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Abstract. Kokotsakis proved that an infinite planar mesh composed of congruent
convex, non-trapezoidal, non-parallelogramic quadrilaterals is deformable with
degree of freedom 1 in two modes if the quadrilaterals are rigid and if the edges
are revolute joints. Stachel proved that in the deformed state the vertices of
all quadrilaterals are located on a circular cylinder the radius of which is a free
parameter. In other words: A Kokotsakis mesh forms two polyhedral cylinders
which are deformable with degree of freedom one. Later, Stachel also investigated
under which conditions a polyhedral cylinder is tiled by quadrilaterals. In the
present paper new proofs and new results are obtained by using special parameters
for quadrilaterals in combination with cylinder coordinates.
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1 Kokotsakis Mesh

A Kokotsakis mesh is an infinite planar tessellation composed of congruent convex, non-
trapezoidal, non-parallelogramic quadrilaterals (Figure 1). The exclusion of trapezoids and
parallelograms is explained further below. The internal angles in the representative quadri-
lateral V0V1V2V3 add up to 2π: α0 + α1 + α2 + α3 = 2π, so that only three angles α1, α2, α3
are independent. As parameters of the quadrilateral the side lengths V0 −V1 = ℓ, V0 −V3 = a,
V1 − V2 = b and the lengths V0 − V2 = d1 and V1 − V3 = d2 of the diagonals 1 and 2 are used.
These parameters determine the side length V2 − V3 = c and the internal angles.

By reflecting one or both of the triangles V0V1V2 and V0V1V3 in a side other quadrilaterals
with the same lengths ℓ, a, b, d1, d2 are obtained. In these quadrilaterals V0 −V2 and V1 −V3
are not both diagonals.
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Figure 1: Kokotsakis mesh. Parameters ℓ, a, b, d1, d2 and internal angles αk of the representative
quadrilateral V0V1V2V3. Sets 1 and 2 of parallel diagonals. Rows and columns of quadri-
laterals. r-lines and c-lines.

Figure 2: Spherical four-bar, parameters αk, variables ψk (k = 0, 1, 2, 3).

By the diagonals two sets of parallel straight lines with equidistant vertices are defined,
the distance being d1 on one set and d2 on the other.

In the mesh rows and columns of quadrilaterals are distinguished. Adjacent rows are
separated by a zigzagging line of alternating lengths ℓ, c, ℓ, c etc. Adjacent columns are
separated by a zigzagging line of alternating lengths a, b, a, b etc. The quadrilateral in row i
and column j is called qij with q00 being an arbitrarily chosen quadrilateral.

By the boundaries of rows and columns two more sets of parallel straight lines with
equidistant vertices are defined. In Figure 1 they are denoted r-lines and c-lines.

The mesh is invariant with respect to
(a) 180◦-rotations about the midpoints of sides of quadrilaterals
(b) translations md⃗1 and nd⃗2 along the diagonals (m,n = 0,±1,±2, . . .).

By the translations md⃗1 and nd⃗2 the quadrilateral qij (i, j arbitrary) is displaced into the
position of the quadrilateral quv with u = i+m+ n and v = j +m− n.

Every vertex of the mesh is center of a cluster of four quadrilaterals. Every quadrilateral
is part of four clusters. All clusters are congruent. A single isolated cluster (the solid lines in
Figure 2) represents a spherical four-bar mechanism. Parameters are the three independent
internal angles α1, α2, α3. Variables are the fold angles ψ0, ψ1, ψ2, ψ3 indicated in the
figure (zero in the flat position). Provided the quadrilaterals are neither trapezoids nor
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parallelograms a given angle ψ0 determines two (not necessarily real) sets of angles ψ1, ψ2, ψ3
(Wittenburg [5]). Hence the four-bar is a single-degree-of-freedom mechanism with two modes
of deformation. If (ψ0, ψ1, ψ2, ψ3) is a state of deformation, then also (−ψ0,−ψ1,−ψ2,−ψ3)
is.

Two types of spherical four-bars are distinguished (see [5, pp. 641–643]):
Type I: All fold angles are subject to the constraint |ψi| < π. No two quadrilaterals of

the spherical four-bar can intersect each other.
Type II: A single fold angle ψk is unconstrained. Up to ψk = π deformation is possible by

folding. Beyond ψk = π two opposite quadrilaterals of the spherical four-bar intersect each
other. Realisation requires to interpret the spherical four-bar as truss made of rods which
can be dis-assembled and re-assembled. Since every vertex in Figure 1 is center of a spherical
four-bar, intersections result in highly complicated three-dimensional trusses.

The dashed lines in Figure 2 point to the fact that quadrilaterals having the same internal
angles result in different meshes with identical relationships between fold angles.

2 Cylinder Coordinates

Kokotsakis [2] proved

Theorem 1. A mesh is deformable in two different modes.

Stachel [3, 4] proved

Theorem 2. In the deformed state the vertices of all quadrilaterals are located on a circular
cylinder the radius r of which is a free parameter.

In the geometrical proofs given in [2] and [3, 4] neither parameters of quadrilaterals nor
cylinder coordinates of vertices are used. In what follows new proofs are given.

First, it is shown that the vertices of a single quadrilateral V0V1V2V3 can be located on
a circular cylinder of arbitrary (not arbitrarily small) radius r. The vertices are points on
the ellipse in which plane and cylinder intersect. Let r, φk, zk (k = 0, 1, 2, 3) be the cylinder
coordinates of Vk. Cartesian coordinates of the position vector r⃗k of Vk are

r⃗k = [r cosφk, r sinφk, zk]. (1)

Without loss of generality φ0 = z0 = 0, so that there are seven unknowns r, φk, zk (k = 1, 2, 3).
These seven unknowns are subject to only six constraint equations expressing the prescribed
lengths ℓ, a, b, d1, d2 and the planarity condition (r⃗1 − r⃗0) · [(r⃗2 − r⃗0) × (r⃗3 − r⃗0)] = 0. The
square of the distance of two vertices Vi and Vj on the cylinder is (r⃗i − r⃗j)2 = 2r2[1 − cos(φi −
φj)] + (zi − zj)2. The six constraint equations are

