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Abstract. We will extend an interesting theorem of van Aubel’s for a triangle
in the plane to a simplex in the n-dimensional Euclidean space. The barycentric
coordinates over simplex and parallel projections in the n-dimensional Euclidean
space will be used for the proof of these extensions.
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1 Some terms and notations

Throughout this paper we use the terms and notations as follows:
• Rn is the Cartesian model of the n-dimensional Euclidean geometry and En is n-

dimensional Euclidean space (n ≥ 2). That means that each point P in En corresponds
to an n-tuple of numbers (p1, p2, . . . , pn) in Rn; see [10, Chapter 1].

• The Euclidean vector connecting an initial point P with a terminal point Q (in En) is
denoted by #    »

PQ = −P + Q (see [10, pp. 5], [7]). The zero vector in En is denoted by #»0 .
• The notation of length segment XY adopts Newton’s idea of directed line segments (see

[4, p. 30]), it means XY = −Y X;
• An n-simplex A in En is the set of n+1 points A0, A1, . . . , An such that n vectors #        »

A0A1,
#        »

A0A2, . . . , #         »

A0An are linearly independent; see [8, pp. 195–199] and [3, pp. 120–124]. For
examples: 1-simplex is a segment, 2-simplex is a triangle, 3-simplex is a tetrahedron.

• A hyperplane passing through n points A1, A2, . . . , An in En is denoted by (A1A2 . . . An).
• A line passing through two points P and Q (in En) is denoted by (PQ).

2 Introduction

Van Aubel’s theorem is an interesting theorem in a triangle that describes the relationship
between the length ratios related to the Cevian triangle. This theorem was mentioned in [2],
[6, 547–548], or [11–13] as follows:
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Figure 1: Illustration in plane of Theorem 1
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Figure 2: Illustration in 3D space of Theorem 2

Theorem 1 (van Aubel). Let ABC be a triangle with vertices A, B, and C in E2. Let P
be an arbitrary point not lying on the lines (BC), (CA), and (AB). Assume that the lines
(PA), (PB), and (PC) meet the lines (BC), (CA), and (AB) at D, E, and F , respectively.
Then,

AE

EC
+ AF

FB
= AP

PD
. (1)

We now give two extensions to van Aubel’s Theorem on the simplex like the idea in [9]
as follows:

Theorem 2. Let A be a n-simplex in the n-dimensional Euclidean space En with vertices A0,
A1, . . . , An. Let P be an arbitrary point in En such that P does not lie on any hyperplane
containing facets of A. For any i = 1, . . . , n, let Pi be the intersection of the line (A0Ai) with
the hyperplane Pi = (PA1A2 . . . Ai−1Ai+1 . . . An). Let P0 be the intersection of the line (A0P )
with the hyperplane P0 = (A1A2 . . . An). Then,

n∑
i=1

A0Pi

PiAi

= A0P

PP0
. (2)

Theorem 3. Let A be a n-simplex in the n-dimensional Euclidean space En with vertices A0,
A1, . . . , An. Let P be an arbitrary point in En such that P does not lie on any hyperplane
containing facets of A. For any i = 1, . . . , n, let Pi be the intersection of the line (AiP ) with
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Figure 3: Illustration in 3D space of Theorem 3

the hyperplane Pi = (A0A1A2 . . . Ai−1Ai+1 . . . An), let A′
i be the intersection of the line (A0Pi)

with the hyperplane P0 = (A1A2 . . . An). Let P0 be the intersection of the line (A0P ) with the
hyperplane P0. Then,

n∑
i=1

A0Pi

PiA′
i

= (n − 1)A0P

PP0
. (3)

Remark 1. Where n = 2, we easily obtain the equation (1) from the Equations (2) and (3).
Using the two ideas of these extensions, we continue to extend a lemma of Blanchet’s

theorem in Section 3.

3 Proof of Theorems

We will recall the concept of barycentric coordinates over the simplex and some properties of
parallel projection. The following definition comes from [8, pp. 195–199] and [10, pp. 9].

Definition 1 (Barycentric coordinates over simplex). Let A be a n-simplex in the n-dimensional
Euclidean space En with vertices A0, A1, . . . , An. Let P be any point in En. Then, the n + 1
real numbers (x0, x1, x2, . . . , xn) satisfying

x0 + x1 + x2 + · · · + xn ̸= 0

and
x0

#      »

PA0 + x1
#      »

PA1 + · · · + xn
#      »

PAn = #»0
are called the barycentric coordinates of point P with respect to the simplex A.

Definition 2. Let (α) be a hyperplane contained in En. Let P be any point in En. Let ∆
be a line not parallel to (α). Mapping pj(α)

∆ which maps P to the point P ∗ on (α) such that
two lines (PP ∗) and ∆ are parallel is called a parallel projection with direction line ∆ onto
hyperplane (α).

