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Concurrent Segments in a Tetrahedron –
Applications of Ceva’s and Carnot’s Theorems
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Abstract. Ceva’s theorem is about concurrence of three segments on a triangle
with an affine ratio. Among the several theorems named after him, we are in-
terested in Carnot’s theorem that relates the concurrence of two segments in a
skew quadrilateral in space, again, with an affine ratio. First, we apply these the-
orems to obtain a theorem on the concurrence of seven segments in a tetrahedron.
Secondly, we show that the Steiner-Routh theorem implies Carnot’s theorem, and
obtain the volumes of the two parts of a tetrahedron separated by a planar quadri-
lateral. Thirdly, we consider a special case of Carnot’s theorem (or an extension
of Varignon’s theorem) to determine when four points on a skew quadrilateral are
to form a parallelogram. Finally, we give a new characterization of the centroid
of a tetrahedron.
MSC 2020: 51M04 (primary), 51M25

1 Introduction

Let us begin with definitions.

Definition 1. Four non-co-planar points A, B, C, D are the vertices of a tetrahedron ABCD,
the six segments joining these points are the edges of the tetrahedron, the four triangles built
by any triple out of the vertices are the faces of the tetrahedron, and the tetrahedron carries
(up to orientation and cyclically rearranged labels) three skew quadrilaterals: DABC, DACB,
and DBAC. The skew quadrilateral DABC consists of edges DA, AB, BC, and CD.

Theorems 1 and 2 in Section 2 were inspired by Ceva’s theorem for a triangle and Carnot’s
theorem for a skew quadrilateral.

Theorem (Ceva’s Theorem; see Theorem 1.21 on Page 4 of [4], or Theorem 326 on Page 159
of [2].). Let ABC be a triangle. Let C ′′, A′′, B′′ be points on the edges AB, BC, and CA,
respectively. Then AA′′, BB′′, and CC ′′ concur if, and only if AB′′

B′′C
· CA′′

A′′B
· BC′′

C′′A
= 1.
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There are several theorems named after Carnot, but the one we are interested in is the
following.

Theorem (Carnot’s Theorem; see Page 111, Theorem 329 in [1].). Let DABC be a skew
quadrilateral. Let E, F , G, H be points on the edges DA, AB, BC, and CD, respectively.
Then, EFGH is a planar quadrilateral if, and only if, DE

EA
· AF

F B
· BG

GC
· CH

HD
= 1. In other words, the

segments EG and FH concur (or E, F , G, H are coplanar) if and only if DE
EA

· AF
F B

· BG
GC

· CH
HD

= 1.

Note. If a skew quadrilateral DABC is not planar, edges EF and GH of the planar quadri-
lateral EFGH in Carnot’s theorem do not intersect since the edges EF and GH are on the
two distinct triangles BAD and BCD, respectively, that share only the edge BD. Similarly,
the edges EH and FG of the quadrilateral EFGH do not intersect.

There are several generalizations of Ceva’s theorem to a tetrahedron as in [9], and to
n-dimensional (n ≥ 2) simplices as in [3, 6, 8]. Our Theorem 1 has a resemblance to the one
given by K. Witczynski [9], which states as follows:

Theorem (Witczynski’s Theorem; see [9] or [3].). Let E, F , G, H, I, J be points on the
edges DA, AB, BC, CD, AC, BD of a tetrahedron ABCD, respectively. Suppose that
DE
EA

· AF
F B

· BJ
JD

= 1, AF
F B

· BG
GC

· CI
IA

= 1, AI
IC

· CH
HD

· DE
EA

= 1, and DJ
JB

· BG
GC

· CH
HD

= 1. Let A′, B′, C ′,
D′ be the intersection of (BH, CJ , and DG), (AH, CE, and DI), (AJ , BE, and DF ), and
(AG, BI, and CF ), respectively. Then, the segments AA′, BB′, CC ′, and DD′ concur.

Figure 1: Explanation: The six thick black lines form the tetrahedron ABCD; the three red lines
EG, FH, and IJ connect opposing pairs of edges in the tetrahedron; the four green lines
AA′, BB′, CC ′, and DD′ connect vertices to the points A′, B′, C ′, and D′ in the faces
of the tetrahedron; all the thin black lines lie in the faces of the tetrahedron connecting
(A, B, D, E, F, J) in the face ABD, (A, B, C, F, G, I) in the face ABC, (A, C, D, I, E, H)
in the face ACD, and (B, C, D, G, H, J) in the face BCD.

