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1 Introduction

The question we shall address in this article is this:

Problem 1. Given two convex octahedra in Euclidean 3-space, is it possible to decide whether
they are affinely equivalent to each other using their natural developments only?

From our point of view, Problem 1 is similar to the problem of recognizing congruent
convex polyhedra whose solution is given by the famous Cauchy rigidity theorem: If natural
developments of two convex closed polyhedra in Euclidean 3-space are isometric then these
polyhedra are congruent to each other. Initially, this theorem was proved by A.L. Cauchy
in 1813 in [5]. An extensive literature is devoted to the Cauchy rigidity theorem and its
generalizations, from which we mention the monograph [1], review article [6], scientific article
[9], and popular science book [7], where the reader can find further references.

An analog of Problem 1 for general polyhedra in Euclidean 3-space is considered in [2],
where necessary conditions for the affine equivalence of polyhedra are found. In this article,
we present a similar approach as applied to octahedra. This allows us to obtain both necessary
and sufficient conditions.
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The main result of this article is Theorem 1 from Section 4.
We choose octahedra as the object of our study for two reasons. First, because they are

the simplest polyhedra in terms of combinatorial structure with no trivalent vertices (the
latter simplify the problem of recognition of affinely equivalent polyhedra by their natural
developments, see [2]). Second, because historically octahedra played an intriguing role in
the proof of the Cauchy rigidity theorem (see [8, p. 446]) while our study is motivated by
that theorem.

2 Terminology and preliminaries

Octahedron: We say that a polyhedral surface in R3 is an octahedron if it is combinatorially
equivalent to the regular convex octahedron in R3 and any two adjacent faces do not lie in
the same plane.

A straight line segment xy is called a diagonal of an octahedron P if x and y are vertices
of P and xy is not an edge of P .

An octahedron P is called convex if, for every its face F , the three vertices of P which
are not incident to F , are contained in a single open halfspace determined by aff F , the affine
hull of F .

We leave the proofs of the following statements to the reader: every convex octahedron
P is the boundary of a bounded convex set B with nonempty interior, i.e., of a convex body;
moreover, B contains every diagonal of P .

Natural development: The concept of a natural development of an octahedron is
intuitively obvious to anyone who has ever glued an octahedron from a set of its faces which
are cut out from cardboard. Avoiding unnecessary details, we give the following more or less
formal definition.

A set consisting of 8 triangles in the plane is called the natural development R of an
octahedron P if it is equipped with “gluing rules” and the following conditions are fulfilled:

• R is in one-to-one correspondence with the set of the faces of P ;
• each triangle of R is congruent to the corresponding face of P ;
• vertices of different triangles of R are identified with each other (or “are glued together”)

if and only if they correspond to the same vertex of P ;
• sides of different triangles of R are identified with each other (or “are glued together”)

if and only if they correspond to the same edge of P .
Cayley–Menger determinant: Let M be an abstract set and ρ : M ×M → [0, +∞) ⊂

R be a map such that ρ(x, y) = ρ(y, x) for all x, y ∈ M and ρ(x, y) = 0 if and only if x = y.
Then the pair (M, ρ) is called a semimetric space, see [3, Definition 5.1, p. 7], and, for every
{x0, x1, . . . , xk} ⊂ M , the expression

cm(x0, x1, . . . , xk) def=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 0 ρ2(x0, x1) . . . ρ2(x0, xk)
1 ρ2(x1, x0) 0 . . . ρ2(x1, xk)
. . . . .
1 ρ2(xk, x0) ρ2(xk, x1) . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣
is called the Cayley–Menger determinant of x0, x1, . . . , xk, see [3, § 40, p. 97].

