
Journal for Geometry and Graphics
Volume 26 (2022), No. 1, 101–114

Shape computing: A new geometric
computing mechanism

Yuanjun He1, Haiyan Yu2, Hongming Cai1, Zhenghong Peng3, Wei Liu1,
Zhiping Hu4

1Shanghai Jiao Tong University, Shanghai, China
yjhe@sjtu.edu.cn, hmcai@sjtu.edu.cn, liu-wei@sjtu.edu.cn

2Donghua University, Shanghai, China
yuhy@dhu.edu.cn

3Wuhan University, Wuhan, Hubei, China
laopeng129@vip.sina.com

4Shanghai Customs College, Shanghai, China
zhiping hu@163.com

Abstract. Graph/image has become an important computing source, object and
representing result, and it is also pursued as a representing form for the solu-
tion. The processing work of graph/image is mainly geometric computing. A
geometrized computing mechanism named “Shape Computing” is proposed. It
considers the representation of shape and the generation of graph more from
the perspective of geometry itself, which is more conducive to the processing of
geometric relations. Hence the algorithm framework can be built from a more ma-
croscopic view, and the computing process is more structured, intuitive and sim-
plified. The general ideas and main strategies of this mechanism are expounded,
the framework and implementing strategies are then constructed, application ex-
amples along with comparative analysis of computing performance are also given.
Compared with current “numeric computing”, Shape Computing is better de-
signed for the fusion of multi-dimensional spaces of “three-dimensional concep-
tual thinking, two-dimensional graphic construction, one-dimensional numerical
calculation”. Theoretical analysis and application examples demonstrate that the
proposed Shape Computing contributes to improve the readability, to reduce com-
putational complexity, and to deal with computing robustness.
Key Words: Shape Computing, geometry, geometric computing, algebraic com-
puting, graphic construction
MSC 2020: 68U05

ISSN 1433-8157/$ 2.50 © 2022 Heldermann Verlag

https://isgg.net/jgg/

102 Y. He et al.: Shape computing: A new geometric computing mechanism

1 Introduction

The basic task in graphics is the transformation from shape to graph and from graph to
shape, wherein, the essence is geometric representation and geometric computation, and the
theoretical foundation is geometry. As James R. Miller said [6], “Computer graphics and mod-
eling rely on mathematical operations on points and vectors. I would advocate using vector
geometric analysis to simplify required derivations.” However, the current computing archi-
tecture relies on algebra dominated computing mechanism (numerical computing for short
in this paper), based on floating point numbers under John von Neumann binary system.
Therefore, graphics computing has to be transformed into complicated algebraic representa-
tions and calculations. With the increasing computing scale and complexity of the problems
in graphics, the limitations of this computational mechanism have become more and more
obvious.

Robustness. Two main reasons cause un-robustness in geometric computation. One is
digital calculating errors, relating to the accumulation of digital and calculation errors, es-
pecially the floating-point errors. The other is the geometry itself resulting from geometric
singularity as bounded models lead to various special geometric relationship (co-point, co-
line, co-plane). The judgment of geometric singularity is usually uncertain. Consequently,
the impact from geometric singularity is fundamental for the robustness of geometric comput-
ing. Currently, there is no effective method to judge geometric singularity. Christer Ericson
[11] once expressed his concern about those researches that only focus on speed and ignore
robustness, and he believes that large-scale random tests have difficulties to detect conditions
that affect the robustness of an algorithm.

Some defects in numerical computing have to be left aside. In numerical computing, the
solving process is often involved with a large number of complex algebraic formulas, which are
difficult for a human to understand and communicate. The nonintuitive way degrades people’s
spatial thinking, and geometric computing often becomes unreadable or even uncontrollable.
Stephen Hawking famously wrote [3], “some told me that each equation I included in the
book would halve the sales. I therefore resolved not to have any equation at all.” This shows
the lethality of the unreadability of algebra to human communications.