We recall a theorem that is known as Thales’ theorem in [1, pp.23].

Theorem 4 (Thales’ theorem). The parallel projections are affine mappings.
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Figure 4: Illustration in 3D space of Definition 2

Remark 2. Since affine mappings preserve barycentric coordinates of points, we see that
parallel projections also preserve barycentric coordinates of points.

We will first give the following lemma:

Lemma 1. Let A be an n-simplex in the n-dimensional Euclidean space En with vertices A0,
A1, . . . , An. Let M be any point lying on the hyperplane (A1A2 . . . An). Assume that there
are real numbers m, x1, x2 . . . , xn (m ̸= 0) satisfying the equation

m
#        »

A0M = x1
#        »

A0A1 + x2
#        »

A0A2 + · · · + xn
#         »

A0An. (4)

Then,
m = x1 + x2 + · · · + xn.

Proof. Since M lies on the hyperplane P0 = (A1A2 . . . An), n vectors #        »

MA1,
#        »

MA2, . . . , #        »

MAn

are linearly dependent or there are real numbers α1, α2, . . . , αn, not all zero, such that

α1
#        »

MA1 + α2
#        »

MA2 + · · · + αn
#        »

MAn = #»0 (5)

which is equivalent to

α1
#        »

A0A1 + α2
#        »

A0A2 + · · · + αn
#         »

A0An = (α1 + α2 + · · · + αn) #        »

A0M (6)

or
#        »

A0M =
n∑

i=1

αi∑n
i=1 αi

#       »

A0Ai. (7)

It follows from (4) that we have
#        »

A0M = x1

m

#        »

A0A1 + x2

m

#        »

A0A2 + · · · + xn

m

#         »

A0An. (8)

Since A0A1 . . . An is a simplex in En, n vectors #        »

A0A1,
#        »

A0A2, . . . , #         »

A0An are linearly indepen-
dent. So that #        »

A0M can be represented as a linear combination of the remaining vectors in a
unique way. Combining with (7) and (8), we obtain

xi

m
= αi∑n

i=1 αi

(9)

for any integer i = 1, . . . , n.
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Summing up (9) for any 1 = 1, . . . , n, we have
n∑

i=1

xi

m
=

n∑
i=1

αi∑n
i=1 αi

= 1 (10)

or
m = x1 + x2 + · · · + xn.

This completes the proof of Lemma 1.

Lemma 2. Let A be a n-simplex in the n-dimensional Euclidean space En with vertices A0,
A1, . . . , An. Let P be an arbitrary point in En such that P does not lie on any hyperplane
containing facets of A. Let P0 be the intersection of the line (A0P ) with the hyperplane
(A1A2 . . . An). Assume that P has barycentric coordinates (x0, x1, . . . , xn) with respect to the
simplex A. Then,

i) x1
#       »

P0A1 + x2
#       »

P0A2 + · · · + xn
#        »

P0An = #»0 ,

ii) A0P

PP0
= x1 + x2 + · · · + xn

x0
.

Proof. Since P has barycentric coordinates (x0, x1, . . . , xn) with respect to A, we have
n∑

i=0
xi

#     »

PAi = #»0 . (11)

Considering the projection pj parallel to the direction line (A0P ) onto the hyperplane P0 =
(A1A2 . . . An), we see that pj(A0) = pj(P ) = P0, pj(A1) = A1, pj(A2) = A2, . . . , pj(An) =
An. Since barycentric coordinates are invariant under an affine transformation (Remark 2),
it follows from equation (11) that we have

n∑
i=0

xi

#                           »

pj(P ) pj(Ai) = #»0 (12)

This proves Part i). Also from this,

x1
#       »

P0A1 + x2
#       »

P0A2 + · · · + xn
#        »

P0An = #»0 . (13)

Therefore,

−x0
#      »

PA0 = x1
#      »

PA1 + x2
#      »

PA2 + · · · + xn
#      »

PAn = (x1 + x2 + · · · + xn) #     »

PP0. (14)

From this and using directed line segments, we deduce Part ii). This completes the proof of
Lemma 2.

Coming back to the main theorems.