If M = {x0, x1, . . . , xn} ⊂ Rn and a metric ρ in M is induced by the Euclidean metric
of Rn then vol(x0, x1, . . . , xn), the n-dimensional volume of the simplex with the vertices
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Figure 1: Special enumeration of the vertices of an octahedron P

x0, x1, . . . , xn, is related to the Cayley–Menger determinant of x0, x1, . . . , xn by the following
formula, see [3, § 40, p. 98]:

[vol(x0, x1, . . . , xn)]2 = (−1)n+1

2nn! cm(x0, x1, . . . , xn). (1)

We say that a semimetric space (M, ρ) embeds isometrically in Rn if there is f : M → Rn

such that |f(x) − f(y)| = ρ(x, y) for every x, y ∈ M , where |f(x) − f(y)| stands for the
Euclidean distance between f(x), f(y) ∈ Rn.

Necessary and sufficient conditions for a semimetric space (M, ρ) to embed isometrically
in Rn are given by the following

Theorem 1 (K. Menger, 1928). For every semimetric space M , the following statements (i)
and (ii) are equivalent to each other:

(i) M embeds isometrically in Rn, but not in Rn−1;
(ii) there are n + 1 points x0, x1, . . . , xn in M such that

(−1)k+1 cm(x0, x1, . . . , xk) > 0 (2)

for all k = 1, 2, . . . , n and

cm(x0, x1, . . . , xn, x) = 0, (3)
cm(x0, x1, . . . , xn, y) = 0, (4)
cm(x0, x1, . . . , xn, x, y) = 0 (5)

for every pair of points x, y of M .

The classic reference for Theorem 1 is [3, Theorem 42.2, p. 104]. A modern exposition of
Theorem 1 for the case of metric spaces may be found in [4].

3 Necessary conditions

Throughout this section, we denote by P and P ′ two fixed octahedra in R3.
By xi, i = 0, . . . , 5, denote the vertices of P . Throughout this article, we fix their special

enumeration, an example of which is shown in Fig. 1. Such a special enumeration is obtained
in the following way. Chose an edge e of P arbitrarily and denote by x0 and x1 the vertices of
P incident to e. For i = 2, 3, by xi denote a vertex of P incident to a face of P containing e.
By x4 (resp., x5) denote a vertex of P such that the straight line segment x1x4 (resp., x0x5)
is a diagonal of P .
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By ⟨xi, xj⟩ denote the edge of P incident to the vertices xi, xj if such an edge exists.
Similarly, by ⟨xi, xj, xk⟩ denote the face of P incident to the vertices xi, xj, xk if such a face
exists.

Consider the set V = {x0, . . . , x5} endowed with a metric induced from R3. For the
convenience of further presentation, we denote the Euclidean distance |xi−xj| between xi, xj ∈
V by dij if xi and xj are joined by an edge of P , and by δij otherwise. In other words, we
denote |xi − xj| by dij if this distance is given to us directly in the natural development of
P , and denote it by δij otherwise. We choose different notations dij and δij because, when
solving Problem 1 in Section 4, we consider δij as unknown quantities, the values of which
have to be found in the course of the solution.

Throughout Section 3, we denote by x′
i, i = 0, . . . , 5, the vertices of P ′ and assume that P ′

is affinely equivalent to P in the sense that there exists an affine transformation A : R3 → R3

such that A(P ) = P ′ and A(xi) = x′
i for all i = 0, . . . , 5, i. e., that A does not change the

numbering of the vertices. The Euclidean distance between the vertices x′
i and x′

j of P ′ is
denoted by d′

ij if x′
i and x′

j are connected by an edge of P ′ and by δ′
ij otherwise.

The first group of necessary conditions

Directly by its construction, the set V = {x0, . . . , x5} endowed with the metric induced from
R3 is a metric space which embeds isometrically in R3, but not in R2. Hence, by Theorem 1,
the inequalities (2) and equalities (3)–(5) hold. Let us write them down in detail.