Theorem 1 and Theorem 2 in Section 2 are converse to each other, and should be treated
as one theorem. Using notations in Witczynski’s theorem, the essence of our Theorems 1 and
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2 will be to prove that the segments EG, FH, and IJ are concurrent at P if, and only if, the
four segments AA′, BB′, CC ′, and DD′ concur at P as shown in Figure 1.

In Section 3, we will show that Carnot’s theorem is a consequence of the Steiner-Routh
theorem, and we will obtain the volumes of two parts of a tetrahedron separated by a planar
quadrilateral in Theorem 3 using a similar idea used by Marko and Litvinov in [6] to prove
the Steiner-Routh theorem.

The natural special case is when E, F , G, H are midpoints of the sides of a skew quadri-
lateral DABC. In this case, the planar quadrilateral EFGH does not only divide the tetrahe-
dron ABCD into two equal volumes (by Theorem 3), but it is also a parallelogram (a special
case of Carnot’s theorem or an extension of Varignon’s theorem). Motivated by this, we will
obtain a necessary and sufficient condition when EFGH on a skew quadrilateral DABC is
to form a parallelogram (Theorem 4).

Further, the midpoints of a skew quadrilateral also remind us of the centroids of a tetra-
hedron. Suppose P is a point inside of the tetrahedron ABCD, and suppose A′, B′, D′,
and C ′ are intersections of (the line AP and the face BCD), (BP and ACD), (CP and
ABD), and (DP and ABC), respectively. If P is the centroid of the tetrahedron, then it is
known that P A′

AP
= P B′

BP
= P C′

CP
= P D′

DP
= 1

3 (see Theorem 170 in [1]). In Theorem 5, we will
strengthen this result to prove that P is the centroid of a tetrahedron ABCD if, and only if,
P A′

AP
· P B′

BP
· P C′

CP
· P D′

DP
= 1

81 . We will use Theorem 2 to prove this.

2 Concurrence Theorems

Theorems 1 and 2 below are converse to each other. Theorem 1 resembles to Witczynski’s
theorem, but we do not use any products of ratios in the statement nor in the proof.
Theorem 1. Suppose E, F , G, H are points on the edges DA, AB, BC, and CD, respec-
tively, of a tetrahedron ABCD such that EG and FH intersect at a point P . Let A′, B′, C ′,
and D′ be the intersections of the segments (BH and DG), (AH and CE), (BE and DF ),
and (AG and CF ), respectively. Then, the following are true:

(1) The segments AA′, BB′, CC ′, and DD′ concur at P .
(2) The lines AC ′ and CA′ intersect, say at J , on the edge BD. The lines BD′ and DB′

intersect, say at I, on the edge AC.
(3) The lines (BC ′ and CB′), (DC ′ and CD′), (AD′ and DA′), (AB′ and BA′) intersect

at E, F, G, and H, respectively.
Proof of (1). The intersection of the triangles HAB and FCD is the segment FH, and the
intersection of the triangles BCD and ADG is the segment EG. Since the segments EG and
FH concur at P , the intersection of the four triangles HAB, FCD, EBC, and GAD is P .

Since the intersection of the triangles GAD and HAB is the segment AA′, AA′ intersects
the triangle EBC at P . Since the intersection of the triangles HAB and EBC is the segment
BB′, BB′ intersects the triangle FCD at P .

Since the intersection of the triangles EBC and FCD is the segment CC ′, CC ′ intersects
the triangle GAD at P . And finally, since the intersection of the triangles FCD and GAD
is the segment DD′, DD′ intersects the triangle HAB at P .

Therefore, we conclude that the segments AA′, BB′, CC ′, and DD′ concur at P .

Proof of (2). The lines AC ′ and CA′ lie on the plane ACP , and they are not parallel. So,
they intersect, say at J . Since CJ and AJ are on the tetrahedron ABCD, J must be on BD.
Similarly, BD′ and DB′ intersect, say at I.
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Proof of (3). We know that C ′ is on BE so that the intersection of BC ′ with AD is E. The
lines BC ′ and CB′ are on the plane PBC, and they intersect. Since CB′ intersects AD, the
three lines BC ′, CB′ and AD must intersect at E. Similarly, we can show that the segments
(DC ′ and CD′), (AD′ and DA′), (AB′ and BA′) intersect at F , G, and H, respectively.

Remark 1. The condition “EG and FH intersect” in Theorem 1 can be replaced by the
equation DA

ED
· AF

F B
· BG

GC
· CH

HD
= 1 by Carnot’s theorem. If we do this, the point P is not defined.