With the expansion of applications in CAD system, intelligent manufacturing, and ma-
chine vision, the demand and the requirements for complex computing and precise comput-
ing are increasing, especially in industrial software, which poses new challenges to geometric
computing [10]. As a result, problems of un-robustness, uncontrollability, difficulty in com-
munication etc., caused by the limitations of numerical computing, need to be concerned and
to be resolved.

This paper thus proposes a new computing mechanism named “Shape Computing Mech-
anism” (Shape Computing for short) to geometrize graphics computing. It seeks a global
and intuitive solution from a geometric perspective, and assists to numeric computing mech-
anism, which will largely alleviate the unreadability and un-robustness caused by geometric
singularity, and reduce computational complexity.

2 Frameworks of Shape Computing

2.1 The Concept
There are mainly two kinds of reasoning in mathematics: symbolic reasoning and intuitive
reasoning. The former originates from numeric system while the latter does from the shape

Y. He et al.: Shape computing: A new geometric computing mechanism 103

system. After “number”, “shape” has been introduced as the second main concept of math-
ematics. The imageability, intuition, accuracy and conciseness of graphics/images give full
play to people’s advantage in spatial thinking, and through them, people understand the
unknown and explore the truth. After computers became the main computing tool, the com-
puting methods and the representation of solutions have undergone revolutionary changes.
However, all changes are inseparable from their origin, and the two main methods remain
unchanged in representing computing objects and results: number and shape.

Computers have advantages on numerical operations over humans, whereas humans are
better at graphic thinking. Euclid systematically employed graphics in his book The Ele-
ments, with a small number of symbols and a large amount of logic. His great work combines
two innovations: The use of graphics and the logical structure for proof. Monge’s Descriptive
Geometry represented and computing geometric problems in a non-algebraic way.

In geometry, a problem is considered from the 3D space and it is in line with people’s
spatial cognitive thinking. Algebra involves the operation of time where a problem is solved
in one dimensional order and gives full play to computer’s calculating power. The biggest
problem of a computing mechanism relying solely on numeric computing is that people’s
spatial thinking is detached by such one-dimensional numerical computing.

The proposed Shape Computing aims to constructing a buffer between graphic thinking
and numeric computing (Figure 1). In the level of computing design, Shape Computing de-
signs an algorithm at the spatial level, based on the consideration of shape as a whole, where
human is in a more dominant position and leading role. In the level of computing implemen-
tation, basic geometric operations are taken as computing cell, where the numeric calculations
are decomposed and encapsulated. Only in the end, the dull numerical calculations are left
to computer process. Thus, people are oriented to 3D geometric space, while computing is
oriented to 1D algebraic operations, which improves transforming mechanism between shape
and number to a higher level for comprehensibility. Consequently, Shape Computing de-
fines thinking, geometry, algebra and computation from four different levels: Thinking is on
the design level, geometry is on the expression level, algebra is on the computing level, and
calculation is on the implementation level [4].

2.2 The Framework
The overall framework of Shape Computing is shown in Figure 2. The computing method
in Shape Computing is similar to human’s graphic thinking and the solving process in de-
scriptive geometry. For a spatial geometric problem, the first step is to seek the best view
for observation in space. Then the spatial problem is projected onto a plane, and a complex
geometric problem is further decomposed into several basic geometric operations by means
of graphic construction. Finally, the solution of the 3D problem is obtained by inverse con-
struction. Thus, in the whole computing process, geometry is taken as the computing unit,
and algebraic calculation is desalinated. In the level of shape-number interaction, a switching
variable is defined to assist the expression of geometric relations. The computing method
in Shape Computing is similar to human’s graphic thinking and the solving process in de-
scriptive geometry. For a spatial geometric problem, the first step is to seek the best view
for observation in space. Then the spatial problem is projected onto a plane, and a complex
geometric problem is further decomposed into several basic geometric operations by means
of graphic construction. Finally, the solution of the 3D problem is obtained by inverse con-
struction. Thus, in the whole computing process, geometry is taken as the computing unit,

104 Y. He et al.: Shape computing: A new geometric computing mechanism

Figure 1: The orientation of Shape Computing

and algebraic calculation is desalinated. In the level of shape-number interaction, a switching
variable is defined to assist the expression of geometric relations.