Proof of Theorem 2. (See illustration in 3D space in Figure 2). We assume that P has bary-
centric coordinates (x0, x1, . . . , xn) with respect to the simplex A. Then,

n∑
i=0

xi
#     »

PAi = #»0 (15)

or
x1

#        »

A0A1 + x2
#        »

A0A2 + · · · + xn
#         »

A0An = (x0 + x1 + · · · + xn) #      »

A0P . (16)
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Since P1 lies on the line (A0A1), using directed line segments as one-dimensional vector algebra
[4, p. 30], we have

#        »

A0A1 = A0A1

A0P1
· #       »

A0P1. (17)

From (16) and (17), we obtain

x1
A0A1

A0P1
· #       »

A0P1 + x2
#        »

A0A2 + · · · + xn
#         »

A0An = (x0 + x1 + · · · + xn) #      »

A0P . (18)

Since P1 lies on the line (A0A1) (P1 does not coincide with A0 and A1 because P does not
lie on the any hyperplane containing facets of A), we easily see that A0P1A2 . . . An is also a
simplex in En. Now using Lemma 1, we get that

x0 + x1 + · · · xn = x1
A0A1

A0P1
+ x2 + · · · + xn (19)

which is equivalent to
A0A1

A0P1
− 1 = x0

x1
(20)

or
P1A1

A0P1
= x0

x1
(21)

or
A0P1

P1A1
= x1

x0
. (22)

Similarly, for any n = 2, . . . , n, we have

A0Pi

PiAi

= xi

x0
. (23)

Summing up the Equations (22) and (23) for any i = 1, . . . , n and combining with Lemma 2,
we have

n∑
i=1

A0Pi

PiAi

= x1 + x2 + · · · + xn

x0
= A0P

PP0
. (24)

This completes the proof of Theorem 2.

Proof of Theorem 3. (See illustration in 3D space in Figure 3). We assume that P has bary-
centric coordinates (see [5]) (x0, x1, . . . , xn) with respect to the simplex A. Then,

n∑
i=1

xi
#     »

PAi = #»0 . (25)

It follows from Part i) of Lemma 2 that we have

x0
#       »

P1A0 + x2
#       »

P1A2 + · · · + xn
#        »

P1An = #»0 . (26)

Considering the projection pj1 parallel to the direction line (A0P1) onto the hyperplane P0 =
(A1A2 . . . An), we see that pj1(A0) = pj1(P1) = A′

1, pj1(A2) = A2, . . . , pj1(An) = An. Since
barycentric coordinates are invariant under an affine transformation (Remark 2), it follows
from equation (26) that we have

x0
#                                  »

pj1(P1) pj1(A0) + x2
#                                  »

pj1(P1) pj1(A2) + · · · + xn

#                                   »

pj1(P1) pj1(An) = #»0 (27)
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Figure 5: Illustration in plane of Blanchet’s theorem

or
x2

#        »

A′
1A2 + x3

#        »

A′
1A3 + · · · + xn

#         »

A′
1An = #»0 (28)

or
x2

#       »

P1A2 + x3
#       »

P1A3 + · · · + xn
#        »

P1An = (x2 + x3 + · · · + xn)
#       »

P1A
′
1. (29)

From Equations (26) and (29), we obtain

x0
#       »

P1A0 + (x2 + x3 + · · · + xn)
#       »

P1A
′
1 = #»0 (30)

or
A0P1

P1A′
1

= x2 + x3 + · · · + xn

x0
. (31)

Similarly, for any i = 2, . . . , n, we get that
A0Pi

PiA′
i

= x1 + x2 + · · · + xi−1 + xi+1 + · · · + xn

x0
. (32)

Summing up equation (31) and (32) for any i = 1, . . . , n and using Lemma 2 Part ii), we
deduce that

n∑
i=1

A0Pi

PiA′
i

= (n − 1)x1 + x2 + · · · + xn

x0
= (n − 1)A0P

PP0
. (33)

This completes the proof of Theorem 3.

4 Extending a lemma leading to Blanchet’s theorem

The book [6, pp. 471–472] mentioned the following theorem as Blanchet’s theorem:

Theorem 5 (Blanchet). Let ABC be a triangle with altitude AD (D lies on the line (BC)).
Let P be any point on the line (AD). Lines (PB) and (PC) meet the lines (CA) and (AB)
at E and F , respectively. Then, line (DA) bisects angle ∠EDF . (See Figure 5).

A lemma related to Cevian triangle that has been used to lead to this theorem is

Lemma 3. Let ABC be a triangle. Let P be an arbitrary point not lying on the lines (BC),
(CA) and (AB). Assume that the lines (PA), (PB), and (PC) meet the lines (BC), (CA),
and (AB) at D, E, and F , respectively. The line passes through A and is parallel to the line
(BC) meets the lines (DE) and (DF ) at M and N , respectively. Then, A is the midpoint of
MN . (See Figure 6).
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Figure 6: Illustration in plane of Blanchet’s lemma
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Figure 7: Illustration in 3D space of Theorem 6

Using the idea in extending van Aubel’s theorem, we can easily extend this Lemma to
the two following theorems:
Theorem 6. Let A be an n-simplex in the n-dimensional Euclidean space En with vertices
A0, A1, . . . , An. Let P be an arbitrary point in En such that P does not lie on any hyperplane
containing facets of A. For any i = 1, . . . , n, let Pi be the intersection of the line (A0Ai) with
the hyperplane Pi = (PA1A2 . . . Ai−1Ai+1 . . . An). Let P0 be the intersection of the line (A0P )
with the hyperplane P0 = (A1A2 . . . An). Denote by (α) the hyperplane passing through A0
which is parallel to the hyperplane P0. For any i = 1, . . . , n, the line (A0Pi) intersects the
hyperplane (α) at Mi. Then, A0 is the centroid of set of points {M1, M2, . . . , Mn}.