2r2(1 − cosφ1) + z2
1 = ℓ2, (2)

2r2(1 − cosφ2) + z2
2 = d2

1, (3)
2r2(1 − cosφ3) + z2

3 = a2, (4)
2r2[1 − cos(φ1 − φ2)] + (z1 − z2)2 = b2, (5)
2r2[1 − cos(φ1 − φ3)] + (z1 − z3)2 = d2

2, (6)
3∑

i=1
zi[sinφj − sinφk − sin(φj − φk)] = 0 (i, j, k = 1, 2, 3 cyclic). (7)
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As predicted, the radius r is a free parameter.
Two vertices on the cylinder define the helix passing through these vertices. The equidis-

tant vertices on the two sets of parallel lines along the diagonals 1 and 2 in Figure 1 are mapped
into equidistant vertices on two sets of parallel helices. Because of the invariance property (a)
of the planar mesh the deformed mesh is invariant with respect to turning the cylinder upside
down. Translatory displacements md⃗1 and nd⃗2 of quadrilaterals along the diagonals in the
planar mesh are mapped into screw displacements (mφ2,mz2) and [n(φ3 − φ1), n(z3 − z1)],
respectively, the screw axis being the cylinder axis. The resultant screw displacement is
[mφ2 + n(φ3 − φ1),mz2 + n(z3 − z1)].

The resultant screw displacement has no effect on the state of deformation of the cluster
of four quadrilaterals shown in Figure 2. From this it follows that in the deformed state of
the mesh all clusters are congruent. Since a single cluster has two modes of deformation, the
mesh as a whole has two modes of deformation. This proves the existence of two polyhedral
cylinders (PCs) mobile with degree of freedom one and specified by roots φk1,2(r), zk1,2(r)
(k = 1, 2, 3) of the equations. This concludes the proof.

The minimal radius rmin allowing real solutions is determined in Section 3. If Equa-
tions (2)–(7) are solved by (z1, z2, z3), then also by (−z1,−z2,−z3), and if they are solved by
(φ1, φ2, φ3), then also by (−φ1,−φ2,−φ3). Relevant solutions are those for which V0 − V2
and V1 − V3 are diagonals of the quadrilateral.

Equations (2)–(7) cannot be decoupled. This is true also for equations resulting from the
transformation uk = tanφk/2, 1 − cosφk = 2u2

k/(1 + u2
k), sinφk = 2uk/(1 + u2

k).
Special case: A quadrilateral inscribed in a circle of radius ϱ is specified by the polar

coordinates β1, β2, β3 of V1, V2, V3, respectively. In these terms ℓ2 = 2ϱ2(1 − cos β1), d2
1 =

2ϱ2(1 − cos β2), a2 = 2ϱ2(1 − cos β3), b2 = 2ϱ2[1 − cos(β1 − β2)], d2
2 = 2ϱ2[1 − cos(β1 − β3)].

With these parameters Equations (2)–(7) have with r = ϱ in both modes of deformation the
solution zk = 0, φk = βk (k = 1, 2, 3). This state of deformation cannot be produced by
folding the mesh.

The outward normal vector of the quadrilateral V0V1V2V3 is (r⃗1 − r⃗0) × (r⃗2 − r⃗0). The
scalar product of the unit normal vectors of two quadrilaterals sharing an edge is the cosine
of the fold angle in this edge (one of the angles ψk (k = 0, 1, 2, 3)). For all quadrilaterals the
cosine of the angle between the cylinder axis and the normal to the quadrilateral is equal in
magnitude and alternating in sign along rows and along columns.

In every state of deformation of a mesh the projections of all quadrilaterals along the
cylinder axis are congruent quadrilaterals inscribed in a circle. The projected quadrilaterals
are divided into two groups of equidistant quadrilaterals, the angular distance being φ2 in
one group and φ3 − φ1 in the other. For being convex it is necessary and sufficient that

either 0 < φ1 < φ2 < φ3 or 0 < φ3 < φ2 < φ1. (8)

By the inequality signs the case is excluded that the projected quadrilaterals are secants of
the circle. This case is the subject of Section 6.1 on trapezoidal quadrilaterals.

Let angles φ1, φ2, φ3 satisfying the convexity condition (8) and parameters z1, z2 (or z1,
z3) and ℓ > |z1| be arbitrarily prescribed. With these data Equations (2)–(7) determine the
parameters z3 (or z2), r, d1, a, b and d2 specifying a quadrilateral V0V1V2V3 and a state of
deformation of the mesh. With the parameters ℓ, d1, a, b, d2 of the quadrilateral the variables
φk1,2 , zk1,2 (k = 1, 2, 3) can then be calculated numerically as functions of r.
Example 1. The prescribed data φ1 = 180◦, φ2 = 90◦, φ3 = 60◦, z1 = 1/2, z3 = 1, ℓ = 1
determine z2 = (3 + 7

√
3)/12, r =

√
3/4, d2

1 = (7/24)(5 +
√

3), b2 = (7/24)(5 −
√

3),
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a =
√

19/4, d2 =
√

13/4. The unit outward normal vector has the cartesian coordinates√
1/61[−

√
3, 7,−3]. From five unit normal vectors the fold angles are calculated: cosψ0 =

53/61, cosψ1 = 37/61, cosψ2 = (14
√

3 − 9)/61, cosψ3 = (16
√

3 − 9)/61. ⋄

3 Geometrical Solution

In every state of deformation of a mesh all quadrilaterals are circumscribed by congruent
ellipses. Figure 3 shows a quadrilateral V0V1V2V3 and a circumscribing ellipse with semi axes
a and b < a (not to be confused with the parameters a, b in Figure 1). The radius r of the
cylinder is b, and its axis is tilted against the plane of the ellipse by the angle α = arctan(b/a)
shown in the figure. The cylinder coordinates φk, zk (k = 0, 1, 2, 3) are found by projections
as is demonstrated by φ0, z0. The vertex Vk (k = 0, 1, 2, 3) on the ellipse and its axial
projection on the circle are located on one and the same side of the minor principal axis of
the ellipse. By the angles φ0 ,φ1, φ2, φ3 the projection of the quadrilateral onto the circle is
determined. Every ellipse circumscribing the quadrilateral determines cylinder coordinates r,
φk, zk (k = 0, 1, 2, 3) defining a state of deformation of the mesh.

