u, v), (u∗, v∗)) = 0 = Auu∗ + Bvu∗ + Buv∗ + Cvv∗.

For the Desargues involution, Proposition 1 tells us that the two conjugate points (u, v)
and (u∗, v∗) are isotropic points of a bilinear form h which is cycle-orthogonal to q.

Now note that the two points (u, v) and (u∗, v∗) are the zero or isotropic points of h and
also of the bilinear form (vX − uY )(v∗X − u∗Y ). If two bilinear forms of dimension 2 have
the same two isotropic points, then they must be proportional. Indeed, relative to the basis
consisting of those two isotropic vectors the 2 × 2 matrices of these two bilinear forms both
have zeros in the diagonal and a non-zero number in the cross diagonal.

Accordingly, the bilinear form (vX −uY )(v∗X −u∗Y ) must also be cycle-orthogonal to q.
Writing out (vX −uY )(v∗X −u∗Y ) = vv∗X2+(−vu∗−uv∗)XY +uu∗Y 2, the cycle-orthogonal
relationship means that we have the equation 2B(−vu∗ − uv∗) − 2Auu∗ − 2Cvv∗ = 0. This
equation is the same as the equation for the polar involution up to a factor of −2. This means
the Desargue involution and the polar involution are the same transformation.

Proposition 2 allows us to gain some more insight into the following remarkable conic.
Consider the pencil L of conics passing through four points in general position in a projective
plane. Suppose that this pencil when restricted to a line D gives us a regular pencil of bilinear
forms on that projective line.4 For each non-degenerate conic in the pencil L, consider the
pole of D relative to that conic. As the conics range over the pencil L, these corresponding
poles all belong to a conic E that has some remarkable properties. See, e.g., [1] at section 79.1.

4That is the case if and only if the line D does not pass through any base point of the pencil L. See [2],
Proposition 2 and main Theorem.
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In particular, that conic E passes through potentially up to eleven points that are defined by
the configuration of D and the base points of the pencil L. Accordingly, it is known as the
eleven-point conic.

We should emphasize that the eleven-point conic is a general construction valid over any
commutative coordinate field of characteristic ̸= 2. Specifically, under the hypothesis that
the pencil L consists of all conics passing through four base points in general position, we can
choose a coordinate system (u, v, t) for the projective plane so that the pencil L is the family
of conics defined by the quadratic forms lu2 + mv2 + nt2 with l + m + n = 0. If the given
line D is defined by a linear equation Au + Bv + Ct = 0, then the eleven-point conic can be
defined by the quadratic form Avt + But + Cuv. If a point (x, y, z) in the given projective
plane is orthogonal to the line D relative to one of the conics in the pencil L, then the point
(x, y, z) is a zero point of this conic.

The symmetric bilinear form associated to the conic E (determined up to a scalar factor)
may or may not be non-degenerate in the ambient projective space, but when restricted to
the line D that symmetric bilinear form is non-degenerate, as explained below.

Proposition 3. The eleven-point conic E induces a nondegenerate bilinear form on the line
D, and therefore gives us an involution defined by polarity with respect to E. The polar
involution induced by the eleven-point conic E on the line D is the same as the Desargue
involution induced by the pencil L on the line D.

Proof. Note that any isotropic point of the conic E on the line D is exactly a tangent point
of D with a conic in the pencil L.

Each such tangent point corresponds to a degenerate bilinear form in the pencil L when
restricted to D (since the tangent point shows that the corresponding bilinear form has a
nonzero radical). By hypothesis the pencil L when restricted to D is a regular pencil of
bilinear forms, and therefore we either have no such tangent point, or exactly two tangent
points. Accordingly, the conic E when restricted to the line D will either have no isotropic
point (when no conic in the pencil L is tangent to D), or exactly two isotropic points (when
two different conics in the pencil L are tangent to D). In other words, the conic E when
restricted to the line D also gives us a nondegenerate bilinear form.

If the Desargue involution induced by the pencil L on the line D has two distinct fixed
points, then these two fixed points are also zero points of the conic E because they are
necessarily the tangent points of the line D with two conics in the pencil L. These fixed
points are therefore the intersection points of the line D with the conic E , and consequently
are also invariant under the polar involution on D induced by the conic E . But two involutions
of a projective line with the same two fixed points must be the same transformation.