The inequalities (2) take the form

(−1)2 cm(x0, x1) > 0,

(−1)3 cm(x0, x1, x2) > 0,

(−1)4 cm(x0, x1, x2, x3) > 0,

i.e.,

d2
01 > 0,

∣∣∣∣∣∣∣∣∣
0 1 1 1
1 0 d2

01 d2
02

1 d2
01 0 d2

12
1 d2

02 d2
12 0

∣∣∣∣∣∣∣∣∣ < 0, (6)

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d2

01 d2
02 d2

03
1 d2

01 0 d2
12 d2

13
1 d2

02 d2
12 0 δ2

23
1 d2

03 d2
13 δ2

23 0

∣∣∣∣∣∣∣∣∣∣∣∣
> 0. (7)

The inequalities (6) mean that x0 ̸= x1 and the area of the face ⟨x0, x1, x2⟩ is not equal to
zero. The inequality (7) means that the volume of the tetrahedron ⟨x0, x1, x2, x3⟩ with the
vertices xi, i = 0, . . . , 3 is nonzero. According to our definition of an octahedron, (6)–(7) are
automatically satisfied.

Note that if we write (7) using only numerical data that is available to us from the natural
development of P (i.e., using dij only) then (7) imposes a restriction on the possible values
of the length δ23 of the diagonal x2x3 of P .
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The equality (3), when written for P , becomes cm(x0, x1, x2, x3, x4) = 0, i.e.,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 d2

01 d2
02 d2

03 d2
04

1 d2
01 0 d2

12 d2
13 δ2

14
1 d2

02 d2
12 0 δ2

23 d2
24

1 d2
03 d2

13 δ2
23 0 d2

34
1 d2

04 δ2
14 d2

24 d2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (8)

The equality (4) takes the form cm(x0, x1, x2, x3, x5) = 0, i.e.,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 d2

01 d2
02 d2

03 δ2
05

1 d2
01 0 d2

12 d2
13 d2

15
1 d2

02 d2
12 0 δ2

23 d2
25

1 d2
03 d2

13 δ2
23 0 d2

35
1 δ2

05 d2
15 d2

25 d2
35 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (9)

Finally, the equality (5) becomes cm(x0, x1, x2, x3, x4, x5) = 0, i.e.,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1 1
1 0 d2

01 d2
02 d2

03 d2
04 δ2

05
1 d2

01 0 d2
12 d2

13 δ2
14 d2

15
1 d2

02 d2
12 0 δ2

23 d2
24 d2

25
1 d2

03 d2
13 δ2

23 0 d2
34 d2

35
1 d2

04 δ2
14 d2

24 d2
34 0 d2

45
1 δ2

05 d2
15 d2

25 d2
35 d2

45 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (10)

The relations (7)–(10) form the first group of necessary conditions for the affine equiva-
lence of the octahedra P and P ′. They must be satisfied by the quantities δ05, δ14, and δ23,
which are the lengths of the diagonals of P and which cannot be found directly from the
natural development of P .

The second group of necessary conditions

This group of conditions expresses the fact that P is convex.
Let us start with a detailed explanation of the construction of one of the conditions of the

second group of necessary conditions. To do this, consider two tetrahedra T3 = ⟨x0, x1, x2, x3⟩
and T4 = ⟨x0, x1, x2, x4⟩ in R3. They share the common face ⟨x0, x1, x2⟩. In principle, T3 and
T4 can be located relative to each other in two ways: either so that they are contained in
different closed halfspaces determined by the plane containing the face ⟨x0, x1, x2⟩, or so that
they are contained in one of these halfspaces. Obviously, |x3 − x4| (and hence the numerical
value of d2

34) in the latter case is strictly less than in the first one.
In (8), substitute t instead of d2

34 (the other dij’s and δ14 are assumed to be fixed numbers
borrowed from P ). As a result, we get∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 d2

01 d2
02 d2

03 d2
04

1 d2
01 0 d2

12 d2
13 δ2

14
1 d2

02 d2
12 0 t d2

24
1 d2

03 d2
13 t 0 d2

34
1 d2

04 δ2
14 d2

24 d2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (11)
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Let us rewrite (11) in the form At2 +Bt+C = 0, where A, B and C are algebraic polynomials
in δ14 and all variables dij involved in (11). It is easy to see that

A = −

∣∣∣∣∣∣∣∣∣
0 1 1 1
1 0 d2

01 d2
04

1 d2
01 0 δ2

14
1 d2

04 δ2
14 0

∣∣∣∣∣∣∣∣∣ = − cm(x0, x1, x4).

