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Abstract. One of the most interesting generalizations of the Pythagorean the-
orem was stated by Thābit in the IX century. However, as claimed an expert of
history of mathematics the Arab mathematician did not present the proof, as it
can likely be obtained by elementary properties regarding similar triangles.

According to historical documents, it is challenging to establish whether a proof
of Thābit’s theorem exists based exclusively on equidecomposibility, as in the case
of the Pythagorean and Pappus theorems. This article presents the corresponding
proof.
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1 Introduction

Thābit ibn Qurra al-Harrān̄ı was a notable mathematician, astronomer, physician, and philoso-
pher who lived in Upper Mesopotamia in 826–921 ([20]). Thābit ibn Qurra was representative
of the flourishing Arab-Islamic culture in the 9th century and had different interests in math-
ematics, such as Algebra, Geometry, Measure Theory and Number theory. A remarkable
formula for amicable numbers (see [20]) is attributed to him. In Euclidean geometry, among
other investigations, the researcher presented different proofs of the Pythagorean theorem
([23]).

As Pappus (see [8]), Thābit also presented a generalization of the Pythagorean theorem.
Specifically, he stated the following result (see [16, p. 213]):

Theorem 1.1 (Thābit). If from vertex C of a triangle ABC, two lines CD and CE are
drawn forming the angles CDA and CEB with the base AB, respectively, both equal to angle
ACB, the sum of the squares of sides AC and CB is equal to the rectangle represented as
AD + EB times AB (Figure 1).
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Figure 1: The configuration of Thābit’s theorem

Clearly, if BĈA is a right angle, the Pythagorean theorem is obtained. According to
A. Sayili (see [22]), this result is the most important contribution of Thābit ibn Qurra in
terms of the generalization of the Pythagorean theorem.

Boyer [16] stated that

In fact, the theorem provides a beautiful generalization of the pinwheel diagram
used by Euclid in the proof of the Pythagorean theorem.

However, the manner in which Thābit proved the result remains unclear, and historical in-
vestigations indicate that the researcher probably omitted the proof because it easily follows
from properties of similar triangles ([16] p. 214).

To demonstrate this aspect, it is adequate to split Thābit’s configuration, as shown in
Figure 1 into two configurations. As shown in Figure 2 (left), triangles ABC and ACD are
similar and hence the following proportion holds:

AB : AC = AC : AD.

By construction AB = AI, and thus, the square constructed on side AC has the same
area as that of rectangle AIMD.
Similarly, (Figure 2, right) the square constructed on side BC has the same area as that of
rectangle BEPV . Then, as Thābit claimed, the sum of the squares of sides AC and CB is
‘equal’ to the rectangle represented as AD + EB times AB.

The understanding of the above-mentioned proof requires knowledge regarding the con-
cept of measurement of planar figures, and therefore, of real numbers. These reasons are likely
why this topic rarely appears in scholarly textbooks and is therefore ignored by most students
([23]). Moreover, Euclid’s first and second theorems and the Pythagorean theorem and its
generalization by Pappus are usually explained without using the concept of similarity, and
using only the concept of equivalence in terms of equidecomposability, which is more intuitive
and contains the concept of equivalence in terms of the area.

This phenomenon likely occurs because images are highly effective in teaching and learn-
ing ([2], [5], [7], [11], [19]) and in providing students with a correct representation of the
development of mathematical thinking ([9] and [15]).
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Figure 2: A split Thābit’s configuration: in both figures the shaded quadrilaterals have the same
area

Figure 3: Left, Euclid I theorem: the figures S, P and R are equidecomposable, in particular they
are equivalent. Right, Pappus’ theorem: the parallelograms AMLI and P1 are equidecom-
posable, and similarly parallelograms ILNB and P2 are equidecomposable, in particular
P1 ∪ P2 is equivalent to P3

Therefore, from didactic, historical, epistemological and foundational viewpoints, it is of
significance to have a ‘visual’ and direct proof of Thābit’s theorem in the same manner as the
classics of Euclid and Pappus. In this article, we present such a proof. The paper is suitable
for a wide variety of readers.

2 Dissections of equidecomposable figures

For the convenience of the reader we recall that

Definition 2.1. Two polygons are said to be equidecomposable or equivalent by dissection
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Figure 4: A parallelogram and a rectangle with
the same height and congruent basis
are equidecomposable

Figure 5: If a rectangle R has same base of a
triangle T and height of R is half of
T , then they are equidecomposable

([12, Chapter 12]), if it is possible to dissect, or decompose, one of them into a finite number
of pieces that can then be rearranged to form the second polygon, c.f. Figures 4 and 5, for
example.

We highlight that this concept leads to an equivalence relation (see for example [24])
among planar polygonal figures (see Figure 6).