The following new computing elements and strategies are introduced to construct the
unified and robust geometric computing mechanism.
1 Geometric Number (GN). GN adopts the theory of vector geometry to define geo-

metric directions and relations. It simplifies the computing processes and the selection
of solutions, and assists the whole computing process. GN originated from the theory
of yin and yang in China and the theory of 0/1 in computers.

2 Geometric Base (GB). GB is the basic computing unit in Shape Computing. The
consequence of GB represents not only the process of geometric construction, but also
the solution. GB absorbs the idea of ruler-gauge drawing in descriptive geometry, the
definition of the base of a vector in linear algebra and concept of algorithms in computer
science.

3 Geometrized Transform (GT). Vectors or normal directions of planes are used to
construct the elements of transforming matrix. And then the geometric transformation,
the definition and solution functions for basic geometries are both unified. As a result,
all transformations are uniformly described, such as translation, rotation, staggered
tangent, symmetry and proportion.

4 Solving Strategy of Planar Problems. The geometric problems are decomposed level
by level until to the most basic geometric relations. The data structure of constructing
(solving) tree is therefore established, and through traversing the tree, the geometric
solution is represented by a sequence of GB (which is also a new GB).

5 Solving Strategy of Spatial Problems. A computing coordinate system is established
by taking the main geometric elements as the reference. A spatial problem is then re-
duced to a planar one through the proposed algorithm of projecting to an arbitrary
plane. Finally, the solution of the spatial problem is obtained by reversing the con-

Y. He et al.: Shape computing: A new geometric computing mechanism 105

Figure 2: The overall frame and solution mechanism of Shape Computing

struction of the planar solution.
6 Zero-error Domain Setting (ZD). Given the floating-point number system in com-

puters, the zero-error domain is set to meet precision requirement in different engineer-
ing fields, beside setting the floating-point type in double precision. Within the range
of zero domain, two points, two lines and two planes are supposed to coincide.

By employing the above strategies, a whole set of theories and methods are further con-
structed for the solution of un-robustness caused by geometric singularity. In particular,
the geometric singular problems are considered at the geometric level and solved by simple
operations of GN in intersection points.

3 Key Points of Shape Computing

Computationalists believe that the essence of life does not lie in specific matter, but in the
form of organization of elements; so as long as elements can be constructed in the appropriate
form, this new system can manifest life [8]. Similarly, the key to geometric computing is
the computation of geometric relations, including the complete representation, calculation
and reconstruction. This section will give the key points for the computation of geometric
relations, including GN-aided representation, GB-based algorithm design, geometrized and
uniformed transformation, and computation through dimension reduction.

3.1 GN-aided Representation of Geometric Relations
Developing a geometric language to represent and compute graphic problems is the goal that
scientists such as Leibniz have been pursuing. Leibniz proposed the idea of “constructing a
geometric number” as a geometric calculation unit [1]. In shape computing, GN assists the
definition of geometries and relations. It is a vital bond which unites the entire computing

106 Y. He et al.: Shape computing: A new geometric computing mechanism

Figure 3: The definition of GNIP (t1 and t2 are
the positional parameters of the intersection
point on L1 and L2)

Figure 4: The portion of vector P1P2 between
negative GNIP (point A) and positive
GNIP (point B) is inside the shadowed
graph.

process of geometric definition, representation, measurement and operation with an aid to
simplify computing process and the choice of solutions.

The main services of GN are to distinguish geometric relations with switching properties,
including: (1) direction of a geometric primitive such as a straight line, circle/arc, surface,
etc.; (2) entry/exit situation of an intersection point; (3) outer/inner (left/right) situation
of a boundary; (4) direction of a geometric connection following pulley rule; (5) direction
of a unit normal vector of a line, plane, etc.; (6) positive/negative situations of geometric
measurement of length, area, volume, etc.

