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Abstract. Via simulation, we revisit the Poncelet family of “harmonic polygons”,
much studied in the 2nd half of the XIX century by famous geometers such as Sim-
mons, Tarry, Neuberg, Casey, and others. We review its (inversive and projective)
construction, identify some new conservations, and contrast it, via its invariants,
to several other recently studied Poncelet families.
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1. Introduction

Following results by Brocard and Lemoine in the first half of the XIX century, harmonic
polygons were discovered and intensely studied decades later by such geometers as Casey,
McCay, Neuberg, Simmons, Tarry, Vigarié, and others, see [23, Chapter VIII] for the historical
background.

Referring to Figure 1 (left), a polygon P is harmonic if inscribed in a circle C and con-
taining an interior point K (known as the symmedian point) whose distance to each sideline
is a fixed proportion of the sidelength.

P circumscribes a special conic known as the Brocard inellipse, so named since its foci
Ω1,Ω2 are the Brocard points of P . These are points of concurrence of rotations of each side
by a fixed angle known as the Brocard angle ω, see Figure 1 (right).

Since P is interscribed between two real conics, Poncelet’s closure theorem applies and
a 1d family of such polygons will exist [9, 25]. Amazingly, over the Poncelet family, Ω1,Ω2
(and many other associated objects) remain stationary and ω remains constant. A review of
harmonic polygons appears in Appendix A.
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Figure 1: Left: The Poncelet harmonic family (blue) is inscribed in a circle centered at O and
contains a point K (symmedian) whose distance to the sides is proportional to the sidelengths.
The caustic (green) is known as the Brocard inellipse whose foci are the Brocard points Ω1 and
Ω2. Right: said Brocard points are where sides PiPi+1 rotated an angle ω about Pi (resp. −ω
about Pi+1) concur. ω is known as the Brocard angle. Also shown is the Brocard circle (dashed
brown) with diameter KO.
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Figure 2: The Poncelet homothetic family (blue), interscribed between two homothetic ellipses (black
and brown) is the polar image of a harmonic family (left, magenta) with respect to its symme-
dian point K which coincides with the (left) internal focus f ′

1 of the homothetic family. The
polar image of the latter with respect to its right internal focus f ′

2 is a mirrored, out-of-phase
image of the left one. If N is odd, the harmonic mean of the areas of the two shown lateral
harmonic polygons (magenta) is experimentally invariant (Conjecture 1).
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Main Results
Using a simulation-based approach (mostly with Mathematica [28]), we detected the following
phenomena manifested by harmonic polygons which, to the best of our knowledge, had not
been yet described.

1.1. New Conservations
The following conservations are proved in Section 2:

• The sum of inverse squared sidelengths.
• The sum of inverse squared radii of Apollonius’ circles which are generalizations of

same-named circles in triangles [27];
• The sum of powers of internal angle cotangents, as well as all elementary symmetrical

functions thereof (except for one).
In Table 2 the above conservations are compared side-by-side with others manifested by

other Poncelet families studied in [1, 5, 8, 10, 20, 21].

1.2. Relationship to the Poncelet Homothetic Family
In Section 4 we show that a certain polar image of the harmonic family is the so-called
“homothetic family”, i.e., a Poncelet family of N -gons interscribed between two homothetic
ellipses.

Therefore, and as shown in Figure 2, two “lateral” harmonic families can be obtained
from the homothetic one: these are polar images of the latter with respect to the left (resp.
right) focus of their inner ellipse. We show that the harmonic mean of their areas is invariant
for N = 3, 5 and conjecture this will hold for all N .

1.3. Isocurves of Brocard Angle
Based on experimental evidence, in Section 5 we conjecture that a result by Johnson [14] for
N = 3 remains valid for all N . Namely, that the isocurves of inversion centers for constant
Brocard angle are circles in a special pencil known as the Schoute pencil, containing the
circumcircle and Brocard circle of the family (defined in Appendix B).

Related Work
Original results concerning harmonic polygons can be found in [7, 23, 26]. In [22], the har-
monic family is defined as a generic projection of a regular polygon, but in this case metric
properties are lost. In [2, Section 4.6, p. 129], the harmonic porism is studied in the Klein
model of hyperbolic plane (where K becomes the center of the ideal circle). A recent study
of harmonic quadrilaterals is [17].