The concept of equidecomposability is often used in elementary geometry. Notably, it
is not always so trivial to identify the equivalent dissections of equidecomposable figures.
Consequently, relevant theorems, such as that of Pappus are often ignored in high school and
undergraduate courses, which is a lost opportunity for an interesting didactic experience. As
indicated by Eves [8],

The student of high school geometry can hardly fail to be interested in the Pappus
extension of the Pythagorean theorem, and the proof of the extension can serve
as a nice exercise for the students.

Figure 6: The parallelogram shown in Figure 4 and the triangle shown in Figure 5 are equidecom-
posable
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Figure 7: The pieces of the same color are pairwise congruent, but the area of the square is 169
and the area of the rectangle on the left is 168. In fact, the second figure is apparently
dissected: L, P , O and J are not aligned

We conclude this section by noting that the dissection into same pieces of two planar figure
must be checked carefully, as indicated by the following classic example shown in Figure 7
(see for example [14]):

This example can be attributed to Sam Loyd. This Example was first published in 1774
(for more details, see [25], and references therein).

3 The proof

In this section, we demonstrate Thābit’s theorem (1.1) via equidecomposability. As shown in
Figure 2 it is adequate to demonstrate the following aspect:

Theorem 3.1. If from vertex C of a triangle ABC, a line CD is drawn forming the angle
DĈA with the base AC, which is equal to angle AB̂C, the square of side AC is equal to the
rectangle whose sides are congruent to AD and AB (Figure 2, left).

Proof. We implement six steps.
Step 1) Rotate triangle ABC around vertex A by 90◦ counterclockwise. In this case, BÂE is a

right angle, and AB = AE (Figure 8, left).
Step 2) Consider the extension of the EA side. Segment AI on this side is congruent to AB.

Consider S = ACGF as the square of AC side. Insert H, which the intersection of the
extension of FG and parallel line to AB, through E.

Step 3) The straight line parallel to AB passing through I intersects the line passing through
HA at a point, L. In this case, triangle HEA is congruent to triangle LIA (Figure 8,
right); in particular HA = AL.

Step 4) The right triangles HEA and HFA have the same hypotenuse. Therefore the quadri-
lateral AEHF is cyclic, and angles FĤA and FÊA are congruent. It follows that
FĤA = CB̂A = AĈD. Moreover, when the line through FG is parallel to the line
through CA, the angle FĤA is equal to CÂH, and hence CÂH = AĈD.
The straight line CA intersects both CD and the HL, generating a pair of equal al-
ternating internal angles: CÂH = AĈD. This aspects proves that CD and HL are
parallel (Figure 9).

Step 5) Let now P1 = DALN be the parallelogram constructed on the consecutive sides DA
and AL, and let P2 = HACO the parallelogram constructed on the consecutive sides
HA and AC. Clearly P1 and P2 have the same height (see Step 4); moreover, these
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Figure 8: Starting from a triangle ABC, we construct two congruent right triangles, HEA and AIL.
In particular, HA = AL

Figure 9: Visual proof of Thābit’s theorem: the
four coloured quadrilaterals are pairwise
equidecomposable

entities have congruent bases HA and AL (see Step 2). It follows that P1 and P2 are
equidecomposable.

Step 6) The square S = ACGF and parallelogram P2 have the same base CA and same height
and are thus equidecomposable. Similarly, the rectangle R = DAIM and parallelogram
P1 have the same base AD and same height AI and are thus equidecomposable.

We have proven that
• the square S and parallelogram P2 are equidecomposable (Step 6);
• the parallelogram P2 and parallelogram P1 are equidecomposable (Step 5);
• the parallelogram P1 and rectangle R are equidecomposable (Step 6).

Therefore, the square S and rectangle R are equidecomposable.
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Figure 10: The rectangle R = DAIM and paral-
lelogram P1 = ALND can be dissected
into the triangle T1 and quadrilateral
Q1

Figure 11: The rectangle R = AIMD and Paral-
lelogram P2 = HACO can be dissected
into the red triangle T1, the yellow tri-
angle T2 the sky blue quadrilateral Q1
and the green quadrilateral Q2

4 Determination of a dissection of S and R in the same pieces

Theorem 1.1 shows that there exists a dissection of the square S and rectangle R (shown in
Figure 9) in the same pieces. It is natural to ask:

Which are these pieces? How can S and R be dissected in the same pieces?

In this section, we outline the guiding principles to determine the dissection of S and R
in seven pairwise congruent pieces (Figure 13).

Figure 9, illustrates three steps to determine a dissection of the rectangle R and the
square S, in the same pieces.

Step I) Determination of the dissection of the rectangle R = DAIM and parallelogram P1 =
ALND in the same pieces (see Figure 10). It is adequate to highlight that triangles
AIL and DMN are congruent.