Hence, taking into account the formula (1), we get A = 222![vol(x0, x1, x4)]2 > 0. Here
vol(x0, x1, x4) denotes the area of the triangle with the vertices x0, x1, x4, and the inequality
holds true because vol(x0, x1, x4) ̸= 0. The latter follows form the definition of an octahedron
given in Section 2.

Above, we mentioned a geometric argument based on the relative position of T3, T4. It
implies that the quadratic equation At2 +Bt+C = 0 has two different positive real roots. Let
us denote them by t1, t2. For definiteness, assume 0 < t1 < t2. Then t1 = d2

34, B2 − 4AC > 0,
B = −A(t1 + t2) < −2At1, and C = At1t2 > At2

1. For positive t1, t2, each of the last two
inequalities is equivalent to t1 < t2 and, thus, they are equivalent to each other. Hence, below
we can use only one of them, e.g., C > At2

1 (or, what is the same, C > Ad4
34).

Since C = At2 + Bt + C for t = 0 and At2 + Bt + C is given by the formula (11), we can
rewrite the inequality C > Ad4

34 as∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 d2

01 d2
02 d2

03 d2
04

1 d2
01 0 d2

12 d2
13 δ2

14
1 d2

02 d2
12 0 0 d2

24
1 d2

03 d2
13 0 0 d2

34
1 d2

04 δ2
14 d2

24 d2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> −d4

34

∣∣∣∣∣∣∣∣∣
0 1 1 1
1 0 d2

01 d2
04

1 d2
01 0 δ2

14
1 d2

04 δ2
14 0

∣∣∣∣∣∣∣∣∣ . (12)

The inequality (12) expresses the fact that the points x3, x4 are contained in one of the two
closed halfspaces determined by the plane containing the face ⟨x0, x1, x2⟩ of P . If we write
(12) using only distances given to us in the natural development of P (i.e., using dij’s only)
then (12) imposes restrictions on the possible values of the length of the diagonal x1x4 (i.e.,
on δ14).

The inequality (12) belongs to the second group of necessary conditions for the affine
equivalence of the octahedra P and P ′. The other inequalities of that group are derived
similarly to (12) according to the following instructions:

• select one of the eight faces of P and denote it by ⟨xi0 , xi1 , xi2⟩ (it will play the same
role as the face ⟨x0, x1, x2⟩ played in the above derivation of (12));

• select two of the three faces of P incident to ⟨xi0 , xi1 , xi2⟩ and denote them by ⟨xi0 , xi1 , xi3⟩
and ⟨xi0 , xi2 , xi4⟩ (they will play the same role as the faces ⟨x0, x1, x3⟩ and ⟨x0, x2, x4⟩
played in the above derivation of (12));

• apply the arguments described above for tetrahedra T3 = ⟨x0, x1, x2, x3⟩ and T4 =
⟨x0, x1, x2, x4⟩ to tetrahedra ⟨xi0 , xi1 , xi2 , xi3⟩ and ⟨xi0 , xi1 , xi2 , xi4⟩.

As a result, we get an inequality which is similar to (12). It expresses the fact that the
points xi3 and xi4 are contained in one of the two closed halfspaces determined by the plane
containing the face ⟨xi0 , xi1 , xi2⟩ of P . It is easy to understand that there will be 8 × 3 = 24
of such inequalities. Together they guarantee the convexity of P . We call them the second
group of necessary conditions for the affine equivalence of P and P ′.
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The third group of necessary conditions

This group of necessary conditions is constructed from P ′ in the same way as the first group
was constructed from P . In other words, the third group of necessary conditions consists of
four relations, each of which is obtained from (7)–(10) by replacing every dij by d′

ij and every
δij by δ′

ij.