The mathematic foundation of GN in Shape Computing is vector geometry. The definition
and function of GN will be given with the example of GN for intersecting points (GNIP for
short), which is the mostly used GN in geometric computing.

3.1.1 The Definition of GNIP

Suppose that two vectors L1 and L2 intersect. Rotate L1 around the intersecting point and
make it coincide with L2. If the direction of rotation is clockwise (Figure 3), then the GNIP
relative to vector L1 is −1 (denoted as I1 = −1), and the GNIP relative to the vector L2 is
+1 (denoted as I2 = +1).

As mentioned above, geometric computing is mainly the computation of geometric rela-
tions, and the key is to distinguish inner and outer between geometries. A simple application
of GNIP is given to illustrate the basic theory (Figure 4). To determine the portion of P1P2
inside the boundary 12341, two intersecting points have to be solved, wherein the focus is
“the relative properties of the position” such as the entry-point and the exit-point. According
to the definition of GNIP, for P1P2, IA = −1 (the GNIP of point A), and IB = +1 (the
GNIP for point B). Thus, it can be determined that P1P2 enters the boundary at point A,
and exits the boundary at point B. It is often not the main focus in computation that point
A is on boundary 41 and B is on boundary 23.

The method of using GN to represent the properties of “in and out” for intersecting
points has widely applications in hatching drawing, polygon clipping, and Boolean operations.
Figures 5 and 6 are more typical and complex examples of applying GN to assist to deal with
singular intersections. Figure 12 further shows how GNIP works for the construction of
geometric relationship in Boolean operations.

Y. He et al.: Shape computing: A new geometric computing mechanism 107

Figure 5: Processing rules of overlapping points Figure 6: Processing rules of overlapping edges

Figure 7: The overall solution to the geometric singular in Shape Computing

3.1.2 Handling Overlapping Intersection Points and Edges

Two rules are given to handle geometric singularity with simple operations of the GNIP.
Furthermore, this solution is built on a theoretical level.

The rule for overlapping intersection points (Figure 5). Accumulate the values of
GN of overlapped intersecting points. If the algebraic sum is zero, then delete these points
(3, 4 in Figure 5); otherwise, combine them into one point (1, 2 in Figure 5), and the GN of
the combined point is defined by the sign of the algebraic sum.

The rule for intersection points in the same vector (Figure 6). When two consec-
utive intersection points are on the same vector and their values of GN are the same (7 and
8 in Figure 6), if the values of GN are both “±1”, then delete the second intersection point
(7 in Figure 6); if the values of GN are both “−1”, then delete the first intersection point (8
in Figure 6).

Thus, through the simple addition operation of GN (the value is +1 or −1), geometric
singularity caused by overlapped points and edges are dealt with.

3.1.3 Scheme for Singular Problems in Geometric Computing

On the basis of the above analysis, the scheme for the geometric singular problem is given
(Figure 7), generally including the following four procedures.

• Assign the value of GN for the intersection point.
• Zero Domain. In the geometric computing system, the unified Zero-domain (ε) is es-

tablished and co-point precision is adjusted to adapt to the accuracy requirements in
different application fields. For example, in the field of ship building, the allowed error

108 Y. He et al.: Shape computing: A new geometric computing mechanism

Algorithm 1: Solving and representing a planar circle through three points with a sequence of GB;
the sequence also constructs a new GB defined by cppp()=lpp(); lppn(); pll(); dpp().

Process The sequence of GB
1) Construct the perpendicular bisector of P1P2, and get L1;
(The situation of coinciding points P1 and P2 is detected.)

GB: lppn()

2) Construct the perpendicular bisector of P1P3, and get L2;
(The situation of coinciding points P1 and P3 is detected.)