This was an incentive to write the theorem using “EG and FH intersect”.

Theorem 2. Suppose P is a point inside a tetrahedron ABCD. Suppose A′, B′, C ′, D′ are
intersections of (the line AP and the face BCD), (BP and ACD), (CP and ABD), and
(DP and ABC), respectively. Then the following are true:

(1) The lines (BC ′ and CB′), (DC ′ and CD′), (AD′ and DA′), (AB′ and BA′), (AC ′

and CA′), and (BD′ and DB′) intersect, say at E, F, G, H, I, and J , respectively. The
points E, F, G, H, I, and J are points on the edges DA, AB, BC, CD, AC, and BD,
respectively.

(2) The segments EG, FH, and IJ intersect at P . Hence, EFGH, EIGJ , and FJHI are
planar quadrilaterals.

Proof of (1). The plane PBC contains the segments BC ′ and CB′, so they intersect and the
intersection is on DA. We can prove the others similarly.

Proof of (2). On the triangle ABD, since the intersection of AJ , BE, and DG is C ′, we have
DE
EA

· AF
F B

· BJ
JD

= 1 by Ceva’s theorem. Similarly, on the triangle BCD, we have DJ
JB

· BG
GC

· CH
HD

= 1.
By this latter equation, we have BJ

JD
=

(
DJ
JB

)−1
= BG

GC
· CH

HD
.

Substituting this into the first equation, we have DE
EA

· AF
F B

· BG
GC

· CH
HD

= 1. Applying Carnot’s
theorem to the skew quadrilateral DABC, we know that EFGH is a planar quadrilateral
so that EG and FH intersect, say at Q. But by the part (1) of Theorem 1, we must have
that Q = P , and EG and FH intersect at P . Similarly, we can show that EIGJ is a planar
quadrilateral since EG and IJ intersect at P . Therefore, the segments EG, FH, and IJ
intersect at P .

Corollary 1. Let I and J be the points defined in Theorem 1(2). Then, EG, FH, and IJ
concur at P .

Proof. Since AA′, BB′, CC ′, and DD′ concur at P by Theorem 1(1), we know that EG, FH,
and IJ concur at P by Theorem 2(2).

Corollary 2. Let E, F , G, H, I, J be points on the edges DA, AB, BC, CD, AC, and
BD, respectively, of a tetrahedron ABCD. Then, the following statements are equivalent:

(1) EG, FH, and IJ concur.

(2) DE

EA
· AF

FB
· BG

GC
· CH

HD
= 1, AF

FB
· BJ

JD
· DH

HC
· CI

IA
= 1, and DE

EA
· AI

IC
· CG

GB
· BJ

JD
= 1.

(3) AF

FB
· BG

GC
· CI

IA
= 1, AI

IC
· CH

HD
· DE

EA
= 1, and DJ

JB
· BG

GC
· CH

HD
= 1.

(4) DE

EA
· AF

FB
· BJ

JD
= 1, AF

FB
· BG

GC
· CI

IA
= 1, and DJ

JB
· BG

GC
· CH

HD
= 1.



H. Katsuura: Concurrent Segments in a Tetrahedron 293

Proof. (1) implies (2) by Carnot’s theorem. Conversely, by Carnot’s theorem, (2) implies
that (EG and FH), (FH and IJ) and (EG and IJ) intersect. Thus, three lines EG, FH,
and IJ intersect. Since these three lines are not in the same plane, EG, FH, and IJ must
concur. Hence, (1) and (2) are equivalent.

By Theorem 1(2) and (3), and by Ceva’s theorem, (1) implies (4). Clearly, (4) implies (3).
Suppose (3) holds. Since AF

F B
· BG

GC
·

(
CI
IA

)
= 1, we have AI

IC
= AF

F B
· BG

GC
. Substituting this

into
(

AI
IC

)
· CH

HD
· DE

EA
= 1, we have

(
AF

FB
· BG

GC

)
·

(
CH

HD
· DE

EA

)
= DE

EA
· AF

FB
· BG

GC
· CH

HD
= 1.

From DJ
JB

· BG
GC

·
(

CH
HD

)
= 1, we have BG

GC
=

(
DJ
JB

· CH
HD

)−1
= BJ

JD
· DH

HC
. Substituting this into

AF
F B

·
(

BG
GC

)
· CI

IA
= 1, we have

AF

FB
·

(
BJ

JD
· DH

HC

)
· CI

IA
= AF

FB
· BJ

JD
· DH

HC
· CI

IA
= 1.