The fourth group of necessary conditions

This group is constructed from P ′ in the same way as the second group was constructed
from P . It consists of 24 inequalities. All together they guarantee that P ′ is convex.

The fifth group of necessary conditions

The relations of this group directly expresses the fact that P and P ′ are affine equivalent.
They are constructed as follows.

Select any of the 12 edges of P . Denote it by ⟨xi0 , xi1⟩. By ⟨xi0 , xi1 , xi2⟩ and ⟨xi0 , xi1 , xi3⟩
denote the two faces of P incident to the edge ⟨xi0 , xi1⟩. According to our definition of
an octahedron, the tetrahedron ⟨xi0 , xi1 , xi2 , xi3⟩ has nonzero 3-volume, vol⟨xi0 , xi1 , xi2 , xi3⟩,
which is related to 3-volume of the tetrahedron ⟨x′

i0 , x′
i1 , x′

i2 , x′
i3⟩, vol⟨x′

i0 , x′
i1 , x′

i2 , x′
i3⟩, by the

well-known formula vol(x′
i0 , x′

i1 , x′
i2 , x′

i3) = | det A| vol(xi0 , xi1 , xi2 , xi3). Squaring the latter
formula and using (1), we get

cm(x′
i0 , x′

i1 , x′
i2 , x′

i3) = (det A)2 cm(xi0 , xi1 , xi2 , xi3)

or, which is the same,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d′2

i0i1 d′2
i0i2 d′2

i0i3

1 d′2
i0i1 0 d′2

i1i2 d′2
i1i3

1 d′2
i0i2 d′2

i1i2 0 δ′2
i2i3

1 d′2
i0i3 d′2

i1i3 δ′2
i2i3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d2

i0i1 d2
i0i2 d2

i0i3

1 d2
i0i1 0 d2

i1i2 d2
i1i3

1 d2
i0i2 d2

i1i2 0 δ2
i2i3

1 d2
i0i3 d2

i1i3 δ2
i2i3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (13)

where α = (det A)2 > 0. All 12 equations forming the fifth group of necessary conditions may
be obtained from (13) with a suitable choice of xik

, k = 0, 1, 2, 3.

4 The main result

In Section 4, we treat the relations which make up the five groups of necessary conditions for P
and P ′ to be affinely equivalent to each other as algebraic equations and inequalities in seven
unknowns δ05, δ14, δ23, δ′

05, δ′
14, δ′

23, and α, i.e., with respect to those variables whose values
cannot be directly found from the natural developments R and R′ of P and P ′. As we know
from Section 3, the coefficients of those algebraic equations and inequalities are expressed in
terms of the variables whose values can be directly found from the natural developments R
and R′ of P and P ′, i.e., through {dij}, the set of the lengths of the edges ⟨xi, xj⟩ of R, and
{d′

ij}, the set of the lengths of the edges ⟨x′
i, x′

j⟩ of R′.
The main result of this article is given by the following theorem:
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Theorem 2. Let P and P ′ be two convex octahedra in R3, and let R and R′ be their natural
developments; then the following statements are equivalent:

(a) P and P ′ are affinely equivalent to each other;
(b) there are seven positive real numbers δ05, δ14, δ23, δ′

05, δ′
14, δ′

23, and α such that all
five groups of necessary conditions given in Section 3 are satisfied.

Proof. The implication (a) ⇒ (b) has been demonstrated in Section 3. One should take the
lengths of the corresponding diagonals of P as δ05, δ14, δ23, the lengths of the corresponding
diagonals of P ′ as δ′

05, δ′
14, δ′

23, and the square of the determinant of the affine transformation
A such that P ′ = A(P ) as α.

It remains to prove that (b) implies (a). By x̃i, i = 0, . . . , 5, denote the vertices of R which
are enumerated in accordance with the special enumeration of the vertices of P introduced
in Section 3 and depicted in Fig. 1.