GB: lppn()

3) Find the intersecting points of L1 and L2 and get the center point C;
(The situation of three points in the same line is detected.)

GB: pll()

4) Calculate the radius R;
(The distance from the center to one of the three points is R.)

GB: dpp()

yc = [(x2
2 − x2

1) + (y2
2 − y2

1)](x3 − x2) − [(x2
3 − x2

2) + (y2
3 − y2

2)](x2 − x1)
2[(y2 − y1)(x3 − x2) − (y3 − y2)(x2 − x1)]

xc = (x2
2 − x2

1) + (y2
2 − y2

1) − 2yc(y2 − y1)
2(x2 − x1)

a) algebraic method b) geometric method

Figure 8: Two methods to solve and represent a circle through three points

is usually in the millimeter range, while in the field of integrated circuit, the allowed
error is usually in micrometer range.

• Detection of singularity. If two points P1 and P2 meet the condition “|P1P2| < ε”, then
they are co-points. These two points are in singular situation.

• Treatment of singularity: The singular situations of co-points, co-lines, co-planes etc.,
are culled based on the rules of handling overlapped intersection points and edges.

3.2 GB-based Computing Algorithm

In descriptive geometry, a few basic drafting operations with ruler and gauge construct com-
plex engineering drawings. In advanced algebra, any vector in a linear space can be expressed
linearly by basis vectors. In computers, a complex algorithm can be constructed by a se-
quence of simple and independent algorithms. Based on these ideas, in Shape Computing,
GB is introduced as the computational base. Then the solution of a geometric problem can
be represented by a sequence of GB.

Taking as an example the computation of a circle through three points P1, P2 and P3,
the solving strategy and the representation of the computing result based on GB are given in
Algorithm 1 and are compared with algebraic method in Figure 8.

The comparison shows that in this example, the algebraic functions are difficult to un-
derstand. Shape Computing decomposes a geometric problem to the most basic geometric
relations level by level, and the construction (solving) tree is therefore established. Finally,
the solution is represented with a sequence of GB by traversing the tree. Consequently, this
proposed method is intuitive and clear.

Y. He et al.: Shape computing: A new geometric computing mechanism 109


P1(x⋆ = 0): a1x + b1y + c1z + d1 = 0
P2(y⋆ = 0): a2x + b2y + c2z + d2 = 0
P3(z⋆ = 0): a3x + b3y + c3z + d3 = 0

(X⋆, Y ⋆, Z⋆, H⋆) = (x, y, z, 1) ·


a1 a2 a3 0
b1 b2 b3 0
c1 c2 c3 0
d1 d2 d3 1

 = (x, y, z, 1)Txyz x⋆y⋆z⋆

Figure 9: Constructing new coordinate system from normal vectors of three intersecting planes

3.3 Geometrized Transformation
From the aspect of geometry, a new planar coordinate system can be constructed with unit
normal vectors of any two intersecting non-colinear lines (spatial coordinates with three such
planes), and the transformation matrix between the new and old coordinates are defined by
the normal coefficients of intersecting normal vectors in the homogeneous form (Figure 9).
This is the geometrized description of the transformation, which is more intuitive and unified
than the algebraic description with transformation matrix obtained by translation, rotation,
etc. [9].

In Figure 9, in the coordinate system xyz, there are three spatial intersecting planes P1,
P2 and P3 which have common intersection point. Their normal vectors form a new spatial
coordinate system x⋆y⋆z⋆. Then the transformation matrix for any spatial point, from xyz to
x⋆y⋆z⋆ (and the inverse transformation matrix) can be represented by the equation coefficients
of the three intersecting planes (the normal coefficients of the planes and the homogeneous
items).

3.4 Computation Through Dimension Reduction
Dimension Reduction is an effective method of reducing geometric complexity. Projection in
descriptive geometry is a kind of dimension reduction which transforms a 3D problem to a
2D one and hence to divide and conquer, and further simplify and split a problem. The basic
computation strategy based on dimension reduction is given below (Figure 10) [9].