From DJ
JB

· BG
GC

·
(

CH
HD

)
= 1, we have CH

HD
= BJ

JD
· CG

GB
. Substituting this into AI

IC
·

(
CH
HD

)
· DE

EA
= 1,

we have
AI

IC
·

(
BJ

JD
· CG

GB

)
· DE

EA
= DE

EA
· AI

IC
· CG

GB
· BJ

JD
= 1.

Hence, (3) implies (2).
Therefore, we have shown the equivalence of (1)–(4).

Remark 2. Theorem 1 and Corollary 2 imply Witczynski’s theorem.
Remark 3. Using the notations in Theorem 1 (or the ones in Theorem 2), it is interesting to
note that the intersection of the three planes EBC, FCD, and IDB is P . Hence, Theorem 2
in [5] implies that AP

P A′ = AF
F B

+ AI
IC

+ AE
ED

.

3 Steiner-Routh Theorem Related Results

Carnot’s theorem is proved using Ceva’s theorem and Menelaus’s theorem in [1]. However, it
is also implied by the Steiner-Routh theorem which reads as follows:

Theorem (Steiner-Routh Theorem; see [7]). Let ABCD be a tetrahedron. Let E, F , G, H
be points on the edges DA, AB, BC, and CD, respectively. Let DE

EA
= x, AF

F B
= y, BG

GC
= z,

CH
HD

= w. Let the volumes of the two tetrahedra EFGH and ABCD be denoted by VEF GH

and V , respectively. Then

VEF GH = |1 − xyzw|
(1 + x)(1 + y)(1 + z)(1 + w)V.

Proof of Carnot’s Theorem. Since DE
EA

= x, AF
F B

= y, BG
GC

= z, CH
HD

= w, the tetrahedron
EFGH has the volume zero if, and only if xyzw = DE

EA
· AF

F B
· BG

GC
· CH

HD
= 1. However, the

tetrahedron EFGH has volume zero if, and only if EFGH is a planar quadrilateral, i.e., the
segments EG and FH concur. (As we noted in the Introduction, two opposite edges of the
planar quadrilateral EFGH do not intersect.)
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Carnot lived from 1753 to 1823, and Steiner lived from 1796 to 1863. It is not clear when
Carnot published his theorem. However, Steiner published his original paper in 1828 after
Carnot’s death, according to [7]. Hence, Carnot’s theorem seems older than the Steiner-Routh
theorem.

Next, we will find the two volumes of the divided tetrahedron by a quadrilateral.
Notation 1. Let the volumes of the tetrahedron EFGH be denoted by VEF GH .

Theorem 3. Let ABCD be a tetrahedron. Let E, F, G, H be points on the edges DA, AB, BC,
and CD, respectively. Let DE

EA
= x, AF

F B
= y, BG

GC
= z, CH

HD
= w. Suppose that xyzw = 1.

Then, there are two parts of the tetrahedron separated by the planar quadrilateral EFGH,
one contains the edge AC (denote its volume by VAC) and the other contains BD (denote its
volume by VBD). Then, we have the following identities:

VDB = 1 + x + z + xy + xz + zw + xyz + xzw

(1 + x)(1 + y)(1 + z)(1 + w) V, and

VAC = 1 + y + w + xw + yz + yw + xyw + yzw

(1 + x)(1 + y)(1 + z)(1 + w) V,

where V is the volume of the tetrahedron ABCD.

Proof. We use similar ideas as used in [7] to prove the Steiner-Routh theorem. Let AE
AD

= a,
AF
AB

= b, BG
GC

= c, CH
CD

= d. Then, 0 < a, b, c, d < 1, and we have a = 1
1+x

; b = y
1+y

; c = z
1+z

; and
d = w

1+w
. Note that VDABH = (1 − d)V since the tetrahedra DABH and DABC share the

base DAB, and since the height of DABH is shrunk by 1−d from DABC. Similarly, we have
VDAF H = bVDABH , and VDEF H = (1 − a)VDAF H . Hence, we have VDEF H = (1 − a)VDAF H =
(1 − a)bVDABH = (1 − a)b(1 − d)V = xy

(1+x)(1+y)(1+w)V .
Similarly, we can see that VDF BH = (1 − b)VDABH = (a − b)(a − d)V = 1

(1+y)(1+w)V , and
VBGHF = cVBCHF = cdVBCDF = cd(1 − b)V = zw

(1+y)(1+z)(1+w)V .
Therefore, we have

VDB = VDEF H + VDF BH + VBGHF

= xy

(1 + x)(1 + y)(1 + w)V + 1
(1 + y)(1 + w)V + zw

(1 + y)(1 + z)(1 + w)V

= 1 + x + z + xy + xz + zw + xyz + xzw

(1 + x)(1 + y)(1 + z)(1 + w) V.

