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Abstract. The presented research is oriented toward developing constructive
surface modeling methods in 3D-graphics program environment. First, the problem
of hyperbolic paraboloid construction based on it’s perspective outline is considered.
The point of view and the outlined line defines a cone encircling a three-parameter
set of hyperbolic paraboloid surfaces. Based on ideas and algorithms proposed
in previous studies, the following conclusion was made: An arbitrary hyperbola,
considered as the line of contact of a hyperbolic paraboloid with a cone whose
vertex is chosen arbitrarily, is a determinant of a hyperbolic paraboloid. This
determinant can be used to generate a two-parameter set of closed spatial four-link
linear rings or a generator of a two-parameter set of parabolic cross-sections. They
all belong to the same hyperbolic paraboloid. The axis of this paraboloid is parallel
to the line connecting the cone’s vertex with the center of the contact hyperbola.
Redefinition of the determinant of a hyperbolic paraboloid is based on well-known
theoretical principles: Each pair of intersecting generators determines the tangent
plane of the paraboloid at the point of their intersection; the asymptotes of the
hyperbola are parallel to the planes of parallelism of the hyperbolic paraboloid. The
described cone specifies a two-parameter set of pairs of tangent planes according
to the number of pairs of points on the hyperbola branches. Each such pair defines
a spatial four-link linear ring having two vertices at selected points and two on the
line of intersection of the tangent planes.
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1 Introduction

One of the paradigms of working in the environment of three-dimensional computer graphics
programs, from now on “programs”, is the independence from the user’s knowledge of analytical
methods for solving particular problems. Instead, the constructive-geometric interpretation of
the modeled object properties becomes more important, especially for tasks with no apparent
solution algorithms. For example, one of such tasks is modeling surfaces, the determinant of
which includes the outline of this surface on perspective images.

When constructing objects of design and architecture, assessing their artistic and aesthetic
properties is essential, primarily determined by the visible contour of the modeled objects. If
a significant part of an object is a curved surface, then the outline of this surface is a part
of the general contour. It is the line of intersection of the plane of the picture with the cone
described around the simulated surface. Such a cone is an envelope for a multiparameter set
of surfaces. The specific surface from the set is selected using the specified design conditions.

The presented research is done to develop constructive methods of second-order surface
definition at various initial conditions of their modeling. A hyperbolic paraboloid is one of the
most widely used surfaces in design and architecture. It is the hyperbolic paraboloid that is
the subject of this study.

1.1 Analysis of Primary Research and Publications
Second-order surfaces play a fundamental role in many theoretical and applied sciences,
including design, architecture, and computer graphics. Therefore, the modern quadric theory
reading is of great interest, on a systemic basis [9] and due to some research in this area. In
particular: In [10] a synthetic approach to the creation of thread construction on quadrics is
proposed. In all works, among others, hyperbolic paraboloid surfaces are considered. Finally,
the work [5] is devoted to theoretical issues of modeling curved surfaces on the example of a
hyperbolic paraboloid.

A significant amount of research is devoted to modeling quadric surfaces in the environment
of 3D computer graphics programs. Possibilities of modern computer technologies for modeling
linear surfaces, in particular, hyperbolic paraboloids, are demonstrated in [6]. In [1], some
additional constructive properties of the hyperbolic paraboloid are proved, and the ways of
solving design problems in 3D modeling based on these properties are shown.

The tasks of taking into account the perspective line of outline in modeling are also focused
on their implementation in the environment of the program of three-dimensional graphics.
This problem is proposed for linear surfaces [7, p. 86–89].

The spatial modeling of surfaces based on the outline is described in [8, p. 204–213]. In [2]
the construction of central quadrics on one and two described cones is investigated, and in [4]
the same problems are considered for surfaces of rotation of the second order. For a hyperbolic
paraboloid, the problem of modeling along a perspective line of an outline of the second order
is solved if the contact line between the enveloping cone and the hyperboloid is a parabola [3].

We have not found work on modeling hyperbolic paraboloid for which the line of contact
with the envelope cone is a hyperbola.

1.2 The Purpose of the Research
The purpose of the research is a further development of constructive-geometric methods of
construction of second-order surfaces in order to apply these methods in computer modeling
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in the environment of 3D graphics programs. In particular, to find a method that allows
building only the required surface fragment without building the whole surface. This method
is essential for constructing the surface fragment defined by the limited arcs of the outline and
for the task of conjugating two second-order surfaces by a planar curve.
Problem 1. To carry out a parametric analysis of the problem of constructing a hyperbolic

paraboloid along the hyperbolic line of contact with the envelope cone.
Problem 2. To formulate and prove the fundamental constructive property of a hyperbolic

paraboloid given by a line of outline and a hyperbolic line of contact with an enveloping
cone.