First, a local computational coordinates system is constructed by taking the main geo-
metric element as the main reference. Then the spatial problem is reduced to a planar one
based on the method of projecting to an arbitrary plane. Finally, the spatial solution is ob-
tained by inverted construction with planar solutions. This method is beneficial to reduce the
computational complexity, to simplify the analysis of geometric singularity and to improve
the robustness of computing.

4 Cases Study Based on Shape Computing

More than 300 algorithms derived from Shape Computing are provided in reference [4], in-
cluding basic geometric algorithms, geometric transformations, 2D and 3D computing and

110 Y. He et al.: Shape computing: A new geometric computing mechanism

Figure 10: Computation through dimension reduction

Figure 11: Boolean operations of A and B

modeling. Several typical examples are given to illustrate the implementation and perfor-
mance of Shape Computing.

4.1 Boolean Operations Based on GN

Boolean operation is the process to reorganize topologically two boundaries and GN simplifies
this topological reorganization with the following procedures (Figure 11). (1) Starting from
a certain intersection point, do set operations (such as union, intersection and set difference).
(2) Repeat judging until arriving at the first intersection point and a new boundary (loop)
is obtained. If GNIP is negative, then turn to another loop; if GNIP is positive, then the
vertex is searched in the original direction. (3) Once all intersection points are traversed, the
Boolean operation is completed and the algorithm ends. Figure 12 shows the process of union
operation of two polygons A and B in Figure 11, and the result is shown in Figure 11.b.

Two boundary loops of A ∪ B are obtained starting from intersection 10 and 13, respectively
(Figure 11.b). The circled number represents an intersecting point; squared number repre-
sents a vertex.

Figure 12: Union operation for two polygons A and B in Figure 11

Y. He et al.: Shape computing: A new geometric computing mechanism 111

a) The 3D problem b) Transforming to a CSS c) Dimension reduction d) 2D solution

Figure 13: Implementation of Shape Computing to the intersection of line with sphere in 3D space

4.2 Computation Scheme for Spatial Problems
In Shape Computing, for spatial problems, dimension reduction is used as much as possible,
usually based on the theory of projection and 2D/3D corresponding method in descriptive
geometry. the procedure of the algorithm of line interacting with sphere in 3D space is shown
in Figure 13.
Step1 (preprocessing). Construct a computational coordinate system (CCS for short) tak-

ing the simplified representation of primary geometry (in this example, the primary
geometry is the sphere) as the main concern and then make transformation (Fig-
ure 13.a, b);

Step2 (3D solution). Under CCS, find the intersections on two projection planes (Fig-
ure 13.c, d);

Step3 (post-processing). Inversely transform the intersection points to the original 3D
space.

In the example, the intersecting points are carried out finally by using twice planar GB of
“intersection of a line segment with a circle.”

5 Comparison and Discussion

5.1 The Computational Efficiency
Line clipping algorithms developed from Shape Computing are taken as examples to show
the performance of dimension reduction in Shape Computing.

1) Line clipping against a 2D and 3D rectangular window A line clipping algorithm
is developed based on dimension reduction in Shape Computing (Figure 14) [4]. The perfor-
mance was compared with three well known clipping algorithms, i.e., Cohen Sutherland [7]
(CS), Cyrus Beck [2] (CB) and Liang Barsky (LB) [5]. Three types of test samples are designs
for the comparing tests. (a) 20 2D lines segments that each have two intersections with the
window (Figure 15.a); (b) 120 2D lines segments containing inside, outside, intersecting the
window and singular positions (Figure 15.b); (c) 123 3D lines segments.

