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Abstract. A. Kokotsakis studied the following problem in 1932: Given is a rigid
closed polygonal line (planar or non-planar), which is surrounded by a polyhedral
strip, where at each polygon vertex three faces meet. Determine the geometries of
these closed strips with a continuous mobility. On the one side, we generalize this
problem by allowing the faces, which are adjacent to polygon line-segments, to be
skew; i.e to be non- planar. But on the other side, we restrict to the case where
the four angles associated with each polygon vertex fulfill the so-called isogonal-
ity condition that both pairs of opposite angles are equal or supplementary. In
more detail, we study the case where the polygonal line is a skew quad, as this
corresponds to a (3 × 3) building block of a so-called V-hedron composed of skew
quads. The latter also gives a partial answer to a question posed by R. Sauer in
his book of 1970 whether continuous flexible skew quad surfaces exist.
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MSC 2020: 51N55 (primary), 51M04, 51N15

1 Introduction

Let us consider a so-called Kokotsakis belt [11] illustrated in Fig. 1a, which can be defined as
follows:

Definition 1. The original Kokotsakis belt consists of a rigid closed polygonal line p (not
necessarily planar) with n vertices V0, . . . ,Vn−1, which is surrounded by a belt of planar
polygons in a way that each vertex Vi of p has valence four.
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published in ICGG 2022 – Proceedings of the 20th International Conference on Geometry and Graphics,
Springer, 2022.
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Figure 1: (a) Original Kokotsakis belt (cf. Def. 1) where the planar angles δ∗
i , γ∗

i , λ∗
i , µ∗

i ∈ (0; π) are
illustrated as well as the orientation of the enclosing line-segments used for the construction of
the spherical image, which is illustrated in parts in (b). Note that the edge Vi−1Vi is mapped to
the point Ci.

In general these loop structures are rigid, thus continuous flexible ones possess a so-
called overconstrained mobility. Kokotsakis himself formulated the problem for general rigid
closed polygonal lines p, but in fact he only studied flexible belts with planar polygons p in
[11]. Planarity was only not assumed in the study of necessary and sufficient conditions for
infinitesimal flexibility (see also Karpenkov [10]). Clearly, the restriction to planar polygons
p makes sense in the context of continuous flexible polyhedra, as this condition has to be
fulfilled around faces where all vertices have valence four1.

Our interest in Kokotsakis belts results from our research on continuous flexible polyhedral
surfaces; especially those composed of rigid planar quads in the combinatorics of a square
grid. A very well known class of these flexible planar-quad (PQ) surfaces are V-hedra, which
are the discrete analogs of Voss surfaces2 according to [22]. They can easily be characterized
by the fact that in each vertex the angles of opposite planar quads are equal. The question
whether V-hedra can be generalized by dropping the planarity condition of the quads (cf.
Fig. 2) motivated us for the study of so-called generalized Kokotsakis belts, which can be
defined as follows:

Definition 2. The generalized Kokotsakis belt is obtained from the original one given in
Defnition 1 by dropping the planarity condition of the faces adjacent to the polygon line-
segments of p.

The article at hand is structured as follows: We proceed in Section 1.1 with a literature
review on flexible Kokotsakis belts, where we place emphasis on the so-called isogonal type3,
which means that in every polygon vertex both pairs of opposite angles are (A) equal or
(B) supplementary. In Section 2 we discuss the spherical image of Kokotsakis belts from
a kinematical point of view. Based on these considerations we study generalized flexible
Kokotsakis belts of the isogonal type in Section 3. In Section 4 we discuss continuous flexible
skew-quad (SQ) surfaces, where we focus on V-hedra composed of skew quads in more detail.
The paper is concluded in Section 5.

1Assumed that this part of the continuous flexible polyhedra is not rigid.
2Surfaces on which geodesic lines form a conjugate curve network [28].
3This notation is in accordance with [24].
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Figure 2: (a) Generalized Kokotsakis belt (cf. Def. 2) and a part of its corresponding spherical
image (b).