The more elementary Brocard porism of triangles is studied in [6, 15, 24] and [29]. In [12]
loci of triangle centers over the Brocard porism is studied while [18] a converging sequence of
such porisms is analyzed.

Quantities conserved by Poncelet N -gons have appeared in recent studies, including: (i)
the confocal pair [13, 19, 20], (ii) the homothetic pair [10], (iii) the bicentric family [21], and
(iv) other special families [3, 11].
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In [4] a certain polynomial is proposed which suggests that a collection of expressions are
invariant over the harmonic family (this is related to our results in Section 2).

Article Organization
In the next section we review the basics of the harmonic polygon family. Two new conserved
quantities are proved in Section 2; conservations based on the sum of powers of cotangents are
proved in Section 3; the relationship between the harmonic family and Poncelet homothetics
is derived in Section 4. A conjecture regarding isocurves of constant Brocard angle appears
in Section 5. Videos of some experiments appear in Section 6.

In Appendix A we review the basic construction and geometry of harmonic polygons. To
facilitate further exploration, Appendix B provides explicit formulas for vertices and objects
associated with the harmonic family.

2. Two new Conservations

In this section we will prove that some geometrical quantities are invariant for elements of
the Ponceletian family of harmonic polygons. In the discussion that follows, we will identify
the elements of R2 with the complex numbers. We will use the construction for a family of
harmonic polygons P described in [7, Sec. VI, Prop. 2, p. 207] and shown in Figure 3 (left)1.
Let α = π/N .

• Let C be the unit circle centered at the origin, d ∈ R such that |d| < 1 and {zk =
ei(2αk+t)}, k = 1, . . . , N , t ∈ R. For each t ∈ R, the points zk are the vertices of a
regular N-gon R inscribed in C. The one-dimensional family of such regular polygons
will be denoted by R.

• Consider the line through d and zk and let wk be the other intersection of this line with
C. For each d, the set of such points, in the natural order, are the vertices of a harmonic
polygon P .

2.1. Inverse Squared Sidelengths
Let si denote the i-th sidelength of a harmonic polygon, i = 1, . . . , N .

Proposition 1. Over P the sum of inverse squared sidelenghts is invariant and given by:

N∑
k=1

1
s2

k

= N
d2 cos2 α + (d4 + 1)/4

(1 − d2)2 sin2 α

Proof. By the geometric condition that defines a vertex wk of P in terms of a vertex zk of R,
we have:

wk = dz̄k − 1
z̄k − d

Using this expression for wk and the corresponding one for wk−1, a simple computation yields:

wk − wk−1 = (z̄k − z̄k−1)(1 − d2)
(z̄k − d)(z̄k−1 − d)

1This is identical to the one on Figure 7, where d = S′.
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Figure 3: Left: The construction for a harmonic polygon used in the proofs in Section 2. Note that
this is equivalent to the construction in Figure 7 where the point d above corresponds to S′.
Right: Angle chasing used in the proof of Lemma 1.

From the fact that |z̄k − z̄k−1| = 2 sinα, since it is the length of a side of R, we may conclude
that:

s−2
k = |wk − wk−1|−2 = |zk − d|2 |zk−1 − d|2

4(1 − d2)2 sin2 α

By the law of cosines, it follows that:

|zk − d|2 = 1 + d2 − 2d cos(νk),
|zk−1 − d|2 = 1 + d2 − 2d cos(νk−1)

where νk = 2αk + t and νk−1 = 2α(k − 1) + t. So:

|zk − d|2 |zk−1 − d|2 = (1 + d2)2 − 2d(1 + d2)(cos(νk) + cos(νk−1)) + 4d2 cos(νk) cos(νk−1)

When we sum over k, it is clear that the sum of cos(νk) and cos(νk−1) are both zero, so
that the only non-trivial sum to evaluate is:

N∑
k=1

cos(νk) cos(νk−1)

Since:
cos(νk) cos(νk−1) = 1

2 (cos(νk + νk−1) + cos(νk − νk−1))

We may write the above sum as:

1
2

N∑
k=1

cos (2α(2k − 1) + 2t) + N

2 cos (2α)

It is well known that the above sum is equal to zero, see for example [16]. A short computation
then yields the desired expression for ∑N

k=1(1/s2
k).
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Figure 4: A harmonic polygon P (blue) and its Apollonius’ circles (orange), each of which passes
through one vertex of P and the two limiting points ℓ1, ℓ2 of the Schoute pencil. Also shown is
the Lemoine axis (dashed green) of the pencil.