In the performance test, four clipping algorithms were repeated 1 million times. The
running time is shown in Table 1. CB is not listed as it is designed for line clipping against

112 Y. He et al.: Shape computing: A new geometric computing mechanism

Figure 14: Theory of Shape
Computing clipping

Sample (a) Sample (b) Sample (c)

Figure 15: Test samples for comparison of four algorithms

Table 1: Computing efficiency of three clipping algorithms (clipping one million times for each sam-
ple)

Clipping algorithm Sample (a) Sample (b) Sample (c)
Cohen Sutherland (CS) 679 3180 7121
Liang Barsky (LB) 603 3231 6758
Shape Computing 544 2596 6236

polygons and hence its speed for a rectangular window is relative slow (its 2D clipping time
is 3400 and 19911 for test sample (a) and (b) respectively).

The test shows that our clipping algorithm is slight faster than others, although the
computing speed of the three algorithms are in the same order of magnitude. Furthermore,
it should be noted that the comparison is between the routine algorithm and specifically
designed algorithms. The proposed algorithm is derived from the algorithm framework of
Shape Computing. Algorithms of CS and LB are both designed just for the problem of line
clipping.

2) Line clipping against a pyramid (frustum clipping) Shape Computing was com-
pared with LB [5] and Line-Surface-Direct Intersection method (DI) using 78 line segments
including situations where the vertexes, edges and boundary faces of the clipped frustum are
in singular situations (Figure 16). The test result shows that the computing speeds of three
algorithms are also on the same order of magnitude, and the reference ratio is [4]:

LB : SC : DI = 4243 : 4212 : 4228

Consequently, the performance of Shape Computing for frustum clipping can also compete
with classical line clipping algorithms.

5.2 Discussion on Shape Computing
Combined with the above examples, we discuss Shape Computing from the aspects of geo-
metric algorithm design, modeling, and execution.

(1) A more macroscopic view for geometric algorithm design Shape Computing
focuses on getting a qualitative result by separating boring and repeated algebraic calculation
to the computer. Thus, the computing-based solution process is more structured, intuitive and

Y. He et al.: Shape computing: A new geometric computing mechanism 113

a) construction of CCS b) theory of twice planar clipping c) test sample and results

Figure 16: Theory and test results of CS for Frustum Clipping

simplified. Therefore, algorithm design has become a process of “thinking from a qualitative
and intuitive view so as to carry out problem solving in a quantitative and orderly way”,
reaching the realm of “shape thinking and number calculation.”

Shape Computing solves the problem of un-robustness caused by geometric singularity
from the perspective of geometry at the theoretical level. It provides a more appropriate
method to judge and solve geometric singularity to overcome the uncertainty.

(2) A higher level of geometric model and relations representation Shape Com-
puting can better represent geometric relations. The basic geometry can be expressed by an-
alytical equations, but the geometric relations are difficult to be fully expressed by the combi-
nation of algebraic equations. For example, the relationship between two planar straight-line
segments includes separation, point-to-point collision, point line collision, complete coinci-
dence, partial coincidence, etc. In 3D space, geometric relations are more complex. Shape
Computing represent geometric relations in higher level of model than numeric computing.

(3) A more interpretability and robustness way for geometric algorithms execu-
tion In Shape Computing, geometrized transformation unifies the expression of transfor-
mation matrix. Geometric Base constructs the base of geometric solution, and the overall
robustness of geometric computation is thus improved.

Therefore, algorithms developed from Shape Computing is much more readable. Algebra-
based algorithms always involve a lot of complex algebraic formulas. With the increasing
computing scale, speed and complexity, and demand of robustness and accuracy, the algo-
rithms are difficult for people to understand and communicate. Furthermore, the correctness
and robustness of algorithms can only be verified by massive tests.

6 Conclusions

Shape Computing solves the following scientific and practical problems. In the conceptual
level, it pursues a breakthrough in the combination of shape and number. In the mechanism
level, it presents mechanisms of geometrized representation, operation, computing method,
solution expression, dimension reduction and geometric transformation. In the target level,
it solves some key problems such as dimension gaps and computational robustness, and par-
ticularly, a set of theory and solutions is proposed to solve geometric singular problems.