Problem 3. To develop a constructive way to construct a hyperbolic paraboloid with an
arbitrary location in the design space.

This method must be represented as a sequence of operations, each of which is supported by
3D graphics software. In this research, SolidWorks is used as an example of such software.

2 Main Part

2.1 Parametric Analysis. Initial Conditions.
The scheme of the problem is shown in Fig. 1.

A user sets the hyperbolic paraboloid surface outline lines on the imaginary perspective
plane K, which he wants to see from S viewpoint. The outline lines are given in the form of
branches of the hyperbola g′. The user’s objective is to obtain the surface of the hyperbolic
paraboloid Γ, the outline of which on the plane K coincides with the given branches of the
hyperbola.

The lines of cone {S, g′} contact the hyperbolic paraboloid and can be either hyperbolas
or parabolas because these are the only possible options for the hyperbolic paraboloid plain
section.

Let us consider the case when the contact line is a hyperbola and show that for a given
contact line in the form of a hyperbola, the cone {S, g′} unambiguously defines a hyperbolic
paraboloid.

The cone {S, g′} envelops a multiparameter set of surfaces with a contact line. If it is a
second-order cone and the surfaces are quadrics, this set is four-parametric. Indeed, previously
in [2], it was shown that the enveloping cone specifies five parameters of the modeled surface
for any second-order surface modeling.

Three parameters (number of cutting planes) are used to determine the contact line.
Therefore, the line of contact (three parameters) and the envelope cone (five parameters)
determine eight quadric parameters in the general case, the number of hyperbolic paraboloid
parameters. It applies only to the case of the hyperbolic line of contact because only in such a
case do both the second-order cone and the hyperbolic paraboloid contain a three-parameter
set of hyperbolas. Parabolic sections on a hyperbolic paraboloid belong to a two-parameter
set, so the parabolic line of contact defines a one-parameter set of hyperbolic paraboloids.
This problem is solved in [3].

This is a parametric aspect. For complete proof, it is necessary to ensure a constructive
way to move from the declared determinant to any other determinant. As the last, we choose
a four-link spatial chain – {4l}-determinant – or an arbitrary one-parameter set of parabolas.
Note 1. As described below, algorithms require means of precise definition of the hyperbola.

In SolidWorks software, we have found only one method for getting such a precise
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Figure 1: Outline model of the application of a perspective outline of the surface of a hyperbolic
paraboloid for its modeling

definition – building a hyperbola as a section of a circular cone. Other methods result
in spline approximation of the hyperbola and lead to errors in the construction of the
tangents. With the construction of the hyperbola as a cone section, it is easy to find its
asymptotes and, therefore, axis, center, and vertices. Therefore, all following cases are
considered under the assumption that hyperbola is fully defined.

Note 2. In all subsequent figures, the hyperbola is located in a horizontal plane. Despite this
fact, the algorithm remains generic because the vertex of the cone is chosen arbitrarily.
In every specific case, the vertex occupies its respective location.

To implement a constructive approach, let us assume that a specific hyperbola g is defined
in Fig. 1. Therefore, concerning the surface being modeled, the envelope cone is determined.
We are interested in the general case in which the hyperbola and the vertex of the described
cone positions do not depend on each other. First, however, it is essential to gradually consider
a constructive way from a simple case Fig. 1 to general case.

2.2 A Variant of the Canonical Problem of the Surface
Fig. 2 shows the case in which the given hyperbola belongs to a plane that is perpendicular to
the axis of the hyperbolic paraboloid. Let us assume that for this hyperbola vertices, axes,
and asymptotes intersecting at the point T are defined. The vertex S of the described cone is
located on the axis of the hyperbolic paraboloid. S is not located in the plane of the hyperbola,
and ST is perpendicular to that plane. This statement corresponds to the surface definition
in the canonical form.

From the initial condition through the vertices A and B of the hyperbola and the center
of the coordinate system, point O (the vertex of the hyperbolic paraboloid), should pass a
parabola, the tangents of which intersect at the point S so that TO = OS. The tangent to
the hyperbolic paraboloid planes △A and △B at points A and B are defined by tangent lines
SA and SB to the parabola and tangent lines to the hyperbola at points A and B (ta and tb).
Tangents (ta and tb) are parallel to the imaginary axis of a given hyperbola. These planes
intersect at the line (s), which is also parallel to the imaginary axis of the hyperbola and
passes through the point S. Pairs of generators of hyperbolic paraboloid in the two tangent
planes intersect on the line s in C, D.

