Concurrent Segments in a Tetrahedron Applications of Ceva's and Carnot's Theorems

Hidefumi Katsuura
San Jose State University, San Jose, USA
hidefumi.katsuura@sjsu.edu

Abstract

Ceva's theorem is about concurrence of three segments on a triangle with an affine ratio. Among the several theorems named after him, we are interested in Carnot's theorem that relates the concurrence of two segments in a skew quadrilateral in space, again, with an affine ratio. First, we apply these theorems to obtain a theorem on the concurrence of seven segments in a tetrahedron. Secondly, we show that the Steiner-Routh theorem implies Carnot's theorem, and obtain the volumes of the two parts of a tetrahedron separated by a planar quadrilateral. Thirdly, we consider a special case of Carnot's theorem (or an extension of Varignon's theorem) to determine when four points on a skew quadrilateral are to form a parallelogram. Finally, we give a new characterization of the centroid of a tetrahedron.

MSC 2020: 51M04 (primary), 51M25

1 Introduction

Let us begin with definitions.
Definition 1. Four non-co-planar points A, B, C, D are the vertices of a tetrahedron $A B C D$, the six segments joining these points are the edges of the tetrahedron, the four triangles built by any triple out of the vertices are the faces of the tetrahedron, and the tetrahedron carries (up to orientation and cyclically rearranged labels) three skew quadrilaterals: $D A B C, D A C B$, and $D B A C$. The skew quadrilateral $D A B C$ consists of edges $D A, A B, B C$, and $C D$.

Theorems 1 and 2 in Section 2 were inspired by Ceva's theorem for a triangle and Carnot's theorem for a skew quadrilateral.

Theorem (Ceva's Theorem; see Theorem 1.21 on Page 4 of [4], or Theorem 326 on Page 159 of [2].). Let $A B C$ be a triangle. Let $C^{\prime \prime}, A^{\prime \prime}, B^{\prime \prime}$ be points on the edges $A B, B C$, and $C A$, respectively. Then $A A^{\prime \prime}, B B^{\prime \prime}$, and $C C^{\prime \prime}$ concur if, and only if $\frac{A B^{\prime \prime}}{B^{\prime \prime} C} \cdot \frac{C A^{\prime \prime}}{A^{\prime \prime} B} \cdot \frac{B C^{\prime \prime}}{C^{\prime \prime} A}=1$.

There are several theorems named after Carnot, but the one we are interested in is the following.

Theorem (Carnot's Theorem; see Page 111, Theorem 329 in [1].). Let DABC be a skew quadrilateral. Let E, F, G, H be points on the edges $D A, A B, B C$, and $C D$, respectively. Then, $E F G H$ is a planar quadrilateral if, and only if, $\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$. In other words, the segments $E G$ and $F H$ concur (or E, F, G, H are coplanar) if and only if $\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$.
Note. If a skew quadrilateral $D A B C$ is not planar, edges $E F$ and $G H$ of the planar quadrilateral $E F G H$ in Carnot's theorem do not intersect since the edges $E F$ and $G H$ are on the two distinct triangles $B A D$ and $B C D$, respectively, that share only the edge $B D$. Similarly, the edges $E H$ and $F G$ of the quadrilateral $E F G H$ do not intersect.

There are several generalizations of Ceva's theorem to a tetrahedron as in [9], and to n-dimensional $(n \geq 2)$ simplices as in $[3,6,8]$. Our Theorem 1 has a resemblance to the one given by K. Witczynski [9], which states as follows:

Theorem (Witczynski's Theorem; see [9] or [3].). Let E, F, G, H, I, J be points on the edges $D A, A B, B C, C D, A C, B D$ of a tetrahedron $A B C D$, respectively. Suppose that $\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B J}{J D}=1, \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C I}{I A}=1, \frac{A I}{I C} \cdot \frac{C H}{H D} \cdot \frac{D E}{E A}=1$, and $\frac{D J}{J B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$. Let $A^{\prime}, B^{\prime}, C^{\prime}$, D^{\prime} be the intersection of $(B H, C J$, and $D G),(A H, C E$, and $D I),(A J, B E$, and $D F)$, and ($A G, B I$, and $C F)$, respectively. Then, the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ concur.

Figure 1: Explanation: The six thick black lines form the tetrahedron $A B C D$; the three red lines $E G, F H$, and $I J$ connect opposing pairs of edges in the tetrahedron; the four green lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ connect vertices to the points $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} in the faces of the tetrahedron; all the thin black lines lie in the faces of the tetrahedron connecting (A, B, D, E, F, J) in the face $A B D,(A, B, C, F, G, I)$ in the face $A B C,(A, C, D, I, E, H)$ in the face $A C D$, and (B, C, D, G, H, J) in the face $B C D$.

Theorem 1 and Theorem 2 in Section 2 are converse to each other, and should be treated as one theorem. Using notations in Witczynski's theorem, the essence of our Theorems 1 and

2 will be to prove that the segments $E G, F H$, and $I J$ are concurrent at P if, and only if, the four segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ concur at P as shown in Figure 1.

In Section 3, we will show that Carnot's theorem is a consequence of the Steiner-Routh theorem, and we will obtain the volumes of two parts of a tetrahedron separated by a planar quadrilateral in Theorem 3 using a similar idea used by Marko and Litvinov in [6] to prove the Steiner-Routh theorem.

The natural special case is when E, F, G, H are midpoints of the sides of a skew quadrilateral $D A B C$. In this case, the planar quadrilateral $E F G H$ does not only divide the tetrahedron $A B C D$ into two equal volumes (by Theorem 3), but it is also a parallelogram (a special case of Carnot's theorem or an extension of Varignon's theorem). Motivated by this, we will obtain a necessary and sufficient condition when $E F G H$ on a skew quadrilateral $D A B C$ is to form a parallelogram (Theorem 4).