Let us define a semimetric ρ̃ on the set Ṽ = {x̃0, . . . , x̃5} by putting

ρ̃(x̃i, x̃j) def=
dij, if x̃i, x̃j are connected by an edge in R;

δij, otherwise.

Here dij is the length of the edge ⟨x̃i, x̃j⟩ in R, and δij is one of the positive real numbers δ05,
δ14, δ23 whose existence is asserted in (b).

It follows from (b) that the relations (7)–(10) are fulfilled. Thus, according to Theorem 1,
(Ṽ , ρ̃) embeds isometrically in R3. By f : Ṽ → R3 denote one of such embeddings.

Let ∆ be one of the eight triangles constituting the natural development R. Suppose x̃i,
x̃j, and x̃k are the vertices of ∆. Since the second group of necessary conditions described in
Section 3 (and, in particular, the inequality (11)) is assumed to be fulfilled, the set

( 5⋃
m=0

{f(x̃m)}
)

\
(
{f(x̃i)} ∪ {f(x̃j)} ∪ {f(x̃k)}

)
,

is contained in one of the two closed halfspaces determined by the plane containing the
triangle ⟨f(x̃i), f(x̃j), f(x̃k)⟩. Hence, ⟨f(x̃i), f(x̃j), f(x̃k)⟩ is a face of the convex hull of the
points f(x̃i), i = 0, . . . , 5. This implies that the convex hull of the points f(x̃i), i = 0, . . . , 5,
is a convex octahedron whose vertices are provided with the standard numbering as in Fig. 1.
Let us denote this octahedron by X.

By x̃′
i, i = 0, . . . , 5, denote the vertices of R′ which are enumerated in such a way that x̃i

and x̃′
i correspond to each other according to the combinatorial equivalence of R and R′. As

before, we define a semimetric ρ̃′ on the set Ṽ ′ = {x̃′
0, . . . , x̃′

5} by putting

ρ̃′(x̃′
i, x̃′

j)
def=

d′
ij, if x̃′

i, x̃′
j are connected by an edge in R′;

δ′
ij, otherwise.

Here d′
ij is the length of the edge ⟨x̃′

i, x̃′
j⟩ in R′, and δ′

ij is one of the positive real numbers δ′
05,

δ′
14, δ′

23 whose existence is asserted in (b).
According to Theorem 1 and the third group of necessary conditions, (Ṽ ′, ρ̃′) embeds

isometrically in R3. By f ′ : Ṽ ′ → R3 denote one of such embeddings.
The fourth group of necessary conditions implies that if x̃′

i, x̃′
j, and x̃′

k are the vertices of
any of the eight triangles constituting the natural development R′ then ⟨f ′(x̃′

i), f ′(x̃′
j), f ′(x̃′

k)⟩
is a face of the convex hull of the points f ′(x̃′

i), i = 0, . . . , 5. Thus, the convex hull of the points
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f ′(x̃′
i), i = 0, . . . , 5, is a convex octahedron whose vertices are provided with the standard

numbering as in Fig. 1. Let us denote this octahedron by X ′.
Note that both the points f(x̃i), i = 0, . . . , 3 and the points f ′(x̃′

i), i = 0, . . . , 3, are
the vertices of nondegenerate tetrahedra. Therefore, there is a unique affine transformation
A : R3 → R3 such that f ′(x̃′

i) = A(f(x̃i)) for all i = 0, . . . , 3. According to (b), the fifth group
of necessary conditions is satisfied with some α > 0. Hence, (det A)2 = α.

Let us prove two more properties of A, namely, f ′(x̃′
j) = A(f(x̃j)), j = 4, 5.

Let k = 2 or 3, and j = 4 or 5. By definition, put

∆k,j = ⟨A(f(x̃0)), A(f(x̃1)), A(f(x̃k)), A(f(x̃j))⟩,
∆′

k,j = ⟨f ′(x̃′
0), f ′(x̃′

1), f ′(x̃′
k), f ′(x̃′

j)⟩,
δk = ⟨A(f(x̃0)), A(f(x̃1)), A(f(x̃k))⟩ = ⟨f ′(x̃′

0), f ′(x̃′
1), f ′(x̃′

k)⟩.