2.2. Apollonius’ Radii
Definition 1 (Apollonius’ Circles). Given a triangle, one of the three circles passing through
a vertex and both isodynamic points S and S ′ [27, Isodynamic Points].

Referring to Figure 4, for each vertex wk in a harmonic polygon, consider the “generalized”
Apollonius circle Ck passing through the points wk, d and d−1 (these are the limiting points
of the generalized Schoute pencil [14]). Let rk be the radius of Ck. We will prove that:

Proposition 2. Over P, the sum of inverse squared Apollonius’ radii is invariant and given
by:

N∑
k=1

1
r2

k

= 2N
(d−1 − d)2

Proof. Let γk = ∠dwkd
−1, then, by the law of sines, we have

2 sin γk

d−1 − d
= 1
rk

A straightforward computation, using for instance the complex cross ratio, shows that
the points 0, wk, d

−1 and zk are concyclic, and from this we conclude that γk = 2αk + t mod



R. Alves Garcia et al.: New Properties of Harmonic Polygons 223

2π. Therefore:
N∑

k=1

1
r2

k

= 4
(d−1 − d)2

N∑
k=1

sin2 γk

Using the identity sin2 x = (1 − cos(2x)) /2 and the fact that:
N∑

k=1
cos 2γk = 0

we conclude that
N∑

k=1
sin2 γk = N

2
and therefore:

N∑
k=1

1
r2

k

= 2N
(d−1 − d)2

Which yields the claim.

3. Conserved Sums of Cotangents

The following lemma contains a useful expression for the cotangent of an internal angle of a
harmonic polygon. Henceforth, let ρ = (1 + d2)/(d2 − 1).

Lemma 1. Let P be a harmonic polygon and θk be the internal angle of H at the vertex wk,
then:

cot θk = −2d cos (2αk + t)
(d2 − 1) sin(2α) + ρ cot (2α) (1)

Proof. Referring to Figure 3 (right), the internal angle ψk of a regular N -gon at zk is fixed
and given by ψk = ψN = (N−2)π

N
; ηk is the angle ∠zk+1dzk−1, then, from elementary geometry,

we have θk + ηk + (N−2)π
N

= 2π and therefore it follows that:

cot θk = − cot
(
ηk + (N − 2)π

N

)
= 1 + cot ηk cot 2α

cot ηk − cot 2α

We will first compute cot ηk. Note that, if we denote by ⟨ , ⟩ the canonical inner product
in R2, then:

cot ηk = ⟨zk−1 − d, zk+1 − d⟩
⟨i(zk−1 − d), zk+1 − d⟩

The numerator can be computed using complex multiplication as follows, first we write:

⟨zk−1 − d, zk+1 − d⟩ = Re [(zk−1 − d)(z̄k+1 − d)]

Using the well-known trigonometric identity,

cosφ+ cosψ = 2 cos
(
φ+ ψ

2

)
cos

(
φ− ψ

2

)

A straightforward computation yields:

⟨zk−1 − d, zk+1 − d⟩ = −2d cos (2αk + t) cos (2α) + cos(4α) + d2
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Analogously, the denominator, which we will denote by ∆, is given by:

∆ = ⟨i(zk−1 − d), zk+1 − d⟩ = −2d cos (2αk + t) sin (2α) + sin (4α)

With an explicit expression for cot ηk, we can now compute cot θk. To simplify the ex-
pressions, we will compute the numerator and denominator of cot θk separately. Let’s start
with the denominator D = cot ηk − cot 2α:

D = 1
∆
(
−2d cos (2αk + t) cos(2α) + cos (4α) + d2

)
−

cot(2α)
∆ (sin (4α) − 2d cos (2αk + t) sin(2α))

= 1
∆
(
cos (4α) − cot(2α) sin (4α) + d2

)
= 1

∆
(
d2 − 1

)
Since the numerator N = 1 + cot (ηk) cot(2α) can be computed in a similar way, we limit

ourselves to write down the result:

N = 1
∆

(
−2d cos (2αk + t)

sin (2α) + cot(2α)(1 + d2)
)

Thus, we have:

cot θk = −2d cos (2αk + t)
(d2 − 1) sin (2α) + ρ cot(2α)

This concludes the proof.

Using (1), we may obtain explicit expressions for conserved quantities. As an example,
we have the following proposition.