Further, the midpoints of a skew quadrilateral also remind us of the centroids of a tetrahedron. Suppose P is a point inside of the tetrahedron $A B C D$, and suppose $A^{\prime}, B^{\prime}, D^{\prime}$, and C^{\prime} are intersections of (the line $A P$ and the face $\left.B C D\right),(B P$ and $A C D),(C P$ and $A B D)$, and ($D P$ and $A B C$), respectively. If P is the centroid of the tetrahedron, then it is known that $\frac{P A^{\prime}}{A P}=\frac{P B^{\prime}}{B P}=\frac{P C^{\prime}}{C P}=\frac{P D^{\prime}}{D P}=\frac{1}{3}$ (see Theorem 170 in [1]). In Theorem 5, we will strengthen this result to prove that P is the centroid of a tetrahedron $A B C D$ if, and only if, $\frac{P A^{\prime}}{A P} \cdot \frac{P B^{\prime}}{B P} \cdot \frac{P C^{\prime}}{C P} \cdot \frac{P D^{\prime}}{D P}=\frac{1}{81}$. We will use Theorem 2 to prove this.

2 Concurrence Theorems

Theorems 1 and 2 below are converse to each other. Theorem 1 resembles to Witczynski's theorem, but we do not use any products of ratios in the statement nor in the proof.
Theorem 1. Suppose E, F, G, H are points on the edges $D A, A B, B C$, and $C D$, respectively, of a tetrahedron $A B C D$ such that $E G$ and $F H$ intersect at a point P. Let $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} be the intersections of the segments ($B H$ and $D G$), ($A H$ and $C E$), ($B E$ and $D F$), and ($A G$ and $C F$), respectively. Then, the following are true:
(1) The segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ concur at P.
(2) The lines $A C^{\prime}$ and $C A^{\prime}$ intersect, say at J, on the edge $B D$. The lines $B D^{\prime}$ and $D B^{\prime}$ intersect, say at I, on the edge $A C$.
(3) The lines ($B C^{\prime}$ and $C B^{\prime}$), ($D C^{\prime}$ and $C D^{\prime}$), ($A D^{\prime}$ and $D A^{\prime}$), ($A B^{\prime}$ and $B A^{\prime}$) intersect at E, F, G, and H, respectively.
Proof of (1). The intersection of the triangles $H A B$ and $F C D$ is the segment $F H$, and the intersection of the triangles $B C D$ and $A D G$ is the segment $E G$. Since the segments $E G$ and $F H$ concur at P, the intersection of the four triangles $H A B, F C D, E B C$, and $G A D$ is P.

Since the intersection of the triangles $G A D$ and $H A B$ is the segment $A A^{\prime}, A A^{\prime}$ intersects the triangle $E B C$ at P. Since the intersection of the triangles $H A B$ and $E B C$ is the segment $B B^{\prime}, B B^{\prime}$ intersects the triangle $F C D$ at P.

Since the intersection of the triangles $E B C$ and $F C D$ is the segment $C C^{\prime}, C C^{\prime}$ intersects the triangle $G A D$ at P. And finally, since the intersection of the triangles $F C D$ and $G A D$ is the segment $D D^{\prime}, D D^{\prime}$ intersects the triangle $H A B$ at P.

Therefore, we conclude that the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ concur at P.
Proof of (2). The lines $A C^{\prime}$ and $C A^{\prime}$ lie on the plane $A C P$, and they are not parallel. So, they intersect, say at J. Since $C J$ and $A J$ are on the tetrahedron $A B C D, J$ must be on $B D$. Similarly, $B D^{\prime}$ and $D B^{\prime}$ intersect, say at I.

Proof of (3). We know that C^{\prime} is on $B E$ so that the intersection of $B C^{\prime}$ with $A D$ is E. The lines $B C^{\prime}$ and $C B^{\prime}$ are on the plane $P B C$, and they intersect. Since $C B^{\prime}$ intersects $A D$, the three lines $B C^{\prime}, C B^{\prime}$ and $A D$ must intersect at E. Similarly, we can show that the segments $\left(D C^{\prime}\right.$ and $\left.C D^{\prime}\right),\left(A D^{\prime}\right.$ and $\left.D A^{\prime}\right),\left(A B^{\prime}\right.$ and $\left.B A^{\prime}\right)$ intersect at F, G, and H, respectively.

Remark 1. The condition " $E G$ and $F H$ intersect" in Theorem 1 can be replaced by the equation $\frac{D A}{E D} \cdot \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$ by Carnot's theorem. If we do this, the point P is not defined. This was an incentive to write the theorem using " $E G$ and $F H$ intersect".

Theorem 2. Suppose P is a point inside a tetrahedron $A B C D$. Suppose $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are intersections of (the line $A P$ and the face $B C D),(B P$ and $A C D),(C P$ and $A B D)$, and ($D P$ and $A B C$), respectively. Then the following are true:
(1) The lines $\left(B C^{\prime}\right.$ and $\left.C B^{\prime}\right),\left(D C^{\prime}\right.$ and $\left.C D^{\prime}\right),\left(A D^{\prime}\right.$ and $\left.D A^{\prime}\right),\left(A B^{\prime}\right.$ and $\left.B A^{\prime}\right),\left(A C^{\prime}\right.$ and $\left.C A^{\prime}\right)$, and $\left(B D^{\prime}\right.$ and $\left.D B^{\prime}\right)$ intersect, say at E, F, G, H, I, and J, respectively. The points E, F, G, H, I, and J are points on the edges $D A, A B, B C, C D, A C$, and $B D$, respectively.
(2) The segments EG, FH, and IJ intersect at P. Hence, EFGH, EIGJ, and FJHI are planar quadrilaterals.

Proof of (1). The plane $P B C$ contains the segments $B C^{\prime}$ and $C B^{\prime}$, so they intersect and the intersection is on $D A$. We can prove the others similarly.

Proof of (2). On the triangle $A B D$, since the intersection of $A J, B E$, and $D G$ is C^{\prime}, we have $\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B J}{J D}=1$ by Ceva's theorem. Similarly, on the triangle $B C D$, we have $\frac{D J}{J B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$. By this latter equation, we have $\frac{B J}{J D}=\left(\frac{D J}{J B}\right)^{-1}=\frac{B G}{G C} \cdot \frac{C H}{H D}$.

Substituting this into the first equation, we have $\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$. Applying Carnot's theorem to the skew quadrilateral $D A B C$, we know that $E F G H$ is a planar quadrilateral so that $E G$ and $F H$ intersect, say at Q. But by the part (1) of Theorem 1, we must have that $Q=P$, and $E G$ and $F H$ intersect at P. Similarly, we can show that $E I G J$ is a planar quadrilateral since $E G$ and $I J$ intersect at P. Therefore, the segments $E G, F H$, and $I J$ intersect at P.