114 Y. He et al.: Shape computing: A new geometric computing mechanism

Shape Computing uses the view of geometers to think about problems macroscopically
and carefully and solves problems in the view of modern mathematicians strictly and orderly.
It considers shape as one object, so that the geometric problems could be solved in a multi-
dimensional space from the geometric perspective. Therefore, the algorithm framework is
designed at a macro and higher level. In the solving process, the complex numerical calcula-
tions are decomposed to basic ones and are put into algebraic implementation in the final step.
In whole, the computing process is structured, intuitive and simplified. Shape Computing re-
alizes the multi-dimensional space fusion of “3D conceptual thinking, 2D graphic construction,
and 1D numerical calculation”, pursuing the transition between shape and number smoothly,
and the readability of the algorithm is improved.

References

[1] M. Atiyah: Mathematics in the 20th Century. Bull. Lond. Math. Soc. 34(1), 1–15,
2002. doi: 10.1112/s0024609301008566.

[2] M. Cyrus and J. Beck: Generalized two- and three-dimensional clipping. Comput.
Graph. 3(1), 23–28, 1978. doi: 10.1016/0097-8493(78)90021-3.

[3] S. W. Hawking: A brief history of time. Bantam Books Inc., USA, 1 ed., 1988.

[4] Y. J. He: Geometric Computing. Higher Education Press, Beijing, China, 2013.

[5] Y. D. Liang and B. A. Barsky: A New Concept and Method for Line Clipping. ACM
Trans. Graph. 3(1), 1–22, 1984. doi: 10.1145/357332.357333.

[6] J. R. Miller: Vector geometry for computer graphics. IEEE Computer Graph. Appl.
19(3), 66–73, 1999. doi: 10.1109/38.761552.

[7] W. M. Newman and R. F. Sproull: Principles of Interactive Computer Graphics.
McGraw-Hill Inc., New York, NY, USA, 2 ed., 1979.

[8] G. Piccinini: Computationalism in the Philosophy of Mind. Philosophy Compass 4(3),
515–532, 2009. doi: 10.1111/j.1747-9991.2009.00215.x.

[9] H. Yu, Y. He, and W. Zhang: A New Approach to Analyzing Interactions of Two
Objects in Space Based on a Specially-Tailored Local Coordinate System. IEEE Access
9, 60258–60264, 2021. doi: 10.1109/access.2021.3074509.

[10] Y. Zeng and I. Horváth: Fundamentals of next generation CAD/E systems. Comput.-
Aided Des. 44(10), 875–878, 2012. doi: 10.1016/j.cad.2012.05.005.

Internet Sources

[11] C. Ericson: Triangle-triangle tests, plus the art of benchmarking, 2007. http://real
timecollisiondetection.net/blog/?p=29.

Received April 4, 2022; final form June 2, 2022.

https://dx.doi.org/10.1112/s0024609301008566
https://dx.doi.org/10.1016/0097-8493(78)90021-3
https://dx.doi.org/10.1145/357332.357333
https://dx.doi.org/10.1109/38.761552
https://dx.doi.org/10.1111/j.1747-9991.2009.00215.x
https://dx.doi.org/10.1109/access.2021.3074509
https://dx.doi.org/10.1016/j.cad.2012.05.005
http://realtimecollisiondetection.net/blog/?p=29
http://realtimecollisiondetection.net/blog/?p=29

	Introduction
	Frameworks of Shape Computing
	The Concept
	The Framework

	Key Points of Shape Computing
	GN-aided Representation of Geometric Relations
	The Definition of GNIP
	Handling Overlapping Intersection Points and Edges
	Scheme for Singular Problems in Geometric Computing

	GB-based Computing Algorithm
	Geometrized Transformation
	Computation Through Dimension Reduction

	Cases Study Based on Shape Computing
	Boolean Operations Based on GN
	Computation Scheme for Spatial Problems

	Comparison and Discussion
	The Computational Efficiency
	Discussion on Shape Computing

	Conclusions