Proposition 3. Over P, the sum of (i) cotangents and (ii) squared contangents of internal
angles are invariant and given by:

N∑
k=1

cot θk = Nρ cot(2α)

N∑
k=1

cot2 θk = N
ρ2(2 + cos(4α)) − 1

1 − cos(4α)

Proof. From the Lemma 1, it follows that

N∑
k=1

cot θk =
N∑

k=1

[
−2d cos (2αk + t)
(d2 − 1) sin (2α) + ρ cot(2α)

]
= Nρ cot(2α)

N∑
k=1

cot2 θk = 4d2

(d2 − 1)2 sin2 (2α)

N∑
k=1

cos2(2αk + t)

−
N∑

k=1

4dρ cot(2α) cos (2αk + t)
(d2 − 1) sin (2α) +Nρ2 cot2(2α)
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Using the following known identity [16]:
N∑

k=1
cos2(2αk + t) = N

2 ,

obtain:
N∑

k=1
cot2 θk = N

(1 − d2)2

[
2d2

sin2 (2α) + cot2(2α)(1 + d2)2
]

=

= N

[
2d2

(1 − d2)2 sin2(2α) + ρ2 cot2(2α)
]

A simple computation, using trigonometric identities, yields the desired expression for the
above sum and concludes the proof.

3.1. Symmetric Invariants
To discuss a set of invariant quantities involving the elementary symmetric functions of the
cotangents of the internal angles of harmonic polygons, we will use the following notation for
such functions:

Let X = (X1, X2, . . . , XN) and let ek(X) denote the elementary symmetric functions in
the variablesXj (j = 1, . . . , N) that is, e0(X) = 1, e1(X) = ∑N

j=1 Xj, e2(X) = ∑
1≤j<i≤N XiXj,

. . . , eN(X) = X1X2 . . . XN .
Our next result is a generalization of the invariance of the sum of cotangents of the internal

angles θi of harmonic polygons.
Theorem 1. Let P be a harmonic N sided polygon, λ = (cot θ1, cot θ2, . . . , cot θN), then, the
polynomials e1(λ), e2(λ), . . . , eN−1(λ) are invariant, that is, they do not depend on t.
Proof. By the Lemma 1, ek(λ) is a linear combination (with constant coefficients) of the
elementary symmetric functions of the variables

cj = cos (2αj + t),

for j = 0, . . . , k. Therefore, it suffices to prove that e1(c), e2(c), . . . , eN−1(c), where

c = (c1, c2, . . . , cN),

are invariant. Since ek(c) is a sum of products of cosines, then, the trigonometric identity
m∏

i=1
cos θi = 1

2m−1

∑
pn∈p

cos (pn)

where p is the set of 2m−1 numbers having the form θ1 ± θ2 ± . . .± θm, allows one to express
ek(c) as a linear combination of cosines. The general term of this combination has the form

Am cos (mt+ φm)

where m varies from 0 to k, and Am and φm are constants. This general term can be rewritten
as:

am cos (mt) + bm sin (mt)
Except for m = 0, such terms are periodic functions with period 2π/m.

But notice that ek(c) is a periodic function with period 2α, with N > k. Therefore, from
the well known orthogonality of trigonometric functions, it follows that am = bm = 0 for all
m ̸= 0. In other words, ek(c) must be constant.



226 R. Alves Garcia et al.: New Properties of Harmonic Polygons

k N=3 N=4 N=5 N=6 N=7 N=8
1 ✓ 0 ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓ ✓
3 0 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
5 0 ✓ ✓ ✓
6 ✓ ✓
7 0 ✓

Table 1: A ✓ (resp. 0) indicates that for a given N , ∑ cotk(θi) is invariant. Note that we get
invariance if (i) N > k and (ii) N = 4, odd k, in which case the sum is zero.

invariant Confocal Bicentric Inversive Homothetic Harmonic
L ✓o ✓[21]
A ✓o

L/A ✓o∑
si

2 ✓[10]∑
si

2/A ✓[10] ✓o∑
s−2

i ✓∑
r−2

i ✓∑ cos ✓[1, 5, 8] ✓[21] ✓† [21]∑ cot ✓[10] ✓∑ cot2 ✓† [10] ✓∑ (sin cos)/L ✓∑ (sin cos)/A ✓ ✓
A1A2 ✓∗ ✓∗

A−1
1 + A−1

2 ✓∗

polar of Bicentric Confocal – Harmonic Homothetic
Inversion Center ℓ1 f1, f2 – K f ′

1, f ′
2

Table 2: Quantities conserved by various Poncelet families and their polar-derived families. An o

after a ✓ indicates the quantity is well-known. References are provided to extant proofs. The
last two lines (Polar) indicate how to obtain the current family as the polar image of some
other family with respect to a circle centered on the indicated inversion center. For the case of
side areas (A1, A2) both foci are needed. Notes: †: N ̸=4. ∗: odd N .