1.1 Review on Continuous Flexible Kokotsakis Belts

Until now only examples of continuous flexible Kokotsakis belts are known where the rigid
polygon line p is planar as well as all faces adjacent to its line-segments. Therefore these
assumptions hold for the complete review section, which is structured along the number n of
vertices V0, . . . , Vn−1 of p (cf. Fig. 1a).

General results (for all n > 2) were only obtained by Kokotsakis [11] for the isogonal type,
to which for example rigidly foldable origami twists [5] belong as a special case. For n = 3
and n = 4 more results are known, which can be summarized as follows:

• Case n = 3: This case implies continuous flexible octahedra, which are very well studied
objects dating back to Bricard [3]. Especially, the Bricard octahedra of the 3rd type
(cf. [25]) correspond to the isogonal case, which was already pointed out by Kokotsakis
[11]. Moreover, the study of these Kokotsakis belts allows also the determination of
continuous flexible octahedra with vertices at infinity [15].

• Case n = 4: These Kokotsakis belts, which are also known as (3 × 3) complexes, are
the building blocks of continuous flexible PQ surfaces according to [22, Theorem 3.2].
Based on spherical kinematic geometry [24], a partial classification of continuous flexible
(3×3) building blocks was obtained by Stachel and the author [16–18]. Inspired by this
approach, Izmestiev [8] obtained a full classification containing more than 20 cases.
Note that the first classes of continuous flexible PQ surfaces were given by Sauer and
Graf [21]; namely the so-called T-hedra (see also [20, 23]) and the already mentioned
V-hedra (see also [14, 20]).
A rigid-foldable PQ surface which can be developed is a special case of origami. Under
the additional condition of flat-foldability (as in case of the popular Miura-ori) Tachi
[26, 27] developed computational tools to design surfaces, where each vertex is of the
isogonal type. Recently, Feng et al. [6] gave a complete analysis of the flat-foldable case,
which can also be used for design tasks [4].
Within the field of computational design Jiang et al. [9] presented recently an opti-
mization technique to penalize an isometrically deformed surface with planar quads.
Its design space is restricted to rigid-foldable quad-surfaces which can be seen as a dis-
cretization of flexible smooth surfaces (e.g. Voss surfaces, profile-affine surfaces [20, 21]).

Remark 1. Note that for the cases n > 4 no specific results are known to the author. ⋄
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2 Spherical Image of Kokotsakis Belts

In order to get a consistent notation for the construction of the spherical image of the Kokot-
sakis belt we orient the line-segments meeting at a vertex Vi according to Figs. 1a and 2a,
respectively. Taking this orientation of the line-segments into account, the spherical 4-bar
mechanism, which corresponds with the arrangement of faces around Vi, has the following
spherical bar lengths:

δi = π − δ∗
i , γi = π − γ∗

i , λi = π − λ∗
i , µi = π − µ∗

i (1)

for the index4 i = 0, . . . , n − 1. The spherical image of faces around two adjacent vertices Vi

and Vi+1 is illustrated in Figs. 1b and 2b, which show the motion transmission from the vertex
Ci over Ci+1 to Ci+2 by two coupled spherical 4-bar mechanisms. Note that in the isogonal
case these 4-bar mechanisms are so-called spherical isograms fulfilling one of the following
two conditions:

(A) λi = µi, δi = γi, (B) λi + µi = π, δi + γi = π. (2)

These two types are related by the replacement of one of the vertices of the spherical isogram
by its antipodal point, which does not change its motion. In Section 3 we show that we
can restrict to type (A) without loss of generality by assuming an appropriate choice of
orientations. In the following we use the half-angle substitutions

sin αi = 2ai

1+a2
i
, cos αi = 1−a2

i

1+a2
i
, sin βi = 2bi

1+b2
i
, cos βi = 1−b2

i

1+b2
i
, (3)

in order to end up with algebraic expressions. It is well known (e.g. [24]) that the input angle
αi and the output angle βi of the i-th spherical isogram of type (A) of Eq. (2) are related by

bi = fiai with fi ̸= 0 and fi = sin δi±sin λi

sin (δi−λi) . (4)

The two options in the expression for fi implied by the ± sign refer to the case whether the
motion transmission corresponds to that of a spherical parallelogram (⇔ fi > 0) or spherical
antiparallelgram (⇔ fi < 0), respectively. Note that the degenerated cases (δi = λi and
δi + λi = π) of the spherical isogram are excluded by the condition fi ̸= 0 given in Eq. (4).