In what follows, all ellipses circumscribing a given quadrilateral are determined in an-
alytical form. For better understanding it is helpful to make a sketch of two parabolas 1
and 2 intersecting each other in four points and of the quadrilateral V0V1V2V3 defined by
these points. Everything which follows (x, y-axes, domains, ellipses in these domains, lines
y = const) should be marked in this sketch.

By the x, y-coordinates of V0, V1, V2, V3 in some arbitrarily chosen x, y-system and by the
coordinates x4 y4 of an additional auxiliary point P a second-order curve circumscribing the
quadrilateral is defined. Its equation is

det



x2 y2 xy x y 1
x2

0 y2
0 x0y0 x0 y0 1

x2
1 y2

1 x1y1 x1 y1 1
x2

2 y2
2 x2y2 x2 y2 1

x2
3 y2

3 x3y3 x3 y3 1
x2

4 y2
4 x4y4 x4 y4 1


= 0. (9)

In the x, y-system with V0 as origin and with V2 on the x-axis this equation reads

x2 · det


y2 xy x y
y2

1 x1y1 x1 y1
y2

3 x3y3 x3 y3
y2

4 x4y4 x4 y4

 − det


x2 y2 xy y
x2

1 y2
1 x1y1 y1

x2
3 y2

3 x3y3 y3
x2

4 y2
4 x4y4 y4

 = 0.

This is the equation A(x2 − x2x) + 2Bxy+Cy2 +Ey = 0 with coefficients A, B, C, E which
are second-order functions of x4, y4. P determines an ellipse if AC −B2 > 0.

The fourth-order equation AC−B2 = 0 separating ellipses from hyperbolas is the equation
of the two parabolas passing through the vertices of the quadrilateral. Let (ϱ1, γ) and (ϱ2, γ)
be the polar coordinates of these parabolas. Substitution of x4 = ϱ cos γ, y4 = ϱ sin γ results
in a quadratic equation with real roots ϱ1,2(γ). For geometrical constructions of the parabolas
see [1, Example 7.4.1].

Let ∆1 be the domain inside parabola 1, ∆2 be the domain inside parabola 2 and ∆12
be the intersection of ∆1 and ∆2. The curve is an ellipse if P is located either in ∆1 or in
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Figure 3: Quadrilateral V0V1V2V3 and auxiliary point P defining a circumscribing ellipse. Cylinder
coordinates r and φ0, z0 of V0. Projected quadrilateral.

∆2, but not in ∆12. The sketch shows that every ellipse is located in ∆1 as well as in ∆2.
Slender ellipses have the most part of their circumference either in ∆1 or in ∆2. Slender
ellipses occur when the planar mesh is only slightly deformed. Hence the conclusion: Each
mode of deformation is associated with one parabola and with a family of ellipses. When
the deformed mesh becomes planar, the ellipses tend, in the limit, toward the parabolas.
With increasing deformation of the mesh the tilt angle α and with it the ratio b/a = tanα
is increasing, while the radius b of the cylinder is decreasing. b is calculated from A, B, C,
E as function of x4 and y4. It suffices to calculate b for all points (x4, y4) of a straight line
y = const which intersects all ellipses (in points other than V1, V2, V3). Then, b is a function
of the single variable x4. The minimum bmin of this function is the minimal radius rmin for
which Equations (2)–(7) have a real solution φk, zk (k = 1, 2, 3).

The principal-axes system of an ellipse is inclined against the x, y-system by the angle
β = (1/2) arctan[2B/(A − C)]. In general, β depends on x4, y4. In the special case of
quadrilaterals inscribed in a circle, 2β is, independent of x4, y4, the angle enclosed by the
diagonals of the quadrilateral: tan 2β = (y3 − y1)/(x3 −x1). The equation of the circumcircle
is 2B = A−C = 0. As was said already, the flat position of the mesh inside this circle cannot
be produced by folding the mesh.

4 Tiled Polyhedral Cylinders

An infinite mesh is wrapped around a cylinder of arbitrary radius r infinitly many times. A
polyhedral cylinder is said to be tiled if integers m and n exist such that the resultant screw
displacement [mφ2 + n(φ3 − φ1),mz2 + n(z3 − z1)] equals (2π, 0). This is the set of closure
conditions (compare Stachel [4])

mφ2 + n(φ3 − φ1) = 2π, mz2 + n(z3 − z1) = 0 (m, n integer). (10)

On a tiled PC with integers (m,n) the quadrilateral qij (i, j arbitrary) coalesces with all
quadrilaterals quv with u = i + k(m + n), v = j + k(m − n) (k = ±1,±2, . . .). m and n may
be positive, zero or negative. The equations show:

1. (z3 − z1)/z2 is rational.
2. Reversing the signs of m, n, φk, zk (k = 1, 2, 3) has no effect on the tiled PC.
3. Replacing n by −n, V1 by V3 and V1 by V3 has no effect on the tiled PC.
4. Tiled PCs are flatfolded if |m| + |n| = 2. They are three-dimensional if |m| + |n| ≥ 3.
5. On a tiled PC with integers (m ≥ 3, n = 0) every string of m diagonals d1 connecting

two vertices is mapped into a regular polygon with m sides of length d1 in a plane
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Figure 4: The foldable tiled PC of Example 2.

z = const. Likewise, on a tiled PC with integers (m = 0, n ≥ 3) every string of n
diagonals d2 connecting two vertices is mapped into a regular polygon with n sides of
length d2 in a plane z = const.

6. A tiled PC is formed by |m + n| rows of quadrilaterals if m ̸= 0 and mn ≥ 0. It is
formed by |m− n| columns of quadrilaterals if n ̸= 0 and mn ≤ 0.