3.2. Higher Cotangent Powers

As shown in Table 1, the sum of cotangents of powers k higher than 2 will also be invariant,
when N > k. This can be regarded as a corollary to Theorem 1.

Since for N = 4 opposite angles are supplementary:

Corollary 1. If N = 4, ∑ cotk(θi) = 0 for all odd k.

3.3. Comparing Conservations Across Poncelet Families

Table 2 shows Conservations proved side-by-side with those manifested by other Poncelet
families, described and/or proved in [1, 5, 8, 10, 20, 21].
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4. Harmonics and Homothetics

In this section we derive the transformations required to jump from one of regular, harmonic,
homothetic, to another. Let R, P , x0, and α be as in the previous section. We omit most
proofs since they were obtained with the aid of a Computer Algebra System (CAS).

4.1. From Harmonics to Homothetics
Referring to Figure 2:

Proposition 4. The polar image of P with respect to a unit circle centered on the symmedian
point K of P is a new Poncelet family H of polygons interscribed between two homothetic,
concentric ellipses EH (external) and Eh (internal) given by:

EH : (x− xH)2

a2
H

+ y2

b2
H

− 1 = 0, Eh : (x− xh)2

a2
h

+ y2

b2
h

− 1 = 0,

ah = (x2
0 + 1)2

|1 − x2
0|
, bh = x2

0 + 1, xh = x0(3x4
0 + 3x2

0 + 2)
x4

0 − 1 ,

aH = ah/ cosα, bH = bh/ cosα, xH = xh.

4.2. From Homothetics Back to Harmonics
Let H be a family of Poncelet N -gons interscribed between two concentric, homothetic ellipses
EH = (aH , bH) and Eh = (ah, bh) with common centers at (0, 0). Let fh = (−ch, 0) be a focus
of Eh, where c2

h = a2
h − b2

h.

Proposition 5. The polar image of H with respect to a unit circle centered on fh is a
harmonic family inscribed in a circle C1 = (O1, R1) and circumscribing an ellipse E1 with
semiaxes (a1, b1) and centered on (x1, 0) where:

O1 =
[
−ch

(1 + b2
h)

b2
h

, 0
]
, R1 = ah

b2
h

x1 = −ch

(
a2

h + (1 − c2
h) cos2 α

)
/k2

a1 = ah cosα/k2, b1 = ah cosα/(bhk)

where k2 = a2
h − c2

h cos2 α. Furthermore, the symmedian K1 of the harmonic family coincides
with fh.

Corollary 2. Let δ = |K1 −O1|. (
δ

R1

)2

= 1 −
(
bh

ah

)2

Lateral Harmonic Areas
Let H be a Poncelet family of N -gons interscribed between two homothetic, concentric ellipses
EH , Eh. Let fh,1, fh,2 denote the foci of Eh. Let A1 (resp. A2) denote the area of the harmonic
polygon which is a polar image of H with respect to a circle centered on fh,1 (resp. fh,2).
Note that if N is even, a polygon in the homothetic family is centrally symmetric. Therefore,
A1 = A2, with each area variable. When N is odd, these areas are in general distinct.
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Proposition 6. For N = 3 and N = 5, 1/A1 + 1/A2 is invariant and given by:

N = 3:
√

3
18

b

a
(a2 + 3b2)

N = 5: b

40 sin(2π/5)a
(a4 + 10 b2a2 + 5 b4)

(√
5(a2 + 3 b2) + 5 a2 + 7 b2

)
5 a4 + 10 b2a2 + b4

Experimentally, the following holds:

Conjecture 1. For any odd N , 1/A1 + 1/A2 is invariant.

If the Conjecture 1 holds then:

Corollary 3. 1∑
s2

i,1
+ 1∑

s2
i,2

is invariant.