Corollary 1. Let I and J be the points defined in Theorem 1(2). Then, EG, FH, and IJ concur at P.

Proof. Since $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ concur at P by Theorem 1(1), we know that $E G, F H$, and $I J$ concur at P by Theorem 2(2).

Corollary 2. Let E, F, G, H, I, J be points on the edges $D A, A B, B C, C D, A C$, and $B D$, respectively, of a tetrahedron $A B C D$. Then, the following statements are equivalent:
(1) $E G, F H$, and $I J$ concur.
(2) $\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1, \frac{A F}{F B} \cdot \frac{B J}{J D} \cdot \frac{D H}{H C} \cdot \frac{C I}{I A}=1$, and $\frac{D E}{E A} \cdot \frac{A I}{I C} \cdot \frac{C G}{G B} \cdot \frac{B J}{J D}=1$.
(3) $\frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C I}{I A}=1, \frac{A I}{I C} \cdot \frac{C H}{H D} \cdot \frac{D E}{E A}=1$, and $\frac{D J}{J B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$.
(4) $\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B J}{J D}=1, \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C I}{I A}=1$, and $\frac{D J}{J B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$.

Proof. (1) implies (2) by Carnot's theorem. Conversely, by Carnot's theorem, (2) implies that $(E G$ and $F H),(F H$ and $I J)$ and $(E G$ and $I J)$ intersect. Thus, three lines $E G, F H$, and $I J$ intersect. Since these three lines are not in the same plane, $E G, F H$, and $I J$ must concur. Hence, (1) and (2) are equivalent.

By Theorem 1(2) and (3), and by Ceva's theorem, (1) implies (4). Clearly, (4) implies (3).
Suppose (3) holds. Since $\frac{A F}{F B} \cdot \frac{B G}{G C} \cdot\left(\frac{C I}{I A}\right)=1$, we have $\frac{A I}{I C}=\frac{A F}{F B} \cdot \frac{B G}{G C}$. Substituting this into $\left(\frac{A I}{I C}\right) \cdot \frac{C H}{H D} \cdot \frac{D E}{E A}=1$, we have

$$
\left(\frac{A F}{F B} \cdot \frac{B G}{G C}\right) \cdot\left(\frac{C H}{H D} \cdot \frac{D E}{E A}\right)=\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1 .
$$

From $\frac{D J}{J B} \cdot \frac{B G}{G C} \cdot\left(\frac{C H}{H D}\right)=1$, we have $\frac{B G}{G C}=\left(\frac{D J}{J B} \cdot \frac{C H}{H D}\right)^{-1}=\frac{B J}{J D} \cdot \frac{D H}{H C}$. Substituting this into $\frac{A F}{F B} \cdot\left(\frac{B G}{G C}\right) \cdot \frac{C I}{I A}=1$, we have

$$
\frac{A F}{F B} \cdot\left(\frac{B J}{J D} \cdot \frac{D H}{H C}\right) \cdot \frac{C I}{I A}=\frac{A F}{F B} \cdot \frac{B J}{J D} \cdot \frac{D H}{H C} \cdot \frac{C I}{I A}=1 .
$$

From $\frac{D J}{J B} \cdot \frac{B G}{G C} \cdot\left(\frac{C H}{H D}\right)=1$, we have $\frac{C H}{H D}=\frac{B J}{J D} \cdot \frac{C G}{G B}$. Substituting this into $\frac{A I}{I C} \cdot\left(\frac{C H}{H D}\right) \cdot \frac{D E}{E A}=1$, we have

$$
\frac{A I}{I C} \cdot\left(\frac{B J}{J D} \cdot \frac{C G}{G B}\right) \cdot \frac{D E}{E A}=\frac{D E}{E A} \cdot \frac{A I}{I C} \cdot \frac{C G}{G B} \cdot \frac{B J}{J D}=1
$$

Hence, (3) implies (2).
Therefore, we have shown the equivalence of (1)-(4).
Remark 2. Theorem 1 and Corollary 2 imply Witczynski's theorem.
Remark 3. Using the notations in Theorem 1 (or the ones in Theorem 2), it is interesting to note that the intersection of the three planes $E B C, F C D$, and $I D B$ is P. Hence, Theorem 2 in [5] implies that $\frac{A P}{P A^{\prime}}=\frac{A F}{F B}+\frac{A I}{I C}+\frac{A E}{E D}$.

3 Steiner-Routh Theorem Related Results

Carnot's theorem is proved using Ceva's theorem and Menelaus's theorem in [1]. However, it is also implied by the Steiner-Routh theorem which reads as follows:

Theorem (Steiner-Routh Theorem; see [7]). Let $A B C D$ be a tetrahedron. Let E, F, G, H be points on the edges $D A, A B, B C$, and $C D$, respectively. Let $\frac{D E}{E A}=x, \frac{A F}{F B}=y, \frac{B G}{G C}=z$, $\frac{C H}{H D}=w$. Let the volumes of the two tetrahedra $E F G H$ and $A B C D$ be denoted by $V_{E F G H}$ and V, respectively. Then

$$
V_{E F G H}=\frac{|1-x y z w|}{(1+x)(1+y)(1+z)(1+w)} V
$$

Proof of Carnot's Theorem. Since $\frac{D E}{E A}=x, \frac{A F}{F B}=y, \frac{B G}{G C}=z, \frac{C H}{H D}=w$, the tetrahedron $E F G H$ has the volume zero if, and only if $x y z w=\frac{D E}{E A} \cdot \frac{A F}{F B} \cdot \frac{B G}{G C} \cdot \frac{C H}{H D}=1$. However, the tetrahedron $E F G H$ has volume zero if, and only if $E F G H$ is a planar quadrilateral, i.e., the segments $E G$ and $F H$ concur. (As we noted in the Introduction, two opposite edges of the planar quadrilateral $E F G H$ do not intersect.)

Carnot lived from 1753 to 1823, and Steiner lived from 1796 to 1863 . It is not clear when Carnot published his theorem. However, Steiner published his original paper in 1828 after Carnot's death, according to [7]. Hence, Carnot's theorem seems older than the Steiner-Routh theorem.