Equations (2)–(7) and (10) are eight equations for the nine unknowns m, n, r, φk, zk

(k = 1, 2, 3). Necessary conditions on the five parameters ℓ, a, b, d1, d2 for the existence of a
solution are not available.

Tiled PCs can be constructed as follows. Integers m, n and angles φ1, φ2, φ3 satisfying
the convexity condition (8) and the first Equation (10) are arbitrarily prescribed. In addition,
one of the coordinates z1, z2, z3 and either the radius r or one of the lengths ℓ, d1, a, b, d2 are
prescribed. Equation (7) and the second Equation (10) determine the unknowns among z1,
z2, z3. Finally, Equations (2)–(6) determine the squares of the remaining unknowns. If one of
the lengths ℓ, d1, a, b, d2 is prescribed, then it must be sufficiently large so as to determine a
value r2 > 0. Whether a tiled PC constructed this way can be produced by folding the mesh
or whether it is self-intersecting must be investigated separately.

A tiled PC is said to be M-periodic if a (smallest) integer M exists such that the screw
displacements M(φ2, z2) and M(φ3 −φ1, z3 − z1) are both pure translations. Hence Mφ2 and
M(φ3 − φ1) must both be integer multiples of 2π. Rationality of φ2/π is a necessary and
sufficient condition for periodicity. Periodicity means that every quadrilateral is periodically
repeated in translation along the cylinder axis.
Example 2. Given are m = 3, n = 2, φ1 = 30◦, φ2 = 60◦, φ3 = 120◦, z1 = −1/2, ℓ = 1.

The tiled PC determined by these data is M-periodic with M = 12. The data yield
z2 = −2(12 + 5

√
3)/69 ≈ −.5988, z3 = (1 + 10

√
3)/46 ≈ .3983, r = (3

√
2 +

√
6)/4 ≈ 1.6730,

d2
1 = (10690 + 5401

√
3)/(12 · 232), d1 ≈ 1.7770, a2 = (9823 + 4781

√
3)/(4 · 232), a ≈ 2.9250,

b2 = (1327 − 70
√

3)/(3 · 232), b ≈ .8716, d2
2 = 3(1204 + 609

√
3)/(2 · 232), d2 ≈ 2.5308.

In Figure 4 the tiled PC is shown in projection onto the y, z-plane. It is formed by folding
m + n = 5 rows of quadrilaterals. The periodic repetition of quadrilaterals in translation
along the cylinder axis is clearly visible. ⋄

Example 3. The datam = 8, n = −4, φ1 = 60◦, φ2 = 120◦, φ3 = 210◦, z3 = 1, r = 1 determine
the tiled PC with the parameters M = 12, z1 = (25−14

√
3)/37 ≈ .0203, z2 = (6+7

√
3)/37 ≈

.4898, ℓ2 = 2(1291 − 350
√

3)/372, ℓ ≈ 1.0002, d2
1 = 6(715 + 14

√
3)/372, d1 ≈ 1.8000, a2 =

3 +
√

3, a ≈ 2.1753, b2 = (3053 − 798
√

3)/372, b ≈ 1.1047, d2
2 = 5(694 + 341

√
3)/372,

d2 ≈ 2.1661.
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Figure 5: The planar mesh of Example 3. On the tiled PC the quadrilateral V0V1V2V3 is intersected
by the four shaded quadrilaterals in the dashed line segments.

This tiled PC which is formed by m−n = 12 columns of quadrilaterals cannot be produced
by folding the mesh. In Figure 5 the mesh is shown. On the tiled PC every quadrilateral
is intersected in like manner by four other quadrilaterals The quadrilateral V0V1V2V3 labeled
q0,0 is intersected by the four shaded quadrilaterals q−1,1, q1,−1, q−1,2 and q1,−2. A point S0
inside q0,0 is intersected by the edge V−1 − V−3 at a point A0 on this edge. The equation
r⃗ = r⃗−1 + µ(r⃗−3 − r⃗−1) of the edge with parameter µ and the equation m⃗ · r⃗ = 1 of the plane
with m⃗ given by r⃗0, r⃗1, r⃗2 determine µ and the positions of A0 and S0: µ ≈ .1699, distances
V0 − A0 = V0 − S0 ≈ 1.3264, V3 − S0 ≈ 1.5636. The quadrilaterals q0,0 and q−1,1 intersect in
the dashed line segments V0 − A0 and V0 − S0.

All pairs of quadrilaterals sharing a single vertex intersect in like manner. This explains
the dashed line segments A1 −V2 −S1, A′

1 −V3 −S ′
1, A′

0 −V−1 −S ′
0 etc. S ′

0 coalesces with A′
0

and A0 with S0. Hence q0,0 is intersected by q−1,2 in the dashed line segment S0 − A′
0.

In the same way it is shown that q0,0 and q1,−2 intersect in the dashed line segments
P − Q and P ′ − Q′. Distances: V0 − P = V7 − Q′ ≈ 2.1753, V0 − Q = V7 − P ′ ≈ 1.0155,
V3 −Q = V8 − P ′ ≈ 1.5675. ⋄

5 Deltoids

In this section a two-parametric family of deltoids forming tiled PCs with prescribed integers
(m,n) is determined. A deltoid is a quadrilateral with mutually orthogonal diagonals one of
which, say V1 − V3, is an axis of symmetry. Then, ℓ = b and (r⃗2 − r⃗0) · (r⃗3 − r⃗1) = 0. With
(1), (2) and (5) these equations are

2r2[cosφ1 − cos(φ1 − φ2)] + z2(z2 − 2z1) = 0, (11)
r2[cosφ1 − cos(φ1 − φ2) − cosφ3 + cos(φ2 − φ3)] + z2(z3 − z1) = 0. (12)

The second equation is replaced by a linear combination of both equations:

2r2[cosφ3 − cos(φ2 − φ3)] + z2(z2 − 2z3) = 0. (13)
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From the fact that a diagonal cannot be on a generator of the cylinder and from the orthogo-
nality of the diagonals it follows that z2 ̸= 0. Therefore, elimination of r2 from (11) and (13)
results in

z2[cosφ3 − cos(φ2 − φ3) − cosφ1 + cos(φ1 − φ2)]+
2{z3[cosφ1 − cos(φ1 − φ2)] − z1[cosφ3 − cos(φ2 − φ3)]} = 0. (14)

This equation, Equation (7) and the second closure condition (10) are a set of three homoge-
neous linear equations for z1, z2, z3. Setting the coefficient determinant equal to zero results
in

A[cosφ1 − cos(φ1 − φ2)] +B[cosφ3 − cos(φ2 − φ3)] = 0,
A = 2m[sinφ2 − sinφ3 − sin(φ2 − φ3)] − nC,

B = 2m[sinφ1 − sinφ2 − sin(φ1 − φ2)] + nC,

C = sinφ1 − sinφ3 + sin(φ1 − φ2) + sin(φ2 − φ3) + 2 sin(φ3 − φ1).


(15)

This equation and the first closure condition (10) determine φ1 and φ3 as functions of φ2.
The angle φ2 can be chosen freely subject to the convexity condition (8). With angles φ1, φ2,
φ3 thus determined Equation (7) and the second closure condition (10) determine z1 and z3
as functions of z2. The coordinate z2 ̸= 0 can be chosen freely subject to the condition that
(11) yields a value r2 > 0. Subsequently, Equations (3)–(6) determine d2

1, a2, b2 = ℓ2 and d2
2.

The symmetry of deltoids has the effect that in both modes of deformation the same tiled
PC is formed.

Example 4. A model made of cardboard conveyed the impression that the deltoid with param-
eters ℓ = b = d1 = d2 = 1, a2 = 2 −

√
3 forms a tiled PC with m = 2, n = 3. This impression

is shown to be wrong by solving Equations (2)–(7) and the first closure condition (10). The
solutions φ1 ≈ −48.19306◦, φ2 ≈ 54.17303◦, φ3 ≈ 35.69159◦, z1 ≈ −.85198, z2 ≈ −.81181,
z3 ≈ −.33690, r ≈ .64121 do not satisfy the second Equation (10).

In order to find an almost identical deltoid forming a tiled PC with m = 2, n = 3 the
almost identical values φ2 = 54.18◦, z2 = −.81 are chosen. Equations(10) determine φ3−φ1 =
83.88◦, M = 2000 and z3 − z1 = .54. The remaining equations determine φ1 ≈ −48.18143◦,
φ3 ≈ 35.69857◦, z1 ≈ −.872624, z3 ≈ −.332624, r ≈ .655753 and the desired parameters
ℓ = b ≈ 1.023747, d1 ≈ 1.006381, d2 ≈ 1.029532, a ≈ .521764. This tiled PC is formed by
folding m+n = 5 rows of deltoids. In Figure 6a it is shown in projection onto the y, z-plane.
⋄

Example 5. The data m = 2, n = 1, φ2 = 100◦, z2 = 1 determine a deltoid and the tiled
PC formed by this deltoid. The closure conditions (10) determine φ3 − φ1 = 160◦, M = 18
and z3 − z1 = −2. The remaining equations determine the parameters φ1 ≈ 44.3269◦,
φ3 ≈ 204.3269◦, z1 ≈ .87156, z3 ≈ −1.12844, r ≈ 1.56632, ℓ = b ≈ 1.46842, d1 ≈ 2.59976,
a ≈ 3.26361, d2 ≈ 3.67662. The tiled PC is formed by folding m+ n = 3 rows of deltoids. In
Figure 6b it is shown in projection onto the y, z-plane. ⋄

Remark. There are infinitly many more nonperiodic than periodic tiled PCs. However, there
is no angle φ2 which is an irrational multiple of π, and for which Equation (15) and the
first Equation (10) can be solved in nonnumerical form. Computers can handle only rational
numbers. Hence the conclusion: Nonperiodic tiled PCs (M → ∞) exist, but examples cannot
be given.
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(a) (b)

Figure 6: The foldable tiled PCs of Example 4 (Figure a) and Example 5 (Figure b).

Figure 7: Mesh composed of trapezoids. Parameters x1, x2, x3, h.

6 Trapezoids

Figure 7 depicts a mesh composed of trapezoids with parallel sides V0 − V1 and V2 − V3. As
parameters of a single trapezoid the coordinates x1, x2, x3 of V1, V2, V3 and the height h
are used (without loss of generality x0 = 0, x1 > 0). In these terms the previously used
parameters are

ℓ = x1, d
2
1 = h2 + x2

2, b
2 = h2 + (x2 − x1)2, a2 = h2 + x2

3, d
2
2 = h2 + (x3 − x1)2. (16)

6.1 Trivial Tiled Polyhedral Cylinders
Rows of trapezoids are separated by equidistant parallel straight lines which are the r-lines
defined in Figure 1. One of the two modes of deformation is trivial. The mesh can be
deformed with arbitrary fold angles along r-lines leaving rows planar. If identical fold angles
are chosen, then all vertices of the mesh are located on a circular cylinder.

The PC is tiled if integers m and n exist such that the component of the vector md⃗1 +nd⃗2
along the r-lines equals zero, i.e., if mx2 +n(x3 −x1) = 0 (this is the second closure condition
(10); the first closure condition does not apply). The condition is satisfied if the ratio q =
(x3 −x1)/x2 is rational. Let (m,n) be a pair of integers with no common divisor satisfying the
condition. Then the condition is satisfied by all (km, kn) with k = 1, 2, . . . The cross section
of a tiled PC with integers (km, kn) is a polygon with k(m+n) sides of length h inscribed in
a circle. If this polygon is regular (irregular), then the tiled PC is foldable (self-intersecting).