This stems from the fact that for any harmonic polygon cotω = ∑
s2

i /(4A) [23, §16,
pp. 298], where si is the ith sidelength of a harmonic polygon, and both polar images (by
symmetry of the foci with respect to the center of the homothetic family) have the same ω.

Conjecture 2.
∑

sin(2θi)
A

is invariant. Equivalently,
∑

sin(2θi)∑
s2

i
is invariant.

If the Conjecture 1 holds then:

Corollary 4. 1∑
sin(2θi,1) + 1∑

sin(2θi,2) is invariant.

4.3. Closing the Loop

Let R, P , H be as above. Referring to Figure 5, below we specify transformations which
interchange families in the triad. Below let P(N,ω) denote a family of harmonic N -gons with
Brocard angle ω.

Proposition 7. The inversive image of R with respect to a unit circle centered on (x0, 0) is
P (N,ω) if x0 =

√
1−tan α tan ω
1+tan α tan ω

.

Let H be a family of N -gons which is an affine image of the R, where (x, y) → (kx, y).
Clearly, H is bounded by two homothetic, concentric ellipses E , E ′ where E = (k, 1) and,
using the geometry of regular polygons, E ′ = (k cosα, cosα).

Proposition 8. The polar image of H with respect to a focus of E ′ will be P(N,ω) if k =
cotα cotω.

Let a, b denote the semiaxes of the the inner ellipse in a Poncelet homothetic family H.

Proposition 9. The polar image of H with respect to an internal focus will be identical to
the inversive image of R with respect to a unit circle centered on (x0, 0) if x0 =

√
a+b
a−b

.
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Figure 5: The three families mentioned in this article are inversive, affine, or polar images of each
other. Note that the inversive relationship between regular and harmonic is equivalent to the
projection of Figure 7.

5. Isocurves of Brocard Angle

Let P be a polygon in a Poncelet family of harmonic N -gons, and P ′ be another N -gon whose
vertices are inversions of those of P with respect to a circle centered at some point Q. Recall
the Schoute pencil S of a harmonic polygon is the one containing both circumcircle and the
Brocard circle. Johnson [14] shows that for the N = 3 case, the locus of Q such that the
Brocard angle of P ′ is constant are individual circles in S. Referring to Figure 6, sufficient
experimental evidence suggests:

Conjecture 3. The locus of Q such that the Brocard angle of P ′ is constant are individual
circles in S. Furthermore, if Q is on the Lemoine axis or Brocard circle, the Brocard angles
of both P and P ′ are equal.

6. Videos

Animations illustrating some invariant phenomena herein are listed on Table 3.
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Figure 6: Isocurves of Brocard angle: A harmonic polygon (blue) is shown as well as a few circles
(orange) in its Schoute pencil, containing the circumcircle (dashed blue) and the Brocard circle
(dashed brown). Conjecture 3 states that these circles are isocurves for centers of inversion C
such that the Brocard angle ω′ of the C-inversive polygon (red) is constant. If C is on the
Brocard circle or Lemoine line (vertical dashed orange), ω′ is equal to the Brocard angle ω of
the reference harmonic polygon.

id N Title youtu.be/<.>
01 5 Invariants of F 2PdsC3CcqaE
02 3 Invariant Brocard Angles over F 3-gons 2fvGd8wioZY
03 3 Locus of Brocard Points F 3-gons 13i3JGY-fK4
04 5 Invariant signed area of Evolute Polygon JCj0q7 hlA8
05 3,5,6,8 Evolute Polygons with Zero Signed Area 3nvXYFoI5Wg
06 5 Invariant-Area Evolute Polygon with s = 1 ChsfLzKrb4o
07 3 Zero-area Evolute Polygon is a horizontal segment f80QaYs5 J4
08 3 Two zero-area evolute polygons intersect on X76 OFA j25R8ks

Table 3: Illustrative videos. The last column provides links to YouTube videos.
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Figure 7: Harmonics via projection: Let R be a regular polygon (red) and C its circumcircle
(dashed red) centered on O. A harmonic polygon P (blue) can be obtained as follows [23, 26]:
(i) choose a point K – the symmedian point – in the interior of C; (ii) K ′ is the intersection
of OK with the polar of K (dashed magenta) with respect to C; (iv) let T be a tangent to C
from K ′; (v) let S, S′ be points on OK which lie on the circle (dashed gray) centered on K ′

and passing through T ; (vi) for every regular vertex Ri, Pi is at the intersection of SRi with
C. As it turns out, (Pi, Ri) are harmonic conjugates with respect to S and Zi, where Zi is the
intersection of SRi with the “projection axis” σ through S′ and perpendicular to OK. Also
shown in the Brocard inellipse (green) E which P circumscribes. Its foci Ω1 and Ω2 are known
as the Brocard points. Also shown is the Brocard circle B (dashed brown) passing K, O, Ω1,
and Ω2. Since P is interscribed in C, E , it triggers a (Poncelet) porism over which the Brocard
points and Brocard circle remain stationary. Note: it can be shown S and S′ are the limiting
points of the pencil containing C and B and the polar of K wrt C is the Lemoine axis of P.