Also, since xyzw = 1, we have

VAC = V − VDB = y + w + xw + yz + xyw + yzw + xyzw

(1 + x)(1 + y)(1 + z)(1 + w) V

= 1 + y + w + xw + yz + yw + xyw + yzw

(1 + x)(1 + y)(1 + z)(1 + w) V.

4 A Special Case of Carnot’s Theorem/An Extension of
Varignon’s Theorem

If E, F , G, H are the midpoints of the edges DA, AB, BC, and CD, respectively, of a
skew quadrilateral ABCD, the planar quadrilateral EFGH splits the tetrahedron ABCD
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into two equal volumes by Theorem 3. However, it is known that the midpoints of a planar
quadrilateral are the vertices of a parallelogram (Varignon’s theorem, see Theorem 3.11 of [4]
or Theorem 249 of [2]). This is still true for a skew quadrilateral. That is, the midpoints of a
skew quadrilateral are the vertices of a parallelogram. We can generalize this to the following
as a special case of Carnot’s theorem or as an extension of Varignon’s theorem.

Theorem 4. Let DABC be a skew quadrilateral. Let E, F , G, H be points on the edges
DA, AB, BC, and CD, respectively. Then EFGH is a parallelogram if, and only if,

DE

EA
· AF

FB
= 1,

DH

HC
· CG

GB
= 1, and DE

EA
= DH

HC
.

(Note that DE
EA

· AF
F B

= 1, DH
HC

· CG
GB

= 1, and DE
EA

= DH
HC

is equivalent to DE
EA

= DH
HC

= BF
F A

= BG
GC

.)

Proof. We use vectors. Let #    »

DA = a⃗, #    »

DB = b⃗, #    »

DC = c⃗.
Suppose DE

EA
· AF

F B
= 1, DH

HC
· CG

GB
= 1, and DE

EA
= DH

HC
. Let DE

EA
= x. Then AF

F B
= 1

x
. Hence,

#    »

EA = 1
x + 1

#»a ,
#    »

AF = 1
x + 1

#    »

AB = 1
1 + x

( #»

b − #»a ).

This shows that
#    »

EF = #    »

EA + #    »

AF = 1
x + 1( #»

b − #»a ) + 1
x + 1

#»a = 1
x + 1

#»

b .

Similarly, we can show that #    »

HG = 1
x+1

#»

b . Thus, EFGH is a parallelogram.
Conversely, suppose EFGH is a parallelogram. For some 0 < s, t < 1, we have #    »

DE = s #»a ,
#    »

AF = t( #»

b − #»a ), and #    »

DF = #»a + t( #»

b − #»a ). Hence, #    »

EF = #    »

DF − #    »

DE = (1 − s − t) #»a + t
#»

b .
Similarly, for some 0 < x, y < 1, we have #     »

DH = x #»c , #    »

CG = y( #»

b − #»c ), and #    »

DG = #»c +x( #»

b − #»c ).
Hence, #    »

HG = #    »

DG − #     »

DH = (1 − x − y) #»c + y
#»

b . Since EFGH is a parallelogram, we must
have (1 − s − t) #»a + t

#»

b = #    »

EF = #    »

HG = (1 − x − y) #»c + y
#»

b . Since #»a and #»c are not parallel,
this shows that 1 − s − t = 0, 1 − x − y = 0, and t = y. Hence, s = 1 − t = 1 − y = x.
Also, DE

DA
= s = x = DH

DC
. This implies DE

EA
= DH

HC
= s

1−s
. And AF

AB
= t = y = CG

CB
implies

AF
F B

= CG
GB

= t
1−t

= 1−s
s

. Therefore, we must have DE
EA

· AF
F B

= DH
HC

· CG
GB

= 1 and DE
EA

= DH
HC

.

Remark 4. Let E, F , G, H be points in Theorem 4 that form a parallelogram. Let A′, B′, C ′,
and D′ be the intersections of (BH and DG), (AH and CE), (BE and DF ), and (AG and
CF ), respectively. We know that the segments AC ′ and CA′ intersect, say at J , on the edge
BD by Theorem 1. Further, the segments BD′ and DB′ intersect, say at I, on the edge AC.
Since DE

EA
= DH

HC
, we have AE

ED
· DH

HC
= 1. Since we have AE

ED
· DH

HC
· CI

IA
= 1 be Ceva’s theorem, we

have CI
IA

= 1. Similarly, we have BJ
JD

= 1. Therefore, if EFGH is a parallelogram, the points
I and J are always the midpoints of AC and BD, respectively.