Next, we will find the two volumes of the divided tetrahedron by a quadrilateral.
Notation 1. Let the volumes of the tetrahedron $E F G H$ be denoted by $V_{E F G H}$.
Theorem 3. Let $A B C D$ be a tetrahedron. Let E, F, G, H be points on the edges $D A, A B, B C$, and $C D$, respectively. Let $\frac{D E}{E A}=x, \frac{A F}{F B}=y, \frac{B G}{G C}=z, \frac{C H}{H D}=w$. Suppose that $x y z w=1$. Then, there are two parts of the tetrahedron separated by the planar quadrilateral EFGH, one contains the edge $A C$ (denote its volume by $V_{A C}$) and the other contains $B D$ (denote its volume by $V_{B D}$). Then, we have the following identities:

$$
\begin{gathered}
V_{D B}=\frac{1+x+z+x y+x z+z w+x y z+x z w}{(1+x)(1+y)(1+z)(1+w)} V, \quad \text { and } \\
V_{A C}=\frac{1+y+w+x w+y z+y w+x y w+y z w}{(1+x)(1+y)(1+z)(1+w)} V,
\end{gathered}
$$

where V is the volume of the tetrahedron $A B C D$.
Proof. We use similar ideas as used in [7] to prove the Steiner-Routh theorem. Let $\frac{A E}{A D}=a$, $\frac{A F}{A B}=b, \frac{B G}{G C}=c, \frac{C H}{C D}=d$. Then, $0<a, b, c, d<1$, and we have $a=\frac{1}{1+x} ; b=\frac{y}{1+y} ; c=\frac{z}{1+z}$; and $d=\frac{w}{1+w}$. Note that $V_{D A B H}=(1-d) V$ since the tetrahedra $D A B H$ and $D A B C$ share the base $D A B$, and since the height of $D A B H$ is shrunk by $1-d$ from $D A B C$. Similarly, we have $V_{D A F H}=b V_{D A B H}$, and $V_{D E F H}=(1-a) V_{D A F H}$. Hence, we have $V_{D E F H}=(1-a) V_{D A F H}=$ $(1-a) b V_{D A B H}=(1-a) b(1-d) V=\frac{x y}{(1+x)(1+y)(1+w)} V$.

Similarly, we can see that $V_{D F B H}=(1-b) V_{D A B H}=(a-b)(a-d) V=\frac{1}{(1+y)(1+w)} V$, and $V_{B G H F}=c V_{B C H F}=c d V_{B C D F}=c d(1-b) V=\frac{z w}{(1+y)(1+z)(1+w)} V$.

Therefore, we have

$$
\begin{aligned}
V_{D B} & =V_{D E F H}+V_{D F B H}+V_{B G H F} \\
& =\frac{x y}{(1+x)(1+y)(1+w)} V+\frac{1}{(1+y)(1+w)} V+\frac{z w}{(1+y)(1+z)(1+w)} V \\
& =\frac{1+x+z+x y+x z+z w+x y z+x z w}{(1+x)(1+y)(1+z)(1+w)} V .
\end{aligned}
$$

Also, since $x y z w=1$, we have

$$
\begin{aligned}
& V_{A C}=V-V_{D B}=\frac{y+w+x w+y z+x y w+y z w+x y z w}{(1+x)(1+y)(1+z)(1+w)} V \\
&=\frac{1+y+w+x w+y z+y w+x y w+y z w}{(1+x)(1+y)(1+z)(1+w)} V
\end{aligned}
$$

4 A Special Case of Carnot's Theorem/An Extension of Varignon's Theorem

If E, F, G, H are the midpoints of the edges $D A, A B, B C$, and $C D$, respectively, of a skew quadrilateral $A B C D$, the planar quadrilateral $E F G H$ splits the tetrahedron $A B C D$
into two equal volumes by Theorem 3. However, it is known that the midpoints of a planar quadrilateral are the vertices of a parallelogram (Varignon's theorem, see Theorem 3.11 of [4] or Theorem 249 of [2]). This is still true for a skew quadrilateral. That is, the midpoints of a skew quadrilateral are the vertices of a parallelogram. We can generalize this to the following as a special case of Carnot's theorem or as an extension of Varignon's theorem.

Theorem 4. Let $D A B C$ be a skew quadrilateral. Let E, F, G, H be points on the edges $D A, A B, B C$, and $C D$, respectively. Then $E F G H$ is a parallelogram if, and only if,

$$
\frac{D E}{E A} \cdot \frac{A F}{F B}=1, \quad \frac{D H}{H C} \cdot \frac{C G}{G B}=1, \quad \text { and } \quad \frac{D E}{E A}=\frac{D H}{H C} .
$$

(Note that $\frac{D E}{E A} \cdot \frac{A F}{F B}=1, \frac{D H}{H C} \cdot \frac{C G}{G B}=1$, and $\frac{D E}{E A}=\frac{D H}{H C}$ is equivalent to $\frac{D E}{E A}=\frac{D H}{H C}=\frac{B F}{F A}=\frac{B G}{G C}$.)
Proof. We use vectors. Let $\overrightarrow{D A}=\vec{a}, \overrightarrow{D B}=\vec{b}, \overrightarrow{D C}=\vec{c}$.
Suppose $\frac{D E}{E A} \cdot \frac{A F}{F B}=1, \frac{D H}{H C} \cdot \frac{C G}{G B}=1$, and $\frac{D E}{E A}=\frac{D H}{H C}$. Let $\frac{D E}{E A}=x$. Then $\frac{A F}{F B}=\frac{1}{x}$. Hence,

$$
\overrightarrow{E A}=\frac{1}{x+1} \vec{a}, \quad \overrightarrow{A F}=\frac{1}{x+1} \overrightarrow{A B}=\frac{1}{1+x}(\vec{b}-\vec{a})
$$

This shows that

$$
\overrightarrow{E F}=\overrightarrow{E A}+\overrightarrow{A F}=\frac{1}{x+1}(\vec{b}-\vec{a})+\frac{1}{x+1} \vec{a}=\frac{1}{x+1} \vec{b}
$$