Obviously, the tetrahedra ∆k,j and ∆′
k,j share the common face δk. Moreover, 3-volumes of

∆k,j and ∆′
k,j are equal to each other:

vol(∆k,j) = vol(A(f(x̃0)), A(f(x̃1)), A(f(x̃k)), A(f(x̃j)))
= | det A| vol(f(x̃0), f(x̃1), f(x̃k), f(x̃j))
=

√
α vol(f(x̃0), f(x̃1), f(x̃k), f(x̃j))

= vol(f ′(x̃′
0), f ′(x̃′

1), f ′(x̃′
k), f ′(x̃′

j))
= vol(∆′

k,j).

Therefore, the heights of ∆k,j and ∆′
k,j which are treated as pyramids with the common base

δk are equal to each other. Denote this common height as hk,j.
Recall that the affine hull of δk is denoted by aff δk. For k = 2, 3 and j = 4, 5, by τk,j

denote the plane which is parallel to aff δk and lies at distance hk,j from aff δk in the closed
halfspace which is bounded by aff δk and contains both ∆k,j and ∆′

k,j. It follows from above
that both points A(f(x̃j)), f ′(x̃′

j) lie on τk,j.
Let i = 0 or 1. By σi denote the affine hull of the three points A(f(x̃i)) = f ′(x̃′

i),
A(f(x̃2)) = f ′(x̃′

2), and A(f(x̃3)) = f ′(x̃′
3). Arguing as above, we see that the distance from

either of the points A(f(x̃i+4)) and f ′(x̃′
i+4) to σi is the same and these points lie in the same

closed halfspace bounded by σi. Hence, A(f(x̃i+4)) and f ′(x̃′
i+4) lie on a plane parallel to σi.

Denote this plane by τi.
Observe that both points A(f(x̃4)) and f ′(x̃′

4) lie on each of the planes τ2,4, τ3,4 and
τ0, and hence are contained in their intersection. However, the planes τ2,4, τ3,4 and τ0 are
parallel to the planes aff δ2, aff δ3 and σ0 respectively, while aff δ2 ∩aff δ3 ∩σ0 = {A(f(x̃0))} =
{f ′(x̃′

0)}. Hence, the intersection τ2,4 ∩ τ3,4 ∩ τ0 consists of exactly one point, and this point
is A(f(x̃4)) = f ′(x̃′

4).
Similarly, we check that τ2,5 ∩ τ3,5 ∩ τ1 = {A(f(x̃5))} = {f ′(x̃′

5)} which yields A(f(x̃5)) =
f ′(x̃′

5).
Thus, assuming (b) to be satisfied, we were able to isometrically embed the natural

developments R and R′ as convex affinely equivalent octahedra X and X ′ (since there is an
affine transformation A : R3 → R3 such that f ′(x̃′

j) = A(f(x̃j)) for all i = 0, . . . , 5). On
the other hand, R is the natural development of both P and X. Thus, the Cauchy rigidity
theorem implies that P and X are congruent. Similarly, P ′ and X ′ are congruent to each
other. Hence, P and P ′ are affinely equivalent, and (b) implies (a).
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5 Concluding remarks

• In Problem 1, it would be more natural to ask about the projective (rather than affine)
equivalence of convex octahedra. The point is that both the property “to be convex”
and the property “to be a polyhedron” are projective invariant. Unfortunately, some
arguments presented in this article are not applicable to the study of the projective
equivalence of octahedra. In fact, the equations from the fifth group of necessary con-
ditions obtained in Section 3 are not valid for projective transformations. Here we need
qualitatively new ideas.

• The Cauchy rigidity theorem is the standard of elegance. Against this background, our
Theorem 2 looks especially clumsy. It is desirable to find a solution to Problem 1 as
elegant as the Cauchy rigidity theorem.
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