Step II) Determination of the dissection of the rectangle R and parallelogram P2 in the same
pieces (Figure 11). This part requires additional considerations.
(1) Consider the parallel line to CA through L: we have intersections L1 and L2.
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Figure 12: A visualization of the final step to find
the dissection of S and R in seven
pieces pairwise congruent

(2) Consider the parallel line to AB through L1, and let L3 be its intersection with
AI. Consider the parallel line to AC thorough L3 and let L4 be its intersection
with LH.

(3) Consider the parallel line to AB through H, and let H1 be its intersection with ON .
(4) Consider on HH1 point H2 such that HH2 = LM .
(5) Consider the perpendicular to AB through H2, and let H3 be its intersection

with FO.
(6) Consider the perpendicular to AB through H1, and let H4 be its intersection

with CA.
(7) Using congruence theorems, the reader can verify that:

∗ the red triangle HH2H3 is congruent to T1;
∗ the blue quadrilaterals H1H2H3O and LIL3L4 are congruent;
∗ the yellow triangles L3L4A, L1L2D and H4CH1 are congruent;
∗ the green quadrilaterals LL1DA and AH4H1H are congruent.

In this manner we have determined four pieces in which R and P2 can be dissected.
Step III) Determination of the dissection of the rectangle R and square S in the same pieces

(Figure 12).
(8) Let C1 be the intersection between CG and the perpendicular line to AB through H1
(9) Let O1 ∈ GO such that GO1 = FG. As HO = FG, GH = O1O.

(10) Let F1 ∈ FG such that FF1 = GH. In this case, F1H = HO.
(11) Let F2 be the intersection between HA and the parallel line to AB through F1.

Thus, according to (10) and the second criterion, F1F2H and HH1O are congruent
triangles.

(12) Let F3 ∈ F1F2 such that F1F3 = HH2. Let F4 be the intersection between FG
and the perpendicular line to AB through F3. In this case, F1F3F4 is congruent
to the red triangle HH2H3. According to (9), F4G = H3O1.

(13) Let F5 be the intersection between AF and the parallel line to HL through F1.
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Figure 13: The rectangle R = AIMD and the
square S = ACGF can be dissected
into seven pairwise congruent pieces

Note that the small triangles FF1F5, GHC2 and OO1O2 are congruent.
(14) According to (12), F3F2 = H2H1 and F3F4 = H2H3. According to (11–13)

F4G = H3O1 and GC2 = O1O2. Therefore, the sky-blue pentagons F3F2C2GF4
and H2H1O2O1H3 are congruent.

(15) Clearly HA = OC, and thus, by (13) and (14), we obtain F2A = H1C. It follows
that F2AF6 and H1CC1 are congruent.

(16) Let L5 ∈ L4L3 such that L4L5 = FF1. Let L6 be the intersection between AL and
the parallel line to FA through L5. In this case, the black triangles L4L5L6 and
F1FF5 are congruent.

(17) Let L7 be the intersection between AI and the parallel line to FA through L4.
Let L8 be the intersection between DM and the parallel line to FA through L2.
According to Step II (see (7)), AL4 = DL2 = H1C. Therefore, according to
(15-16), the violet triangles AL7L4 DL8L2, H1C1C and F2F6A are congruent. It
follows that L7L3 = L8L1 = C1H4, and thus orange triangles L3L4L7 and H4CC1
are congruent.

(18) According to Step II, the quadrilaterals ILL4L3 and H1H2H3O are congruent, and
thus, according to (16-17), it follows that the sky-blue pentagons ILL6L5L3, and
H3H2H1O2O1 are congruent. Consequently, by (14) ILL6L5L3 and F3F2C2GF4
are congruent.

(19) Clearly, triangles LL2L9 and ACC2 are congruent. Therefore, according to (17),
L9L8 = C2C1 = F5F6, and by Step II (see (7)) AL9 = HC2 = F1F5. It follows
that the green quadrilaterals AL9L8D and F1F5F6F2 are congruent, and the brown
quadrilaterals LL1L8L9 and AH4C1C2 are congruent.

In this manner, we have determined seven pieces in which R and S can be dissected
(Figure 13).

5 Conclusions

Reasoning based on figures is becoming a growing interdisciplinary field in logic, philosophy
and cognitive sciences, and is also of considerable interest in the field of education (for a



240 G. Vincenzi: On a Proof of the Thābit Ibn Qurra’s Generalization of . . .

summary, see [21]). The hypothesis according to which geometric figures are constituent
parts of the logical structure of the geometric theory (cf. [4], [3], [6], [13], [17], [18], for
example) that offsets the limitations of the algebraic /logical language (see E. Agazzi in [1] or
[10], L. Kvasz in [13], for example) is increasingly being accepted. The validity of the geometry
of the Elements of Euclid is being re-evaluated and its recovery considering the developments
in contemporary mathematics (see [17], [11], for example) is considered reasonable. In this
context, a visual proof of Thābit’s theorem based exclusively on equidecomposibility could
be interesting from a didactic, historical, epistemological and foundational viewpoints.
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