Similarly, we can show that $\overrightarrow{H G}=\frac{1}{x+1} \vec{b}$. Thus, $E F G H$ is a parallelogram.
Conversely, suppose $E F F H$ is a parallelogram. For some $0<s, t<1$, we have $\overrightarrow{D E}=s \vec{D}$, $\overrightarrow{A F}=t(\vec{b}-\vec{a})$, and $\overrightarrow{D F}=\vec{a}+t(\vec{b}-\vec{a})$. Hence, $\overrightarrow{E F}=\overrightarrow{D F}-\overrightarrow{D E}=(1-s-t) \vec{a}+t \vec{b}$. Similarly, for some $0<x, y<1$, we have $\overrightarrow{D H}=x \vec{c}, \overrightarrow{C G}=y(\vec{b}-\vec{c})$, and $\overrightarrow{D G}=\vec{c}+x(\vec{b}-\vec{c})$. Hence, $\overrightarrow{H G}=\overrightarrow{D G}-\overrightarrow{D H}=(1-x-y) \vec{c}+y \vec{b}$. Since $E F G H$ is a parallelogram, we must have $(1-s-t) \vec{a}+t \vec{b}=\overrightarrow{E F}=\overrightarrow{H G}=(1-x-y) \vec{c}+y \vec{b}$. Since \vec{a} and \vec{c} are not parallel, this shows that $1-s-t=0,1-x-y=0$, and $t=y$. Hence, $s=1-t=1-y=x$. Also, $\frac{D E}{D A}=s=x=\frac{D H}{D C}$. This implies $\frac{D E}{E A}=\frac{D H}{H C}=\frac{s}{1-s}$. And $\frac{A F}{A B}=t=y=\frac{C G}{C B}$ implies $\frac{A F}{F B}=\frac{C G}{G B}=\frac{t}{1-t}=\frac{1-s}{s}$. Therefore, we must have $\frac{D E}{E A} \cdot \frac{A F}{F B}=\frac{D H}{H C} \cdot \frac{C G}{G B}=1$ and $\frac{D E}{E A}=\frac{D H}{H C}$.

Remark 4. Let E, F, G, H be points in Theorem 4 that form a parallelogram. Let $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} be the intersections of $(B H$ and $D G),(A H$ and $C E),(B E$ and $D F)$, and $(A G$ and $C F)$, respectively. We know that the segments $A C^{\prime}$ and $C A^{\prime}$ intersect, say at J, on the edge $B D$ by Theorem 1. Further, the segments $B D^{\prime}$ and $D B^{\prime}$ intersect, say at I, on the edge $A C$. Since $\frac{D E}{E A}=\frac{D H}{H C}$, we have $\frac{A E}{E D} \cdot \frac{D H}{H C}=1$. Since we have $\frac{A E}{E D} \cdot \frac{D H}{H C} \cdot \frac{C I}{I A}=1$ be Ceva's theorem, we have $\frac{C I}{I A}=1$. Similarly, we have $\frac{B J}{J D}=1$. Therefore, if $E F G H$ is a parallelogram, the points I and J are always the midpoints of $A C$ and $B D$, respectively.

5 Centroids

We continue to investigate when E, F, G, H are the midpoints of the edges $D A, A B, B C$, and $C D$ of a tetrahedron $A B C D$, respectively. Let $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} be the intersections of $(B H$ and $D G),(A H$ and $C E),(B E$ and $D F)$, and $(A G$ and $C F)$, respectively, as in Theorem 1. Then, $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} are the centroids of the triangular faces $B C D, A C D$,
$A B D$, and $A B C$, respectively (see Page 7, [4]). Moreover, the point of concurrency P of the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ is the centroid of the tetrahedron $A B C D$. And we also have that $\frac{P A^{\prime}}{A P}=\frac{P B^{\prime}}{B P}=\frac{P C^{\prime}}{C P}=\frac{P D^{\prime}}{D P}=\frac{1}{3}$. (See [1], Theorem 170 on page 51.)

On the other hand, let P be a point inside the tetrahedron $A B C D$. Let $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} be the points of intersections of (the line $A P$ and the plane $\left.B C D\right),(B P$ and $A C D),(C P$ and $A B D$), and ($D P$ and $A B C$), respectively, as in Theorem 2. Now, we raise the following question: If $\frac{P A^{\prime}}{A P}=\frac{P B^{\prime}}{B P}=\frac{P C^{\prime}}{C P}=\frac{P D^{\prime}}{D P}=\frac{1}{3}$, is P the centroid of the tetrahedron $A B C D$? The answer is yes. However, since we could not find this converse statement in the literature, we will prove this result for a tetrahedron in Lemma 1 using Theorem 2. Further, we will give a weaker characterization that P is the centroid of a tetrahedron $A B C D$ if, and only if, $\frac{P A^{\prime}}{A P} \cdot \frac{P B^{\prime}}{B P} \cdot \frac{P C^{\prime}}{C P} \cdot \frac{P D^{\prime}}{D P}=\frac{1}{81}$ in Theorem 5 . We will obtain a similar result for a triangle in Corollary 3.

Notation 2. Let $\mathcal{A}_{A B C}$ denote the area of the triangle $A B C$.
Lemma 1. Let P be a point inside the tetrahedron $A B C D$. Let $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be the intersection of (the line $A P$ and the plane $B C D),(B P$ and $A C D),(C P$ and $A B D)$, and ($D P$ and $A B C$), respectively. Then, P is the centroid of the tetrahedron $A B C D$ if, and only if, $\frac{P A^{\prime}}{A P}=\frac{P B^{\prime}}{B P}=\frac{P C^{\prime}}{C P}=\frac{P D^{\prime}}{D P}=\frac{1}{3}$.

Proof. If P is the centroid of the tetrahedron $A B C D$, then $\frac{P A^{\prime}}{A P}=\frac{P B^{\prime}}{B P}=\frac{P C^{\prime}}{C P}=\frac{P D^{\prime}}{D P}=\frac{1}{3}$ by Theorem 170 in [1].