5 Centroids

We continue to investigate when E, F , G, H are the midpoints of the edges DA, AB, BC,
and CD of a tetrahedron ABCD, respectively. Let A′, B′, C ′, and D′ be the intersections
of (BH and DG), (AH and CE), (BE and DF ), and (AG and CF ), respectively, as in
Theorem 1. Then, A′, B′, C ′, and D′ are the centroids of the triangular faces BCD, ACD,
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ABD, and ABC, respectively (see Page 7, [4]). Moreover, the point of concurrency P of the
segments AA′, BB′, CC ′, and DD′ is the centroid of the tetrahedron ABCD. And we also
have that P A′

AP
= P B′

BP
= P C′

CP
= P D′

DP
= 1

3 . (See [1], Theorem 170 on page 51.)
On the other hand, let P be a point inside the tetrahedron ABCD. Let A′, B′, C ′, and

D′ be the points of intersections of (the line AP and the plane BCD), (BP and ACD), (CP
and ABD), and (DP and ABC), respectively, as in Theorem 2. Now, we raise the following
question: If P A′

AP
= P B′

BP
= P C′

CP
= P D′

DP
= 1

3 , is P the centroid of the tetrahedron ABCD? The
answer is yes. However, since we could not find this converse statement in the literature,
we will prove this result for a tetrahedron in Lemma 1 using Theorem 2. Further, we will
give a weaker characterization that P is the centroid of a tetrahedron ABCD if, and only
if, P A′

AP
· P B′

BP
· P C′

CP
· P D′

DP
= 1

81 in Theorem 5. We will obtain a similar result for a triangle in
Corollary 3.
Notation 2. Let AABC denote the area of the triangle ABC.

Lemma 1. Let P be a point inside the tetrahedron ABCD. Let A′, B′, C ′, D′ be the
intersection of (the line AP and the plane BCD), (BP and ACD), (CP and ABD), and
(DP and ABC), respectively. Then, P is the centroid of the tetrahedron ABCD if, and only
if, P A′

AP
= P B′

BP
= P C′

CP
= P D′

DP
= 1

3 .

Proof. If P is the centroid of the tetrahedron ABCD, then P A′

AP
= P B′

BP
= P C′

CP
= P D′

DP
= 1

3 by
Theorem 170 in [1].

Conversely, suppose P A′

AP
= P B′

BP
= P C′

CP
= P D′

DP
= 1

3 . By Theorem 2(1), we know that
BC ′ and CB′ intersect on the edge AD. Let E, F, G, H be the intersections of (BC ′ and
CB′ on AD), (CD′ and DC ′ on AB), (DA′ and AD′ on BC), and (AB′ and BA′ on CD),
respectively. We first show that E is the midpoint of AD. Since AA′, DD′, and EG intersect
by Theorem 2, we have DA′

A′G
· GD′

D′A
· AE

ED
= 1 by Ceva’s theorem applied to the triangle ADG.

Hence, we have
AE

ED
= GA′

A′D
· AD′

D′G
. (∗)

On the other hand, since 3
4AA′ = AP and 3

4DD′ = DP from P A′

AP
= P D′

DP
= 1

3 , we have
3
4AAA′D = AAP D = 3

4AADD′ so that AAA′D = AAD′D.
But AAA′D = DA′

DG
AAGD and AAD′D = AD′

AG
AAGD. Thus, DA′

DG
= AD′

AG
. Since DG =

DA′ + A′G and AG = AD′ + D′G, we have AD′

D′G
= DA′

A′G
.

Substituting this into (∗), we have AE
ED

= GA′

A′D
· DA′

A′G
= 1. Therefore, AE = ED, i.e., E is

the midpoint of the edge AD.
Similarly, we can show that F , G, H are the midpoints of the edges AB, BC, and CD.

These show that A′, B′, C ′, D′ are the centroids of the triangles BCD, ACD, ABD, and
ABC, respectively. Since P is the intersection of the segments AA′, BB′, CC ′, and DD′, P
is the centroid of the tetrahedron ABCD.

The proof of the next theorem uses the method of Lagrange multipliers.