A. Review: Harmonic Polygons

As shown in Figure 7, a harmonic polygon is the projective image of vertices of a regular
N -gon; specifically, that corresponding vertices are harmonic conjugates with respect to a
projective center S and an axis σ [23, 26].

In another construction, it is regarded as the inversive image of vertices of a regular
polygon with respect to a chosen inversion center [7], see Figure 8. In yet another construction,
it is simply a generic projection of any Ponceletian family [22], though in this case is not
interested in Euclidean properties specific to the case where the outer conic is a circle.

An equivalent, though not constructive definition, is that a polygon is harmonic if an
interior point K can be located such that its distance to each side is at a fixed proportion to
each sidelength [7]. K is called the symmedian point.

While not all polygons are harmonic, all triangles are, since a symmedian point always
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Oreg

Ω1

Ω2

l1l2 lmid
K

(x0,0)
O

Figure 8: Harmonics via inversion: The vertices of a a harmonic polygon (blue) are the inversions
of those of a regular polygon (red) with respect to a center of inversion (x0, 0). The latter
coincides with a limiting point ℓ1 of the pencil Π of circles containing the circumcircle (dashed
blue) and Brocard circle (dashed brown) of the resulting harmonic polygon. Conversely, the
inverting the vertices of a harmonic polygon with respect to either limiting point ℓ1 or ℓ2 of Π
produces two distinct regular polygons (red and olive). Also shown is the Lemoine axis (vertical
dashed orange) of the harmonic family, which cuts OK at the midpoint of ℓ1 and ℓ2 and can
be regarded as the infinite-radius circle in Π.

exists2, denoted X6 in [30]. Referring to Figure 9, the so-called “Brocard porism” is one
of triangles interscribed between their circumcircle and fixed Brocard inellipse (whose foci
are the stationary Brocard points of the family). Simmons calls these “co-brocardal”, since
all Brocard geometry objects (Brocard points, Brocard circle, Lemoine axis, etc.) remain
stationary, see [6, 24].

Referring to Figure 1, for any N , a porism of harmonic N -gons conserves a key quantity
known as the Brocard angle ω defined as follows: an angle such that a counterclockwise (resp.
clockwise) rotation of all sides PiPi+1 about Pi will pass through Ω1 (resp. Ω2). A key identity,
valid for all harmonic polygons is [7]:

cotω =
∑
s2

i

A

where si are the sidelengths and A is the area, variable over the porism. I.e., this suggests
that (i) the sum of internal angle cotangents and (ii) the ratio of squared sidelengths by area
are conserved. Note that for N = 3, cotω = ∑ cot θi [27, Brocard angle].

2Its trilinears – which are proportional to the distance to each side – are, as expected, the sidelengths.
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Ω1

Ω2

l1lmid
K O

Figure 9: The Brocard porism (all triangles are harmonic): A porism of triangles interscribed
between their circumcircle (dashed blue) and Brocard inellipse (green). Using Kimberling’s
notation, O and K are the circumcenter X3 and the symmedian point X6, respectively. The
pencil containing the circumcircle (dashed blue) and Brocard circle (brown) is known as the
Schoute pencil [14]. Its limiting points ℓ1 and ℓ2 (not shown) are the two isodynamic point X15
and X16. Their midpoint ℓmid is X187 on [30].