Conversely, suppose $\frac{P A^{\prime}}{A P}=\frac{P B^{\prime}}{B P}=\frac{P C^{\prime}}{C P}=\frac{P D^{\prime}}{D P}=\frac{1}{3}$. By Theorem 2(1), we know that $B C^{\prime}$ and $C B^{\prime}$ intersect on the edge $A D$. Let E, F, G, H be the intersections of ($B C^{\prime}$ and $C B^{\prime}$ on $\left.A D\right),\left(C D^{\prime}\right.$ and $D C^{\prime}$ on $\left.A B\right),\left(D A^{\prime}\right.$ and $A D^{\prime}$ on $\left.B C\right)$, and $\left(A B^{\prime}\right.$ and $B A^{\prime}$ on $\left.C D\right)$, respectively. We first show that E is the midpoint of $A D$. Since $A A^{\prime}, D D^{\prime}$, and $E G$ intersect by Theorem 2, we have $\frac{D A^{\prime}}{A^{\prime} G} \cdot \frac{G D^{\prime}}{D^{\prime} A} \cdot \frac{A E}{E D}=1$ by Ceva's theorem applied to the triangle $A D G$. Hence, we have

$$
\begin{equation*}
\frac{A E}{E D}=\frac{G A^{\prime}}{A^{\prime} D} \cdot \frac{A D^{\prime}}{D^{\prime} G} \tag{*}
\end{equation*}
$$

On the other hand, since $\frac{3}{4} A A^{\prime}=A P$ and $\frac{3}{4} D D^{\prime}=D P$ from $\frac{P A^{\prime}}{A P}=\frac{P D^{\prime}}{D P}=\frac{1}{3}$, we have $\frac{3}{4} \mathcal{A}_{A A^{\prime} D}=\mathcal{A}_{A P D}=\frac{3}{4} \mathcal{A}_{A D D^{\prime}}$ so that $\mathcal{A}_{A A^{\prime} D}=\mathcal{A}_{A D^{\prime} D}$.

But $\mathcal{A}_{A A^{\prime} D}=\frac{D A^{\prime}}{D G} \mathcal{A}_{A G D}$ and $\mathcal{A}_{A D^{\prime} D}=\frac{A D^{\prime}}{A G} \mathcal{A}_{A G D}$. Thus, $\frac{D A^{\prime}}{D G}=\frac{A D^{\prime}}{A G}$. Since $D G=$ $D A^{\prime}+A^{\prime} G$ and $A G=A D^{\prime}+D^{\prime} G$, we have $\frac{A D^{\prime}}{D^{\prime} G}=\frac{D A^{\prime}}{A^{\prime} G}$.

Substituting this into $(*)$, we have $\frac{A E}{E D}=\frac{G A^{\prime}}{A^{\prime} D} \cdot \frac{D A^{\prime}}{A^{\prime} G}=1$. Therefore, $A E=E D$, i.e., E is the midpoint of the edge $A D$.

Similarly, we can show that F, G, H are the midpoints of the edges $A B, B C$, and $C D$. These show that $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are the centroids of the triangles $B C D, A C D, A B D$, and $A B C$, respectively. Since P is the intersection of the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}, P$ is the centroid of the tetrahedron $A B C D$.

The proof of the next theorem uses the method of Lagrange multipliers.
Theorem 5. Let P be a point inside or on the face of a tetrahedron $A B C D$ different from the vertices A, B, C, and D. Let $A^{\prime}, B^{\prime}, C^{\prime}$, and D^{\prime} be intersections of (the line $A P$ and the face $B C D)$, ($B P$ and $A C D$), ($C P$ and $A B D$), and ($D P$ and $A B C$), respectively. Then,
(1) $\frac{P A^{\prime}}{A A^{\prime}}+\frac{P B^{\prime}}{B B^{\prime}}+\frac{P C^{\prime}}{C C^{\prime}}+\frac{P D^{\prime}}{D D^{\prime}}=1$, and
(2) $\frac{P A^{\prime}}{A P} \cdot \frac{P B^{\prime}}{B P} \cdot \frac{P C^{\prime}}{C P} \cdot \frac{P D^{\prime}}{D P} \leq \frac{1}{81}$.
(3) The point P is the centroid of the tetrahedron $A B C D$ if, and only if,

$$
\frac{P A^{\prime}}{A P} \cdot \frac{P B^{\prime}}{B P} \cdot \frac{P C^{\prime}}{C P} \cdot \frac{P D^{\prime}}{D P}=\frac{1}{81}
$$

Proof of (1). Let $H_{A}, H_{B}, H_{C}, H_{D}$ be the feet of the altitudes from A, B, C, D to the planes $B C D, A C D, A B D, A B C$, respectively. Then the volume $V=V_{A B C D}$ of the tetrahedron $A B C D$ is given by $V=\frac{1}{3} \mathcal{A}_{B C D} \cdot A H_{A}=\frac{1}{3} \mathcal{A}_{B C D} \cdot A A^{\prime} \cdot \sin \varangle A A^{\prime} H_{A}$. Similarly,

$$
V=\frac{1}{3} \mathcal{A}_{A C D} \cdot B B^{\prime} \cdot \sin \varangle B B^{\prime} H_{B}=\frac{1}{3} \mathcal{A}_{A B D} \cdot C C^{\prime} \cdot \sin \varangle C C^{\prime} H_{C}=\frac{1}{3} \mathcal{A}_{A B C} \cdot D D^{\prime} \cdot \sin \varangle D D^{\prime} H_{D} .
$$

From these, we have
(i) $\frac{1}{3} \mathcal{A}_{B C D} \cdot \sin \varangle A A^{\prime} H_{A}=\frac{V}{A A^{\prime}}$,
(ii) $\frac{1}{3} \mathcal{A}_{A C D} \cdot \sin \varangle B B^{\prime} H_{B}=\frac{V}{B B^{\prime}}$,
(iii) $\frac{1}{3} \mathcal{A}_{A B D} \cdot \sin \varangle C C^{\prime} H_{C}=\frac{V}{C C^{\prime}}$, and
(iv) $\frac{1}{3} \mathcal{A}_{A B C} \cdot \sin \varangle D D^{\prime} H_{D}=\frac{V}{D D^{\prime}}$.