If the Desargue involution induced by the pencil L has no fixed point, then we look at the
same configuration and equations in an algebraic closure of the base field K. An algebraic
closure of K is only unique up to isomorphism, but once such an algebraic closure is chosen
together with an imbedding of K in it, then our configuration over K extends naturally and
uniquely to a larger configuration over the algebraic closure, with the defining equation for the
conic E remaining the same. Therefore on the line D with the coordinate field now extended
to the given algebraic closure, the Desargue involution induced by the extended version of
the pencil L and the polar involution induced by the extended version of the conic E are just
natural extensions of the corresponding involutions over the original coordinate field K.

Over such an algebraic closure, any regular symmetric bilinear space of dimension 2 must
have two linearly independent isotropic vectors, and therefore the Desargue involution induced
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by the pencil L must have two fixed points. Consequently, by extending the coordinate field
K to its algebraic closure, we see that the two involutions are the same. But that is the
case only if the two involutions are already the same transformations over the coordinate
field K.

We know that the Desargue involution on the line D is either a reflection or an inversion
defined by a nondegenerate symmetric bilinear form q that is cycle orthogonal to the pencil
L when restricted to D. According to Proposition 2, such a Desargue involution is the same
as the polar involution defined by q. Proposition 3 tells us that the polar involution defined
by the eleven-point conic E on D is the same as the Desargue involution. That means when
restricted to D, the conic E will give us the same bilinear form q up to a scalar factor. In
other words, the conic E is cycle orthogonal to all conics in the pencil L when restricted to
the projective line D.

For example, consider a projective plane with homogeneous coordinates (u, v, w) and
suppose that the line D is the line at infinity given by the equation w = 0. If the conic
E has equation Au2 + Buv + Cv2 + (terms with variable w), and if r = au2 + buv + cv2 +
(terms with variable w) is any conic in the pencil L, then such orthogonal relationship means
that we must have Bb–2Ac–2Ca = 0.

Assume that the bilinear forms in such a pencil have the form au2 + buv − av2 +
(terms with variable w). That is to say, the coefficients of the terms u2 and v2 have op-
posite signs while the coefficient of the term uv ranges over all values in the coordinate field
K. In that case, the above orthogonal relationship means that the equation for E must have
the form Au2 +Av2 +(terms with variable w). In other words, E must be a circle in this case.

This particular situation happens for the following configuration. Let M , N , and P be
3 points in the affine plan (u, v, 1) that are not collinear. We have the standard dot product
(u, v)·(u′, v′) = uu′+vv′ in the vector space K2. This standard dot product is non-degenerate,
although it is not anisotropic in general.

By reference to the above standard dot product, we can define orthogonal lines in the
affine plane (w = 1), and through each vertex of the triangle MNP there is a unique line
orthogonal to the opposite side called the altitude line. It follows as an exercise in linear
algebra that all three altitude lines are concurrent, i.e., they pass through a common point T
called the orthocenter of the triangle MNP .

We will assume that the orthocenter T does not lie on any of the sides of the triangle
MNP , so that the 4 points M , N , P , T are in general position and form a frame for the
projective plane. In that general case, there is a pencil of conics through the four points
M , N , P and T as base points. That pencil can be generated by linear combinations of the
following two quadratic forms:

• (line equation for MT ) × (line equation for NP ), and
• (line equation for NT ) × (line equation for MP )
For any two line equations that are orthogonal (relative to the standard dot product on u

and v), their product will be an expression of the form au2+buv−av2+(terms with variable w).
Consequently, all of the conics in the pencil will have expressions of the same form.

Because the line at infinity does not pass through any of the four base points in general
position, this pencil of conics induces a Desargues involution on the line at infinity.

It follows from our earlier analysis that the eleven-point conic E relative to such a pencil
must be a circle. From projective geometry, we know that this circle passes through the
following nine points determined by the configuration M , N , P , T in the affine plane (w = 1)
and the line at infinity (w = 0): namely the midpoints of the six sides of the configuration
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(MN , PT , MP , NT , MT , NP ),5 and the intersections of the three pairs of lines determined
by the configuration (MN and PT , MP and NT , MT and NP ). In classical Euclidean
geometry, this nine-point circle is known as the Feuerbach circle.

What we have shown is the following generalization of the Feuerbach nine-point circle
from classical Euclidean geometry:

Proposition 4. In any affine plane over any commutative field of characteristic ̸= 2, we
have a nine-point circle associated with any triangle whose orthocenter is not collinear with
any of the sides, similar to the case of the classical Euclidean plane.
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