Since the canonical case of the hyperbolic paraboloid problem is considered, the spatial
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Figure 2: Surface modeling in the canonical version of the problem

linear ring of the central {4l}-determinant in parallel projection is projected as a rhombus,
the vertices of which can be obtained as points of intersection of lines drawn parallel to the
asymptotes of the hyperbola from vertices A and B [7, p. 27]. These lines intersect on the
imaginary axis at points C1 and D1. They will be orthogonal projections of points C and D,
located in the tangent to the hyperbolic paraboloid at points A and B planes △A and △B
generators. Therefore points C and D lie in the tangent planes on their intersection line (s).
Points C and D will be located in the projection direction parallel to ST .

In this case, we can conclude that the described second-order cone with a vertex at the
point S ′ located on the axis of the hyperbolic paraboloid has a contact hyperbola with this
paraboloid, located in a plane that is parallel to the main tangent plane and at a twice distance
from the top of the hyperbolic paraboloid.

In this simple case, we simultaneously find the generating parabolas AOB and COD.

2.3 First Generalization
In this generalization (Fig. 3), the hyperbola g and the vertex of the described cone are given
independently of each other and occupy an arbitrary position in the design space. However,
as in the canonical case, the points for which the construction is performed belong to the
vertices of the hyperbola.

The new position of the projection plane, together with the new position of the hyperbola,
can be defined, in particular, by two asymptotes and one of the vertices. According to the
problem statement, point S ′(S ′

1 is its orthogonal projection on the hyperbola’s plane) can be
chosen arbitrarily. Two groups of four points each S ′A′T ′C ′

1 (Fig. 3) and SATC1 (Fig. 2) define
such an affine transformation of space that preserves parallelism, incidence, and the affine ratio
of the shapes. Therefore, the properties mentioned above can be formally transferred from
Fig. 2 to Fig. 3. For the affine transformation of three-dimensional space to correspond to the
problem statement, it is necessary to declare that the angle between the lines A′T ′ and T ′C ′

1
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Figure 3: Simulation scheme for an arbitrarily given vertex of the described cone

must remain right. Then, under a given condition, only one hyperbola can be constructed
with vertices at point A′ and symmetric to it B′.

The line T ′C ′
1 defines the imaginary axis. The direction of the asymptotes is given by the

lines A′C ′
1 and B′D′

1.
Therefore, a hyperbola can be constructed on such a drawing, and therefore the whole

algorithm for constructing the {4l}-determinant is preserved (namely, finding points C ′ and
D′ in space). An essential point of the construction algorithm is that the projection of points
C ′

1 and D′
1 on the line of intersection of tangent planes is made in a direction parallel to the

line connecting the center of the cone with the center of the hyperbola and will belong to the
plane Σ defined by the line T ′C ′

1 and vertex S ′.
Tangent planes at points A′ and B′ intersect on a line (s′) that goes through the point S ′

and is parallel to the imaginary axis of the hyperbola. On this line (s′) points C ′ and D′ are
obtained by projection in a direction parallel to T ′S ′.

2.4 Second Generalization
Next, let us consider a generalization in which points A and B are chosen on the hyperbola,
not at the vertices of the hyperbola (Fig. 4) but symmetrically about the imaginary axis.

In this case, the point of intersection of the tangents to the hyperbola at points A and
B (ta and tb) becomes real but will belong to the imaginary axis (Fig. 4, point 1). The
points C1 and D1 are vertices of the rombus created by the lines parallel to the asymptotes of
the hyperbola at points A and B. They will also belong to the imaginary axis. The line of
intersection of the tangent planes at points A and B will also belong to the plane C1D1S1, and
in the direction of projection, ST will be projected on the imaginary axis. In addition, it will
definitely pass through point S, provided that it is the vertex of the second-order cone built
on the hyperbola, and the cone is tangent to the modeled hyperbolic paraboloid. According to
this scheme, a single-parameter set of parabolas with parallel chords AiBi can be constructed
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Figure 4: Scheme of modeling a hyperbolic paraboloid in the case of using a chord parallel to the
real axis of the hyperbola

based on arbitrary points S and an arbitrary contact hyperbola. The chords will all belong to
the same hyperbolic paraboloid.

Points Ei (Fig. 4 shows one of them – point E) of the intersection of tangents to these
parabolas will belong to the line s, and can be found on it as projections of points Oi in the
direction ST .

2.5 General Case
Let us consider the case when the chord AB is chosen arbitrarily. To do this, let us prove the
property: If we set two arbitrary points (A and B) on different branches of the hyperbola and
construct a parallelogram with vertices in these points and sides parallel to the hyperbola’s
asymptotes in these points, then the diagonal CD connecting the other pair of the parallelo-
gram’s vertices will pass through the center of the hyperbola, the asymptotes’ intersection
point.