Since $V_{B C D P}=\frac{1}{3} \mathcal{A}_{B C D} \cdot P A^{\prime} \cdot \sin \varangle A A^{\prime} H_{A}, V_{C A D P}=\frac{1}{3} \mathcal{A}_{A C D} \cdot P B^{\prime} \cdot \sin \varangle B B^{\prime} H_{B}, V_{A B D P}=$ $\frac{1}{3} \mathcal{A}_{A B D} \cdot P C^{\prime} \cdot \sin \varangle C C^{\prime} H_{C}, V_{A B C P}=\frac{1}{3} \mathcal{A}_{A B C} \cdot P D^{\prime} \cdot \sin \varangle D D^{\prime} H_{D}$, and since $V=V_{B C D P}+$ $V_{C A D P}+V_{A B D P}+V_{A B C P}$, we have

$$
\text { (v) } \begin{aligned}
& V=\frac{1}{3} \mathcal{A}_{B C D} \cdot P A^{\prime} \cdot \sin \varangle A A^{\prime} H_{A}+\frac{1}{3} \mathcal{A}_{A C D} \cdot P B^{\prime} \cdot \sin \varangle B B^{\prime} H_{B} \\
&+\frac{1}{3} \mathcal{A}_{A B D} \cdot P C^{\prime} \sin \varangle C C^{\prime} H_{C}+\frac{1}{3} \mathcal{A}_{A B C} \cdot P D^{\prime} \cdot \sin \varangle D D^{\prime} H_{D} .
\end{aligned}
$$

Substituting (i)-(iv) into (v), we have $V=\frac{P A^{\prime} \cdot V}{A A^{\prime}}+\frac{P B^{\prime} \cdot V}{B B^{\prime}}+\frac{P C^{\prime} \cdot V}{C C^{\prime}}+\frac{P D^{\prime} \cdot V}{D D^{\prime}}$. Dividing both sides by V, we obtain $\frac{P A^{\prime}}{A A^{\prime}}+\frac{P B^{\prime}}{B B^{\prime}}+\frac{P C^{\prime}}{C C^{\prime}}+\frac{P D^{\prime}}{D D^{\prime}}=1$.

Proof of (2) and (3). If $P A^{\prime} \cdot P B^{\prime} \cdot P C^{\prime} \cdot P D^{\prime}=0$, then the inequality (2) holds since we always have the inequality $A P \cdot B P \cdot C P \cdot D P>0$. So, we assume that $P A^{\prime} \cdot P B^{\prime} \cdot P C^{\prime} \cdot P D^{\prime} \neq 0$. That is, we assume that P is inside the tetrahedron $A B C D$.

Let $A P=a, B P=b, C P=c, D P=d, P A^{\prime}=x, P B^{\prime}=y, P C^{\prime}=z, P D^{\prime}=w$. Then, we want to

$$
\begin{array}{ll}
\operatorname{maximize} & \frac{x}{a} \cdot \frac{y}{b} \cdot \frac{z}{c} \cdot \frac{w}{d} \\
\text { subject to } & \frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}+\frac{w}{d+w}=1, \quad \text { and } \quad a, b, c, d, x, y, z, w>0
\end{array}
$$

(This constraint is from the equation (1) of this theorem expressed in terms of a, b, c, d, x, y, z and w, as in $\frac{P A^{\prime}}{A A^{\prime}}=\frac{x}{a+x}$, for example.)

Let $s=\frac{x}{a}, t=\frac{y}{b}, u=\frac{z}{c}, v=\frac{w}{d}$. Then $\frac{x}{a+x}=\frac{a s}{a+a s}=\frac{s}{1+s}$. Similarly, we have $\frac{y}{b+y}=\frac{t}{1+t}$, $\frac{z}{c+z}=\frac{u}{1+u}, \frac{w}{d+w}=\frac{v}{1+v}$. Then we can restate our maximizing problem to
maximize $\quad f(s, t, u, v)=$ stuv
subject to $\quad \frac{s}{1+s}+\frac{t}{1+t}+\frac{u}{1+u}+\frac{v}{1+v}=1, \quad$ and $\quad s, t, u, v>0$.

Let $g(s, t, u, v)=\frac{s}{1+s}+\frac{t}{1+t}+\frac{u}{1+u}+\frac{v}{1+v}-1$. Then critical points (s, t, u, v) are given by $\nabla f(s, t, u, v)=\lambda \nabla g(s, t, u, v)$ for some constant λ, called a Lagrange multiplier. Here, ∇f is the gradient of the function f. Hence, we have

$$
\langle t u v, s u v, \text { stv, stu }\rangle=\lambda\left\langle\frac{1}{(1+s)^{2}}, \frac{1}{(1+t)^{2}}, \frac{1}{(1+u)^{2}}, \frac{1}{(1+v)^{2}}\right\rangle .
$$

Thus, from the first two components of the above vector equation, we have $\lambda=(1+s)^{2} t u v=$ $(1+t)^{2}$ suv. This implies $(t-s)(s t-1)=0$. Hence, $t=s$ or $t=\frac{1}{s}$.

Since $t=\frac{1}{s}$ implies $\frac{t}{1+t}=\frac{1 / s}{1+1 / s}=\frac{1}{1+s}$, and since $\frac{s}{1+s}+\frac{t}{1+t}+\frac{u}{1+u}+\frac{v}{1+v}=1$, the equation $t=\frac{1}{s}$ implies that $\left(\frac{s}{1+s}+\frac{1}{1+s}\right)+\frac{u}{1+u}+\frac{v}{1+v}=1$, i.e., $u=v=0$. This is a contradiction to $u, v>0$. Thus, we must have $t=s$. Similarly, we have $u=s$ and $v=s$. So, $\frac{s}{1+s}+\frac{t}{1+t}+\frac{u}{1+u}+\frac{v}{1+v}=1$ gives us that $\frac{4 s}{1+s}=1$ or $s=\frac{1}{3}$. Hence, $t=u=v=\frac{1}{3}$. Since $f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=\frac{1}{81}$, and since we can make one of s, t, u, v as close to 0 as we want, we see that the maximum value of f is $f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=\frac{1}{81}$. Hence, we have $f(s, t, u, v)=$ stuv $\leq \frac{1}{81}$ or $\frac{x}{a} \cdot \frac{y}{b} \cdot \frac{z}{c} \cdot \frac{w}{d} \leq \frac{1}{81}$. Therefore, we have shown that

$$
\frac{P A^{\prime}}{A P} \cdot \frac{P B^{\prime}}{B P} \cdot \frac{P C^{\prime}}{C P} \cdot \frac{P D^{\prime}}{D P} \leq \frac{1}{81}
$$

The equality holds only when $s=t=u=v=\frac{1}{3}$, or when $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{w}{d}=\frac{P A^{\prime}}{A P}=\frac{P B^{\prime}}{B P}=$ $\frac{P C^{\prime}}{C P}=\frac{P D^{\prime}}{D P}=\frac{1}{3}$. In other words, the equality in (2) holds if, and only if, P is the centroid of the tetrahedron $A B C D$ by Lemma 1 . This proves the statement (3).