Theorem 5. Let P be a point inside or on the face of a tetrahedron ABCD different from
the vertices A, B, C, and D. Let A′, B′, C ′, and D′ be intersections of (the line AP and the
face BCD), (BP and ACD), (CP and ABD), and (DP and ABC), respectively. Then,

(1) PA′

AA′ + PB′

BB′ + PC ′

CC ′ + PD′

DD′ = 1, and
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(2) PA′

AP
· PB′

BP
· PC ′

CP
· PD′

DP
≤ 1

81 .

(3) The point P is the centroid of the tetrahedron ABCD if, and only if,

PA′

AP
· PB′

BP
· PC ′

CP
· PD′

DP
= 1

81

Proof of (1). Let HA, HB, HC , HD be the feet of the altitudes from A, B, C, D to the planes
BCD, ACD, ABD, ABC, respectively. Then the volume V = VABCD of the tetrahedron
ABCD is given by V = 1

3ABCD · AHA = 1
3ABCD · AA′ · sin∢AA′HA. Similarly,

V = 1
3AACD ·BB′ · sin∢BB′HB = 1

3AABD ·CC ′ · sin∢CC ′HC = 1
3AABC ·DD′ · sin∢DD′HD.

From these, we have

(i) 1
3ABCD · sin∢AA′HA = V

AA′ , (ii) 1
3AACD · sin∢BB′HB = V

BB′ ,

(iii) 1
3AABD · sin∢CC ′HC = V

CC ′ , and (iv) 1
3AABC · sin∢DD′HD = V

DD′ .

Since VBCDP = 1
3ABCD · PA′ · sin∢AA′HA, VCADP = 1

3AACD · PB′ · sin∢BB′HB, VABDP =
1
3AABD · PC ′ · sin∢CC ′HC , VABCP = 1

3AABC · PD′ · sin∢DD′HD, and since V = VBCDP +
VCADP + VABDP + VABCP , we have

(v) V = 1
3ABCD · PA′· sin∢AA′HA + 1

3AACD · PB′ · sin∢BB′HB

+1
3AABD · PC ′ sin∢CC ′HC + 1

3AABC · PD′ · sin∢DD′HD.

Substituting (i)–(iv) into (v), we have V = P A′·V
AA′ + P B′·V

BB′ + P C′·V
CC′ + P D′·V

DD′ . Dividing both sides
by V , we obtain P A′

AA′ + P B′

BB′ + P C′

CC′ + P D′

DD′ = 1.

Proof of (2) and (3). If PA′ ·PB′ ·PC ′ ·PD′ = 0, then the inequality (2) holds since we always
have the inequality AP · BP · CP · DP > 0. So, we assume that PA′ · PB′ · PC ′ · PD′ ̸= 0.
That is, we assume that P is inside the tetrahedron ABCD.

Let AP = a, BP = b, CP = c, DP = d, PA′ = x, PB′ = y, PC ′ = z, PD′ = w. Then,
we want to

maximize x
a

· y
b

· z
c

· w
d

subject to x
a+x

+ y
b+y

+ z
c+z

+ w
d+w

= 1, and a, b, c, d, x, y, z, w > 0.

(This constraint is from the equation (1) of this theorem expressed in terms of a, b, c, d, x,
y, z and w, as in P A′

AA′ = x
a+x

, for example.)
Let s = x

a
, t = y

b
, u = z

c
, v = w

d
. Then x

a+x
= as

a+as
= s

1+s
. Similarly, we have y

b+y
= t

1+t
,

z
c+z

= u
1+u

, w
d+w

= v
1+v

. Then we can restate our maximizing problem to

maximize f(s, t, u, v) = stuv

subject to s
1+s

+ t
1+t

+ u
1+u

+ v
1+v

= 1, and s, t, u, v > 0.
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Let g(s, t, u, v) = s
1+s

+ t
1+t

+ u
1+u

+ v
1+v

− 1. Then critical points (s, t, u, v) are given by
∇f(s, t, u, v) = λ∇g(s, t, u, v) for some constant λ, called a Lagrange multiplier. Here, ∇f is
the gradient of the function f . Hence, we have

⟨tuv, suv, stv, stu⟩ = λ
〈 1

(1 + s)2 ,
1

(1 + t)2 ,
1

(1 + u)2 ,
1

(1 + v)2

〉
.

Thus, from the first two components of the above vector equation, we have λ = (1 + s)2tuv =
(1 + t)2suv. This implies (t − s)(st − 1) = 0. Hence, t = s or t = 1

s
.