Theorem 7. Let A be an n-simplex in the n-dimensional Euclidean space En with vertices
A0, A1, . . . , An. Let P be an arbitrary point in En such that P does not lie on any hyperplane
containing facets of A. For any i = 1, . . . , n, let Pi be the intersection of the line (AiP ) with
the hyperplane Pi = (A0A1A2 . . . Ai−1Ai+1 . . . An). Let P0 be the intersection of the line (A0P )
with the hyperplane P0 = (A1A2 . . . An). Denote by (α) the hyperplane passing through A0
and is parallel to the hyperplane P0. For any i = 1, . . . , n, the line (P0Pi) intersects the
hyperplane (α) at Mi. Then, A0 is the centroid of the set of points {M1, M2, . . . , Mn}.
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Figure 8: Illustration in 3D space of Theorem 7

Proof of Theorem 6. (See illustration in 3D space in Figure 7.) Because the hyperplane (α)
is parallel to hyperplane P0 and the two lines (P1A1) and (P0P1) meet (α) at A0 and M1,
respectively, (noting that A1 and P0 belong to P0) we deduce that the two lines (A0M1) and
(A1P0) are parallel. We get

A0M1

P0A1
= A0P1

P1A1
. (34)

Combining with equation (22), this implies

A0M1

P0A1
= A0P1

P1A1
= x1

x0
, (35)

this means
x0

#         »

A0M1 = x1
#       »

P0A1. (36)

Similarly, for any i = 2, . . . , n

x0
#         »

A0Mi = xi
#       »

P0Ai. (37)

Summing up the Equations (36) and (37) for any i = 1, . . . , n and using Part i) of Lemma 2,
we obtain

x0

(
n∑

i=1

#         »

A0Mi

)
=

n∑
i=1

xi
#       »

P0Ai = #»0 . (38)

Note that since P does not lie in the hyperplane P0, x0 is different from 0. From (38) we
have

n∑
i=1

#         »

A0Mi = #»0

or A0 is the centroid of the set of points {M1, M2, . . . , Mn}. This completes the proof of
Theorem 6.

Proof of Theorem 7. (See illustration in Figure 8.) Let A′
i be the intersection of line (A0Pi)

with the hyperplane P0. Because the hyperplane (α) is parallel to the hyperplane P0 and the
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two lines (P1A
′
1) and (P0P1) meet (α) at A0 and M1, respectively, (noting that A′

1 and P0
belong to P0), we deduce that two lines (A0M1) and (A′

1P0) are parallel. We get

A0M1

P0A′
1

= A0P1

P1A′
1
. (39)

Combining with equation (31), this implies

A0M1

P0A′
1

= A0P1

P1A′
1

= x2 + x3 + · · · + xn

x0
(40)

or
x0

#         »

A0M1 = (x2 + x3 + · · · + xn)
#       »

P0A
′
1. (41)

It follows from (28) that we have

x2
#       »

P0A2 + x3
#       »

P0A3 + · · · + xn
#        »

P0An = (x2 + x3 + · · · + xn)
#       »

P0A
′
1. (42)

From (41) and (42), we obtain

x0
#         »

A0M1 = x2
#       »

P0A2 + x3
#       »

P0A3 + · · · + xn
#        »

P0An. (43)

Similarly, for any i = 2, . . . , n we have

x0
#         »

A0Mi = x1
#       »

P0A1 + x2
#       »

P0A2 + · · · + xi−1
#            »

P0Ai−1 + xi+1
#            »

P0Ai+1 + · · · + xn
#        »

P0An. (44)

Summing up the Equations (43) and (44) for any i = 1, . . . , n and using Part i) of Lemma 2,
we obtain

x0

(
n∑

i=1

#         »

A0Mi

)
= (n − 1)

(
n∑

i=1
xi

#       »

P0Ai

)
= #»0 . (45)

Note that since P does not lie in the hyperplane P0, x0 is different from 0. From (45) we
have

n∑
i=1

#         »

A0Mi = #»0

or A0 is the centroid of the set of points {M1, M2, . . . , Mn}. This completes the proof of
Theorem 7.

5 Conclusion

We have extended van Aubel’s theorem on the ratio of the lengths involved in the Cevian
triangle of plane geometry to the simplex. The important tool we have used here is the bary-
centric coordinates system over simplex and parallel projection. Moreover, by this method,
we can also extend the lemma of Blanchet’s Theorem. We see the usefulness of the barycentric
coordinate system over simplex.
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