We can obtain a similar theorem for a triangle from Theorem 5 .
Corollary 3. Let P be a point inside or on a triangle $A B C$ different from the vertices A, B, and C. Let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ be the intersections of ($A P$ and $B C$), ($B P$ and $A C$), and ($C P$ and $A B)$ respectively. Then, we have
(1) $\frac{P A^{\prime \prime}}{A A^{\prime \prime}}+\frac{P B^{\prime \prime}}{B B^{\prime \prime}}+\frac{P C^{\prime \prime}}{C C^{\prime \prime}}=1$, and
(2) $\frac{P A^{\prime \prime}}{A P} \cdot \frac{P B^{\prime \prime}}{B P} \cdot \frac{P C^{\prime \prime}}{C P} \leq \frac{1}{8}$.
(3) The point P is the centroid of the triangle $A B C$ if, and only if, $\frac{P A^{\prime \prime}}{A P} \cdot \frac{P B^{\prime \prime}}{B P} \cdot \frac{P C^{\prime \prime}}{C P}=\frac{1}{8}$.

Proof of (1). Let P be an interior point or on the sides of the triangle $A B C$, different from A, B, and C. Let $A B C D$ be a tetrahedron having the triangle $A B C$ as the base. Let $D^{\prime}=P$. Then, $P D^{\prime}=0$ and $A^{\prime \prime}=A, B^{\prime \prime}=B^{\prime}, C^{\prime \prime}=C^{\prime}$ in Theorem 5. Hence, we have

$$
\frac{P A^{\prime \prime}}{A A^{\prime \prime}}+\frac{P B^{\prime \prime}}{B B^{\prime \prime}}+\frac{P C^{\prime \prime}}{C C^{\prime \prime}}=\frac{P A^{\prime}}{A A^{\prime}}+\frac{P B^{\prime}}{B B^{\prime}}+\frac{P C^{\prime}}{C C^{\prime}}+\frac{P D^{\prime}}{D D^{\prime}}=1
$$

by Theorem $5(1)$.
Proof of (2) and (3). Unlike the proof of Theorem 5(2), we prove this without Lagrange multipliers.

Let $A P=a, B P=b, C P=c, P A^{\prime \prime}=x, P B^{\prime \prime}=y, P C^{\prime \prime}=z$. Then, (1) becomes

$$
\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}=1 .
$$

This can be rewritten as

$$
x(b+y)(c+z)+y(z+x)(c+z)+z(a+x)(b+y)=(a+x)(b+y)(c+z .)
$$

This simplifies to $a b c=2 x y z+a y z+b x z+c x y$.
By the Arithmetic-Geometric Mean Inequality applied to the right side of this equation, we have $a b c=2 x y z+a y z+b x z+c x y \geq 4((2 x y z)(a y z)(b x z)(c x y))^{1 / 4}=4\left(2(x y z)^{3} a b c\right)^{1 / 4}$. Hence, $(a b c)^{4} \geq 4^{4}\left\{2(x y z)^{3} a b c\right\}$. This simplifies to $a b c \geq 8 x y z$, or

$$
\frac{P A^{\prime \prime}}{A P} \cdot \frac{P B^{\prime \prime}}{B P} \cdot \frac{P C^{\prime \prime}}{C P} \leq \frac{1}{8}
$$

The equality holds when $2 x y z=a y z=b x z=c x y$ so that $a=2 x, b=2 y, c=2 z$. The equation $a=2 x$ shows that $\frac{P A^{\prime \prime}}{P A}=\frac{x}{a}=\frac{1}{2}$. Similarly, $\frac{P B^{\prime \prime}}{P B}=\frac{P C^{\prime \prime}}{P C}=\frac{1}{2}$. Thus,

$$
\frac{P A^{\prime \prime}}{P A}=\frac{P B^{\prime \prime}}{P B}=\frac{P C^{\prime \prime}}{P C}=\frac{1}{2}
$$

Similar to Lemma 1, we have that if P be a point inside the triangle $A B C$, and if $A^{\prime \prime}$, $B^{\prime \prime}, C^{\prime \prime}$ be the intersections of $(A P$ and $B C),(B P$ and $A C)$, and $(C P$ and $A B)$, respectively, then P is the centroid of the triangle $A B C$ if, and only if, $\frac{P A^{\prime \prime}}{A P}=\frac{P B^{\prime \prime}}{B P}=\frac{P C^{\prime \prime}}{C P}=\frac{1}{2}$. Therefore, the equality in (2) holds if, and only if, P is the centroid of the triangle $A B C$. This proves the statement (3).

References

[1] N. Altshiller-Court: Modern Pure Solid Geometry. The Macmillan Company, 1935.
[2] N. Altshiller-Court: College Geometry. An Introduction to the Modern Geometry of the Triangle and the Circle. Dover Publications, Inc., 2 ed., 1952.
[3] M. Buba-Brzozowa: Ceva's and Menelaus's Theorems for the n-dimensional Space. J. Geom. Graph. 4(2), 114-118, 2000.
[4] H. S. M. Coxeter and S. L. Greitzer: Geometry Revisited. The Mathematical Association of America, 1967.
[5] T. Q. Hung: Extending a Theorem von van Aubel to the Simplex. J. Geom. Graph. 25(2), 253-263, 2021.
[6] S. Landy: A Generalization of Ceva's Theorem to Higher Dimensions. Amer. Math. Monthly 95(10), 936-939, 1988. doi: 10.1080/00029890.1988.11972122.
[7] S. Marko, F. Litvinov: On the Steiner-Routh Theorem for Simplices. Amer. Math. Monthly 124(5), 422-435, 2017. doi: 10.4169/amer.math.monthly.124.5.422.
[8] D. Samet: An Extension of Ceva's Theorem to n-Simplices. Amer. Math. Monthly 128(5), 435-445, 2021. doi: 10.1080/00029890.2021.1896292.
[9] K. Witczynski: Ceva's and Menelaus' theorems for tetrahedra (II). Zeszyty Nauk. Geom. 29, 233-235, 1996.

Received July 12, 2022; final form September 6, 2022.