The angles βi and αi+1 are related over the offset angle εi+1; i.e. βi + εi+1 = αi+1. This
means that εi+1 gives only the shift between the output angle βi of the i-th isogram to the
input angle αi+1 of the (i + 1)-th isogram. This yields the relation:

tan αi+1 = tan βi+tan εi+1
1−tan βi tan εi+1

. (5)

Using the half-angles and the Weierstrass substitution ei+1 := tan εi+1
2 yield

ai+1 = bi+ei+1
1−biei+1

. (6)

Note that the spherical arcs BiCi,i+1 and Ai+1Ci,i+1 enclose the twist angle ζi+1 := εi+1 +
τi+1 (cf. Fig. 2b), where the latter angle is the torsion angle of the spatial polygon p, which
is defined as the angle enclosed by the spherical arcs CiCi+1 and Ci+1Ci+2. From the polygon
p the angles τi+1 can be computed as the angle of rotation about the oriented axis ViVi+1,

4Note that in the remainder of the paper the indices are taken modulo n.
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which brings the plane [Vi−1, Vi, Vi+1] to the plane [Vi, Vi+1, Vi+2]. Therefore the angle τi+1,
which is within the interval (−π; π], can be computed as:

τi+1 = sign (o) arccos
(

(ci×ci+1) (ci+1×ci+2)
∥ci×ci+1∥∥ci+1×ci+2∥

)
with o := (ci × ci+1) ci+2 (7)

where ci denotes the vector from Vi−1 to Vi. Note that the sign (o) term is needed for orienting
the angle τi+1.
Remark 2. For the original Kokotsakis belt (cf. Fig. 1) the twist angle ζi+1 is zero (⇒ εi+1 =
−τi+1) or π (⇒ εi+1 = π − τi+1) for all i = 0, . . . , n − 1. Note that p is a planar curve if all
τi+1 are either zero or π. ⋄

3 Continuous Flexible Kokotsakis Belts of the Isogonal Type

According to [24, Theorem 1] the Kokotsakis belt is continuous flexible if and only if the
spherical image has this property. Now we will show that any Kokotsakis belt of the iso-
ganal type can be identified with a spherical mechanism, which is only composed of spherical
isograms of type (A) in Eq. (2):

We start with the spherical image of p, i.e. the points C0 ,. . . , Cn−1 and construct the
spherical points A0 and B0 according to Section 2. If the spherical isogram C0C1B0A0 is of
type (B) then we replace B0 by its antipode. Then we proceed as follows around the spherical
image of the polyline p; i.e. for i = 0, . . . , n − 1:

a. In the case where the two antipodal points, which are candidates for Ai+1, correspond
with the values zero and π for εi+1, we have to choose the one which implies εi+1 = 0
as εi+1 = π is not covered by Eq. (6). In any other case Ai+1 can be chosen arbitrary
from the corresponding set of two antipodal points.

b. Bi+1 has to be chosen from the corresponding set of two antipodal points such that the
spherical isogram Ci+1Ci+2Bi+1Ai+1 is of type (A).

We can end up in two situations; either An = A0 and we are done or An is the antipodal point
of A0. In the latter case we denote by j the highest possible index within the set {0, . . . , n−1}
for which the choice of Ai+1 was done arbitrarily in Step (a). Then we replace all Ai+1 and
Bi+1 with i ≥ j by their antipodal points which yields An = A0.

Note that such a j has to exist as otherwise we can construct the following contradiction:
No j exists if and only if there are no shifts; i.e. e0 = e1 = · · · = en−1 = 0. As a consequence
α0 = β0 = 0 implies αi+1 = βi+1 = 0 for all i ∈ {0, . . . , n − 1}, which already shows that in
this case An = A0 has to hold.