Examples:
1. k(m+ n) = 9: The cross section is either the regular polygon 1, 2, 3, 4, 5, 6, 7, 8, 9, 1

or the star 1, 3, 5, 7, 9, 2, 4, 6, 8, 1 or the star 1, 5, 9, 4, 8, 3, 7, 2, 6, 1.
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2. k(m + n) = 14: The cross section is either the regular polygon 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 1 or the star 1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 1 or the star
1, 6, 11, 2, 7, 12, 3, 8, 13, 4, 9, 14, 5, 10, 1.

6.2 Nontrivial Deformations
The second mode of deformation is nontrivial. Trapezoids inscribed in a circle are symmetric.
For this reason the axial projections of the trapezoids V0V1V2V3 and V2V3V

′
0V

′
1 shown in

Figure 7 coalesce. From this it follows that vertices which in the planar mesh are located on
a c-line are located on a generator of the circular cylinder. This is expressed by the equation

φ3 = φ1 − φ2. (17)

The trapezoid drawn with dashed lines shows that in the trivial mode of deformation this
equation is valid in the special form φ3 = φ1 −φ2 = 0. With (16) and (17) Equations (2)–(7)
are

2r2(1 − cosφ1) + z2
1 = x2

1, (18)
2r2(1 − cosφ2) + z2

2 = h2 + x2
2, (19)

2r2[1 − cos(φ1 − φ2)] + z2
3 = h2 + x2

3, (20)
2r2[1 − cos(φ1 − φ2)] + (z1 − z2)2 = h2 + (x2 − x1)2, (21)

2r2(1 − cosφ2) + (z3 − z1)2 = h2 + (x3 − x1)2, (22)

z1[sinφ2 − sin(φ1 − φ2) − sin(2φ2 − φ1)] + (z2 − z3)[sinφ2 + sin(φ1 − φ2) − sinφ1] = 0. (23)
These equations are decoupled as follows. The difference of (19) and (22) and the difference
of (20) and (21) read

(z2 + z3 − z1)(z2 − z3 + z1) = (x2 + x3 − x1)(x2 − x3 + x1), (24)
(z2 + z3 − z1)(z3 − z2 + z1) = (x2 + x3 − x1)(x3 − x2 + x1). (25)

The sum and the difference of these two equations are

z1(z2 + z3 − z1) = x1(x2 + x3 − x1), (26)
(z2 − z3)(z2 + z3 − z1) = (x2 − x3)(x2 + x3 − x1), (27)

whence it follows that with the given ratio of lengths of the parallel sides, λ = (x2−x3)/x1 > 0,

(z2 − z3)/z1 ≡ λ independent of r. (28)

λ is independent of h and independent of whether the trapezoid is symmetric or not.
Equation (23) is a relationship between φ1 and φ2:

sinφ2 − sin(φ1 − φ2) − sin(2φ2 − φ1) + λ[sinφ2 + sin(φ1 − φ2) − sinφ1] = 0. (29)

It has the solution φ1 = φ2 associated with the trivial mode of deformation and a solution
φ1 ̸= φ2 associated with the nontrivial mode of deformation. Explicit expressions are obtained
by writing the equation in the form A sinφ1 +B cosφ1 = C with

A = [2 cosφ2 + (λ− 1)] cosφ2 − (λ+ 1), B = −[2 cosφ2 + (λ− 1)] sinφ2,

C = −(λ+ 1) sinφ2, A2 +B2 = 2(1 − cosφ2)(λ2 + 1 + 2λ cosφ2),
R =

√
A2 +B2 − C2 = (λ− 1)(1 − cosφ2).
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The solutions are sinφ1 = (AC ∓ BR)/(A2 + B2), cosφ1 = (BC ± AR)/(A2 + B2). This
yields φ1 = φ2 and

sinφ1 = 2(λ+ cosφ2) sinφ2

λ2 + 1 + 2λ cosφ2
, 1 − cosφ1 = 2(1 − cos2 φ2)

λ2 + 1 + 2λ cosφ2
, (30)

sin(φ1 − φ2) = (1 − λ2) sinφ2

λ2 + 1 + 2λ cosφ2
, 1 − cos(φ1 − φ2) = (λ− 1)2(1 − cosφ2)

λ2 + 1 + 2λ cosφ2
. (31)

With these expressions and with x3 = x2 − λx1 and z3 = z2 − λz1 Equations (18)–(20) are

2r2 2(1 − cos2 φ2)
λ2 + 1 + 2λ cosφ2

+ z2
1 = x2

1, (32)

2r2(1 − cosφ2) + z2
2 = h2 + x2

2, (33)

2r2 (λ− 1)2(1 − cosφ2)
λ2 + 1 + 2λ cosφ2

+ (z2 − λz1)2 = h2 + (x2 − λx1)2. (34)

Equation (32) multiplied by λ2 plus Equation (33) minus Equation (34) is, following division
by 2λ,

2r2 (λ+ 1)(1 − cos2 φ2)
λ2 + 1 + 2λ cosφ2

− x1x2 = −z1z2 . (35)

Squaring and eliminating z2
1z

2
2 by means of (32) and (33) results in[

2r2 (λ+ 1)(1 − cos2 φ2)
λ2 + 1 + 2λ cosφ2

− x1x2

]2
=

[
x2

1 − 2r2 2(1 − cos2 φ2)
λ2 + 1 + 2λ cosφ2

][
h2 + x2

2 − 2r2(1 − cosφ2)
]
.

(36)
This is a fourth-order equation for cosφ2 with parameter r. For y = 2r2 it is the quadratic
equation Py2 −Qy = −h2x2

1 with

P =
[(λ− 1)(1 − cosφ2) sinφ2

λ2 + 1 + 2λ cosφ2

]2
,

Q = 1 − cosφ2

λ2 + 1 + 2λ cosφ2

{
2(1 + cosφ2)

[
h2 +

(
x2 − x1

λ+ 1
2

)2]
+ 1

2x
2
1(λ− 1)2(1 − cosφ2)

}
> 0.

Both roots y = (Q±
√
Q2 − 4h2x2

1P )/(2P ) are real and positive since

Q2 − 4h2x2
1P = 4 sin4 φ2

(λ2 + 1 + 2λ cosφ2)2 F1F2,

F1,2 =
[
h± x1

(λ− 1) sinφ2

2(1 + cosφ2)

]2
+

[
x2 − x1

λ+ 1
2

]2
> 0.