Since t = 1
s

implies t
1+t

= 1/s
1+1/s

= 1
1+s

, and since s
1+s

+ t
1+t

+ u
1+u

+ v
1+v

= 1, the
equation t = 1

s
implies that

(
s

1+s
+ 1

1+s

)
+ u

1+u
+ v

1+v
= 1, i.e., u = v = 0. This is a

contradiction to u, v > 0. Thus, we must have t = s. Similarly, we have u = s and v = s.
So, s

1+s
+ t

1+t
+ u

1+u
+ v

1+v
= 1 gives us that 4s

1+s
= 1 or s = 1

3 . Hence, t = u = v = 1
3 . Since

f
(

1
3 , 1

3 , 1
3 , 1

3

)
= 1

81 , and since we can make one of s, t, u, v as close to 0 as we want, we see
that the maximum value of f is f

(
1
3 , 1

3 , 1
3 , 1

3

)
= 1

81 . Hence, we have f(s, t, u, v) = stuv ≤ 1
81

or x
a

· y
b

· z
c

· w
d

≤ 1
81 . Therefore, we have shown that

PA′

AP
· PB′

BP
· PC ′

CP
· PD′

DP
≤ 1

81 .

The equality holds only when s = t = u = v = 1
3 , or when x

a
= y

b
= z

c
= w

d
= P A′

AP
= P B′

BP
=

P C′

CP
= P D′

DP
= 1

3 . In other words, the equality in (2) holds if, and only if, P is the centroid of
the tetrahedron ABCD by Lemma 1. This proves the statement (3).

We can obtain a similar theorem for a triangle from Theorem 5.

Corollary 3. Let P be a point inside or on a triangle ABC different from the vertices A, B,
and C. Let A′′, B′′, C ′′ be the intersections of (AP and BC), (BP and AC), and (CP and
AB) respectively. Then, we have

(1) PA′′

AA′′ + PB′′

BB′′ + PC ′′

CC ′′ = 1, and

(2) PA′′

AP
· PB′′

BP
· PC ′′

CP
≤ 1

8 .

(3) The point P is the centroid of the triangle ABC if, and only if, PA′′

AP
· PB′′

BP
· PC ′′

CP
= 1

8 .

Proof of (1). Let P be an interior point or on the sides of the triangle ABC, different from A,
B, and C. Let ABCD be a tetrahedron having the triangle ABC as the base. Let D′ = P .
Then, PD′ = 0 and A′′ = A, B′′ = B′, C ′′ = C ′ in Theorem 5. Hence, we have

PA′′

AA′′ + PB′′

BB′′ + PC ′′

CC ′′ = PA′

AA′ + PB′

BB′ + PC ′

CC ′ + PD′

DD′ = 1

by Theorem 5(1).

Proof of (2) and (3). Unlike the proof of Theorem 5(2), we prove this without Lagrange
multipliers.
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Let AP = a, BP = b, CP = c, PA′′ = x, PB′′ = y, PC ′′ = z. Then, (1) becomes

x

a + x
+ y

b + y
+ z

c + z
= 1.

This can be rewritten as

x(b + y)(c + z) + y(z + x)(c + z) + z(a + x)(b + y) = (a + x)(b + y)(c + z.)

This simplifies to abc = 2xyz + ayz + bxz + cxy.
By the Arithmetic-Geometric Mean Inequality applied to the right side of this equation,

we have abc = 2xyz + ayz + bxz + cxy ≥ 4((2xyz)(ayz)(bxz)(cxy))1/4 = 4(2(xyz)3abc)1/4.
Hence, (abc)4 ≥ 44{2(xyz)3abc}. This simplifies to abc ≥ 8xyz, or

PA′′

AP
· PB′′

BP
· PC ′′

CP
≤ 1

8 .

The equality holds when 2xyz = ayz = bxz = cxy so that a = 2x, b = 2y, c = 2z. The
equation a = 2x shows that P A′′

P A
= x

a
= 1

2 . Similarly, P B′′

P B
= P C′′

P C
= 1

2 . Thus,

PA′′

PA
= PB′′

PB
= PC ′′

PC
= 1

2 .

Similar to Lemma 1, we have that if P be a point inside the triangle ABC, and if A′′,
B′′, C ′′ be the intersections of (AP and BC), (BP and AC), and (CP and AB), respectively,
then P is the centroid of the triangle ABC if, and only if, P A′′

AP
= P B′′

BP
= P C′′

CP
= 1

2 . Therefore,
the equality in (2) holds if, and only if, P is the centroid of the triangle ABC. This proves
the statement (3).
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