Proof. Let an arbitrary hyperbola be given in the affine coordinate system xTy, the axis of
which is its asymptotes. Then, its equation in this system has the form.

y = k/x (1)

and the equations of lines passing through points A(x1,
k
x 1) and B(x2,

k
x 2), parallel to the

coordinate axis (asymptotes) are: AC : y = k/x1; BC : x = x2; BD : y = k/x2; AD : x = x1.
This defines the other two vertices C(x2,

k
x 1) and D(x1,

k
x 2), and the CD diagonal equation

Fig. 5:
x − x2

x1 − x2
=

y − k
x1

k
x2

− k
x1

; (2)
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Figure 5: Scheme to explain the properties

Let us verify that center of the hyperbola (point T ), which is located at zero coordinates,
satisfies (2).

−x2

x1 − x2
=

−k
x1

k
x2

− k
x1

; (3)

Transforming the right-hand side of equation (3), we have an identity

−x2

x1 − x2
= −x2

x1 − x2
. (4)

So, for x = 0, y = 0 equation (2) does not depend on k and holds for any hyperbola. It also
does not depend on the chosen points A and B on the hyperbola because it is fulfilled at any
values of the coordinates x1 and x2. Thus the line CD always passes through the center of
the hyperbola.

The general scheme of modeling is shown in Fig. 6.
Points A and B are chosen on the hyperbola arbitrarily (asymmetric concerning its

imaginary axis). Points C1 and D1 are no longer vertices of the rhombus but vertices of the
parallelogram. O is the point of intersection of the diagonals of the parallelogram. Points (C1,
T , O, D1) are located on one line by the proven above property.

Let 1 be the point of intersection of the tangents at points A and B (ta and tb), then the
points (1, T , O) also belong to one line because for the central second-order curve, the line
connecting the point of intersection of two tangents and the middle of the chord points of
contact passes through the center of this curve. The two mentioned lines have a common
segment OT , and therefore, all these points (1, C1, T , O) belong to one line. In Fig. 6, it is
denoted as b.

If points A and B are changed, the position of point 1 changes, and therefore the position
of the lines b and s. However, the line ST remains unchanged. It is the axis of the pencil of
planes {bi, si}. The diameters of all parabolas belonging to one hyperbolic paraboloid are
parallel to the axis of the hyperbolic paraboloid. In an axial pencil of planes, lines in distinct
planes are parallel only if they are parallel with the axis.

Therefore, only ST can be the direction of the axis of the hyperbolic paraboloid.
Thus, the points C ′, D′ and E belong to line s, which passes through the vertex of the

cone and point 1. After re-projecting the points C1, D1, and O in the ST direction, they will
be obtained. The closed spatial linear ring AC ′BD′ determines the hyperbolic paraboloid
modeled at any points A and B given on the hyperbola. The transition from such a task to
the canonical environment of 3D graphics programs is shown in [1].
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Figure 6: General scheme of modeling the surface of a hyperbolic paraboloid along the described
cone when the contact line is a hyperbola

To construct a one-parameter set of parabolas, it is necessary to determine a one-parameter
set of chords {AiBi}, i = 0, 1, . . . , n in the hyperbola plane. Chords A0B0 and AnBn limit
the part of the surface to be modeled. The user in graphical dialog mode sets them. For
0 < i < n the bilinear interpolation of the quadrilateral A0AnBnB0 is used. It determines
the lines pi intersecting both branches of the hyperbola and, in the intersection with them,
determines the points of AiBi chord. In special cases, these chords can be parallel or can form
a bundle of lines with its center. The construction of a specific parabola is performed as in
Section 2.4.

Parabolas can be extended beyond the plane of contact, such as the intersection with the
plane K (Fig. 1). This makes it possible to model the desired surface sections in an interactive
mode. Note that the preparation of input information (view point S, hyperbolas g and g′,
points A0, An, Bn, B0) and construction of the necessary sections should be performed in the
interactive mode. To construct the desired set of parabolas, each defined by points Ai, Bi, Oi,
1i, Ei, special macros should be created. All the operations can be performed in interactive
mode or by a macro, a possibility provided by any general-purpose 3D graphics program.

3 Conclusions and Prospects

It is shown that a hyperbola, which is a line of contact of the hyperbolic paraboloid surface
with a described cone, can be considered as one of the standard determinants of the hyperbolic
paraboloid. Proven structural and geometric properties allow us to solve the problem of
modeling of a hyperbolic paraboloid along the line of outline in the form of a hyperbola.
Furthermore, the hyperbola and the center of the envelope cone can be located arbitrarily.

The operations required for the modeling of the hyperbolic paraboloid by a given determi-
nant are fully supported by general-purpose 3D graphics programs.

The research can be continued and developed to model hyperboloids and solve problems
of their conjugation with each other and with a hyperbolic paraboloid. In addition, these
tasks are relevant in the computer modeling of design objects.
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