Only with the smaller of the roots 2r2 Equations (32) and (33) yield quantities z2
1 > 0 and

z2
2 > 0.

For angles φ1, φ2 ≪ 1 Taylor expansion of (30) and (36) yields the approximations

φ2 ≈ λ+ 1
2 φ1, rφ1 ≈ x1

h√
h2 + [x2 − x1(λ+ 1)/2]2

= const. (37)

The square root is the distance between the midpoints of the parallel sides of the trapezoid.
rφ1 ≈ x1 if the trapezoid is symmetric.
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6.3 Geometrical Solution
Nontrivial states of deformation are constructed as shown in Figure 3. Equation (9) reads

det


x2 y2 xy y
x2

2 h2 x2h h
x2

3 h2 x3h h
x2

4 y2
4 x4y4 y4

 − x1 · det


y2 xy x y
h2 x2h x2 h
h2 x3h x3 h
y2

4 x4y4 x4 y4

 = 0.

This is the equation

A(x2 − x1x) + 2Bxy + Cy2 + Ey = 0,
A = h2(x2 − x3)(y2

4 − hy4), 2B = −h(x2 − x3)(x2 + x3 − x1)(y2
4 − hy4),

C = −h(x2 − x3)[h(x2
4 − x1x4) − (x2 + x3 − x1)x4y4 + x2x3y4],

E = h(x2 − x3)[h2(x2
4 − x1x4) − h(x2 + x3 − x1)x4y4 + x2x3y

2
4].


(38)

The fourth-order equation AC −B2 = 0 separating ellipses and hyperbolas is

(y2
4 − hy4)(A∗x2

4 + 2B∗x4y4 + C∗y2
4 +D∗x4 + E∗y4) = 0 (39)

with coefficients A∗ = h2, 2B∗ = −h(x2 + x3 − x1), C∗ = (x2 + x3 − x1)2/4 satisfying the
equation A∗C∗ − B∗2 = 0. Equation (39) is the equation of the parallel lines y4 = 0 and
y4 = h and of the single parabola passing through the vertices of the trapezoid (see [1,
Example 7.4.1]).

Let ∆1 be the domain inside the parabola, ∆2 be the domain between the parallel lines
and ∆12 be the intersection of ∆1 and ∆2. Equation (38) determines an ellipse if the point
(x4, y4) is located either in ∆1 or in ∆2, but not in ∆12. Every ellipse is located in ∆1 as well
as in ∆2. The semi axes b of these ellipses are in the range h/2 < b < ∞. Since there are no
ellipses in the trivial mode of deformation, every ellipse determines a nontrivial deformation
of the mesh. The lines y4 = 0 and y4 = h determine a trivial deformation.

6.4 Nontrivial Tiled Polyhedral Cylinders
Because of (17) the closure conditions (10) are

φ1 − φ3 = φ2 = 2π/(m− n), mz2 + n(z3 − z1) = 0. (40)

The first condition tells that (i) integers (m,n) with m− n = 0 or ±1 can occur only in tiled
PCs in the trivial mode of deformation and that (ii) nontrivial tiled PCs are M-periodic with
M = |m− n|.

Nontrivial tiled PCs can be constructed as follows. Given are
1. Arbitrary integers m,n (m − n ̸= 0,±1) and arbitrary angles φ1, φ2, φ3 satisfying

Equations (40),
2. one of the coordinates z1, z2, z3 (̸= 0 arbitrary),
3. either one of the parameters r, ℓ, d1, a, b, d2 or one of the parameters r, x1, x2, x3, h.

The unknowns among z1, z2, z3 are determined by Equation (7) and by the second Equa-
tion (40). The unknowns among the parameters r, ℓ, d1, a, b, d2 are determined by Equa-
tions (2)–(6). The unknowns among the parameters r, x1, x2, x3, h are determined by
Equations (35), (28) and (19). If r is not prescribed, then the prescribed parameter must be
sufficiently large so as to determine a value r2 > 0.
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(a) (b)

Figure 8: Foldable tiled PCs of Example 6 with the
parameters (a) and (b).

Figure 9: Foldable tiled PC of Ex-
ample 7.

Example 6. Given are the two sets of parameters
(a) m = 4, n = −2, φ1 = 90◦, x1 = 1, z3 = 1/2,
(b) m = 8, n = −4, φ1 = 45◦, x1 = 1/2, z3 = 1/4.

Note that m and n in (b) are twice as large as in (a) while φ1, x1, z3 in (a) are twice as large
as in (b).

Solution to Problem (a): M = 6, φ2 = 60◦, φ3 = 30◦, z1 = −
√

3/6 ≈ −.2887, z2 = (3 +√
3)/12 ≈ .3943, λ = (

√
3 − 1)/2 ≈ .3660, r2 = 11/24, r ≈ .6770, x2 = 3(1 +

√
3)/16 ≈ .5123,

x3 = (11 − 5
√

3)/16 ≈ .1462, h2 = 11(14 −
√

3)/384, h ≈ .5928, q = (x3 − x1)/x2 = −5/3.
The tiled PC is formed by folding m − n = 6 columns of trapezoids. In Figure 8a it is

shown in projection onto the y, z-plane. The result for q shows that with the same mesh
tiled PCs in the trivial mode of deformation can be formed with integers (m∗, n∗) = (5k, 3k)
(k = 1, 2, . . .).

Solution to Problem (b): M = 12, φ2 = 30◦, φ3 = 15◦, z1 = −(2 + 5
√

2 − 3
√

3 +
4
√

6)/92 ≈ −.1486, z2 = (25+5
√

2−3
√

3+4
√

6)/184 ≈ .1993, λ = (1+
√

2−
√

3)/2 ≈ .3411,
2r2 = (3982 + 2043

√
2 − 108

√
3 − 40

√
6)/922, r ≈ .6238, x2 = (5679 + 1927

√
2 − 2113

√
3 −

234
√

6)/(2 · 922) ≈ .2464, x3 = (1447 − 2305
√

2 + 2119
√

3 − 234
√

6)/(2 · 922) ≈ .0759,
h2 = 2r2(1 −

√
3/2) + z2

2 − x2
2, h ≈ .2885.