B. Harmonic Family: Explicit Formulas

Consider the family of regular N -gons R centered on the origin and inscribed in a unit circle.
Let P denote the harmonic polygon which is the inversive image of R with respect to a unit
circle centered on C0 = [x0, 0]. Let α = π/N . The following expressions refer to objects
associated with P :

B.1. Harmonic Vertices

[xi, yi] =
[
−(1 − 2x2

0) cos(2αi+ t) + x3
0

2x0 cos(2αi+ t) − 1 − x2
0
,− sin(2αi+ t)

2x0 cos(2αi+ t) − 1 − x2
0

]

B.2. Circumcircle C = [O,R]

O =
[

(x2
0 − 2)x0

x2
0 − 1 , 0

]
, R = 1

|x2
0 − 1|

B.3. Brocard Points Ω1,Ω2

Ω1,2 = 1
k

[
(2x2

0 − 1) cos(2α) − x4
0 + x2

0 − 1,± sin(2α)
]
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where k = 2x0 cos(2α) − x3
0 − 1/x0.

B.4. Brocard Inellipse E

E : (x− xc)2

a2 + y2

b2 = 1, a = (1 − x2
0) cosα
k′ , b = cosα√

k′

where xc is the x-coordinate of Ω1 and k′ = (x2
0 + 1)2 − (2x0 cosα)2. The eccentricity ε of E

is given by:

ε = c

b
= 2|x0| sinα√

(x2
0 + 1)2 − 4x2

0 cos2 α

B.5. Symmedian Point K

K =
[

x3
0

x2
0 + 1 , 0

]

Let δ = |K −O|. It can be shown that:

x0 =
1 ±

√
1 − (δ/R)2

(δ/R)

Note that the product of the two possible x0 is unity.

B.6. Brocard Circle C ′ = [O′, r]

O′ =
[
x0(x4

0 − x2
0 − 1)

x4
0 − 1 , 0

]
, r =

∣∣∣∣∣ x0

x4
0 − 1

∣∣∣∣∣
B.7. Limiting Points ℓ1,2 of C and C ′

ℓ1 = [x0, 0], ℓ2 =
[
x2

0 − 1
x0

, 0
]

B.8. Brocard Angle ω

Casey gives the relation [7, Prop. 3, pp. 209]:

tanω =
√

1 − (δ/R)2 cotα

where δ = |K −O| = 2r. This can also be expressed as:

tanω = |1 − x2
0|

1 + x2
0

cotα

This implies that:

x0 = ±
√

cotα− tanω
cotα + tanω
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rendus de l’Association française pour l’avancement des sciences. Congrès de Nancy.
Séance du 13 août 1886, 12–24. Impr. de Berger-Levrault, 1887. https://bit.ly/3CH
qL2x.

[27] E. W. Weisstein: CRC concise encyclopedia of mathematics. Chapman and Hall/CRC,
Boca Raton, FL, 2 ed., 2002.

[28] S. Wolfram: Mathematica, Version 10.0, 2019.

Internet Sources

[29] C. Bradley: The Geometry of the Brocard Axis and Associated Conics, 2011. http:
//people.bath.ac.uk/masgcs/Article116.pdf. CJB/2011/170.

[30] C. Kimberling: Encyclopedia of Triangle Centers (ETC), 2021. http://faculty.ev
ansville.edu/ck6/encyclopedia/ETC.html.

Received July 29, 2022; final form September 21, 2022.

https://arxiv.org/abs/2004.12497
https://dx.doi.org/10.1007/s40598-021-00174-y
https://dx.doi.org/10.1007/s40598-021-00188-6
https://dx.doi.org/10.1090/stml/030
https://dx.doi.org/10.1090/stml/030
https://bit.ly/3CHqL2x
https://bit.ly/3CHqL2x
http://people.bath.ac.uk/masgcs/Article116.pdf
http://people.bath.ac.uk/masgcs/Article116.pdf
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
http://faculty.evansville.edu/ck6/encyclopedia/ETC.html

	Introduction
	New Conservations
	Relationship to the Poncelet Homothetic Family
	Isocurves of Brocard Angle

	Two new Conservations
	Inverse Squared Sidelengths
	Apollonius' Radii

	Conserved Sums of Cotangents
	Symmetric Invariants
	Higher Cotangent Powers
	Comparing Conservations Across Poncelet Families

	Harmonics and Homothetics
	From Harmonics to Homothetics
	From Homothetics Back to Harmonics
	Closing the Loop

	Isocurves of Brocard Angle
	Videos
	Review: Harmonic Polygons
	Harmonic Family: Explicit Formulas
	Harmonic Vertices
	Circumcircle C
	Brocard Points omega1,omega2
	Brocard Inellipse E
	Symmedian Point K
	Brocard Circle C'
	Limiting Points l1,2 of C and C'
	Brocard Angle w