The tiled PC is formed by folding m − n = 12 columns of trapezoids. In Figure 8b it
is shown in projection onto the y, z-plane. The scale is the same as in Figure 8a. Since
q = (x3 − x1)/x2 is irrational no tiled PC can be formed in the trivial mode of deformation.
⋄

Example 7. Given are m = 0, n = 6, φ1 = −90◦, z1 ̸= 0 arbitrary, d2 arbitrary. Definition:
µ = z2

1/d
2
2. The parameters of the tiled PCs determined by these data are M = 6, φ2 =

−60◦, φ3 = −30◦, z2 = z1(
√

3 + 1)/2, z3 = z1, λ = (
√

3 − 1)/2, r = d2, ℓ2 = d2
2(2 + µ),

d2
1 = d2

2[1 + µ(1 +
√

3/2)], a2 = d2
2(2 −

√
3 + µ), b2 = d2

2(2 −
√

3)(1 + µ/2), q = −1/(1 + µ).
In Figure 9 the foldable tiled PC with the parameters z1 = −1/2, d2 = 2 is shown in

projection onto the y, z-plane. From z3 = z1 and (m,n) = (0, 6) it follows that every string of
six diagonals d2 connecting two vertices in the planar mesh is mapped into a regular hexagon
in a plane z = const. One out of six trapezoids is seen edge-on. From q = −16/17 it follows
that with the same mesh tiled PCs in the trivial mode of deformation can be formed with
integers (m∗, n∗) = (16k, 17k) (k = 1, 2, . . .). ⋄



J. Wittenburg: Polyhedral Cylinders Formed by Kokotsakis Meshes 185

Figure 10: Foldable tiled PC of Example 8.

Example 8. The data m = 2, n = −1, φ1 = 150◦, z1 = −1, r = 1 determine the tiled PC
with the parameters M = 3, φ2 = 120◦, φ3 = 30◦, z2 =

√
3, z3 = 2

√
3 − 1, λ =

√
3 − 1,

ℓ2 = 3 +
√

3, d2
1 = 6, a2 = 5(3 −

√
3), b2 = 6 +

√
3, d2

2 = 15, h2 = 3(13 +
√

3)/8, q = 1 − 2
√

3.
In Figure 10 the tiled PC is shown in projection onto the y, z-plane. It is formed by

folding m− n = 3 columns of quadrilaterals. Since q is irrational no tiled PC can be formed
in the trivial mode of deformation. ⋄

6.5 Symmetric Trapezoids
A symmetric trapezoid is specified by the parameters x1 = ℓ, x2−x3 = c and h. The symmetry
has the effect that c-lines are orthogonal to r-lines. The closure condition mx2+n(x3−x1) = 0
is satisfied by all integers (m,n = m) with m = 2, 3, . . . Hence infinitly many trivial tiled PCs
can be formed.

In what follows, it is shown that also infinitly many nontrivial tiled PCs can be formed.
The orthogonality of r-lines and c-lines is preserved when the mesh is deformed. Edges of
alternating length ℓ, c, ℓ, c etc. on an r-line are mapped into secants of the circle of radius
r (arbitrary) in a plane z = const. In particular, z1 = 0 and z2 = z3 independent of r. With
this, the second condition (40) is satisfied. The PC is tiled if m ≥ 2 pairs of secants (ℓ, c)
form a regular polygon. This requires n = −m. With this, the first condition (40) reads
φ1 − φ3 = φ2 = π/m. The angle φ1 and the radius r as functions of m are determined
by Equation (30) and by Equation (35) with z1 = 0, x1x2 = ℓ(λ + 1)/2. The results are,
independent of h,

φ2 = π

m
, sinφ1 = 2(λ+ cosφ2) sinφ2

λ2 + 1 + 2λ cosφ2
, φ3 = φ1 − φ2, r = ℓ

2

√
λ2 + 1 + 2λ cosφ2

sinφ2
(41)

(m = 2, 3, . . .) Only fold angles along edges depend on h.

Summary

A Kokotsakis mesh formed by congruent convex, non-trapezoidal, non-parallelogramic quadri-
laterals is a single-degree-of-freedom mechanism with two modes of deformation. In both
modes the mechanism is a polyhedral cylinder (PC) since the vertices of all quadrilaterals
are located on a circular cylinder the radius r of which is a free parameter. In Section 2 six
equations are formulated for six cylinder coordinates φk, zk (k = 1, 2, 3) as functions of r.
These equations depend on five parameters specifying the quadrilaterals. The equations can
only be solved numerically.

In Section 3 a simple geometrical method of solution is shown. It leads to equations of
the two parabolas passing through the vertices of a convex quadrilateral and to an algorithm
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determining the smallest radius r for which the six equations for φk, zk (k = 1, 2, 3) have real
solutions.

In Section 4 it is shown that tiled PCs with coordinates r, φk, zk (k = 1, 2, 3) exist if
two additional equations with two additional unknown integers m, n are satisfied. Necessary
conditions on the five parameters for the existence of a solution are not available. The
construction of tiled PCs is explained. Tiled PCs are either foldable or self-intersecting.
They are periodic if φ2/π is rational.

In Section 5 a two-parametric family of deltoids forming tiled PCs with prescribed integers
(m,n) is determined. In both modes of deformation the same tiled PC is formed.

Section 6 is devoted to trapezoidal quadrilaterals. In this case, the six equations for φk,
zk (k = 1, 2, 3) are decoupled. The two modes of deformation are distinguished as trivial and
nontrivial. For both modes the construction of tiled PCs is explained. Nontrivial tiled PCs
are periodic. Symmetric trapezoids form in both modes infinitly many tiled PCs.

An open problem: Are there non-deltoidal, non-trapezoidal quadrilaterals forming tiled
PCs in both modes of deformation?
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