As a consequence of the above considerations one can write down the condition for con-
tinuous flexibility of any Kokotsakis belt of the isogonal type, where the rigid polygon p has
n > 2 vertices, as

a0 − an = 0. (8)

In this so-called closure condition we substitute an by

ai = ai−1fi−1+ei

1−ai−1fi−1ei
(9)

which results from Eq. (6) under consideration of Eq. (4). By iterating this substitution (in
total n times) we end up with an expression of the form q2a

2
0 + q1a0 + q0 = 0 where q2, q1, q0

are functions in f0, . . . , fn−1, e0, . . . , en−1. This means that the spherical coupler arms A0C0
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and AnC0 coincide for all input angles α0 if and only if the following necessary and sufficient
conditions for continuous mobility are fulfilled:

q2 = 0, q1 = 0, q0 = 0. (10)

This result is needed for the proof of the following theorem:

Theorem 1. For a given closed polygon p with n vertices, there exists at least a (2n − 3)-
dimensional set of continuous flexible Kokotsakis belts of the isogonal type over C.

Proof. The given polygon p already determines the angles λi and τi for i = 0, . . . , n − 1.
Therefore the 2n unknowns µi and ζi remain free, which have to fulfill the three equations of
Eq. (10).

By taking a closer look at q2 = 0 it can easily be seen that the terms linear in ei are
given by f0e1 and f0 · · · fk−1ek for k = 2, . . . , n. In the equation q0 = 0 the linear terms in ei

are e0, en−1fn−1 and ekfk · · · fn−1 for k = 1, . . . , n − 2. Therefore each of the two conditions
q2 = 0 and q0 = 0 can only be fulfilled independently from the choice of the fi’s if there are
no shifts; i.e. e0 = e1 = · · · = en−1 = 0. Note that these are not only necessary conditions but
already sufficient ones as they imply q2 = q0 = 0. In this case the remaining condition q1 = 0
simplifies to f0f1 · · · fn−1 = 1 and we end up with a (n − 1)-dimensional set of continuous
flexible Kokotsakis belts of the isogonal type over C. Note that e0 = e1 = · · · = en−1 = 0 only
implies planarity of p if we assume the faces to be planar. These considerations are needed
for proving the second sentence of the following theorem:

Theorem 2. For a given closed polygon p with n > 3 vertices, there exists at least a (n − 3)-
dimensional set of continuous flexible Kokotsakis belts with planar faces of the isogonal type
over C. For planar curves p (which is always true for n = 3) this dimension raises to (n−1).

Proof. For a spatial polyline p with planar faces the spherical coupler arms BiCi+1 and
Ai+1Ci+1 are aligned. Therefore not only the angles λi and τi for i = 0, . . . , n − 1 are
determined but also ζi (cf. Remark 2). As a consequence we only remain with the n un-
knowns µi which have to meet the three conditions of Eq. (10). If p is planar then two of
these three equations are already fulfilled identically as pointed out above.

3.1 Property Regarding the Rotation Angles
According to [11, §8] opposite angles in a spherical isogram are either equal or complete each
other to 2π. As a consequence opposite dihedral angles along edges meeting in a vertex Vi

have at each time instant t the same absolute value of their angular velocities. Therefore the
absolute values of the rotation angles around these two edges are the same (measured from an
initial starting configuration). As one of the dihedral angels is the angle about an edge ViVi+1
of the polygon p, this property holds for the two spherical 4-bars, which have the common
point Ci+1 (cf. Figs. 1b and 2b, respectively). Therefore the same absolute values of the
rotation angle can always be assigned to three edges within a continuous flexible Kokotsakis
belt of the isogonal type (cf. Fig. 3a).
Example 1. Now we consider the case n = 3. For any choice of δi and γi for i = 1, 2, 3 and
γ1 +γ2 +γ3 = 2π (closure condition of central triangle) there exist e0, e1, e2 ∈ C such that we
get a continuous flexible Kokotsakis belt of the isogonal type. The resulting structure can be
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seen as an overconstrained 6R loop (cf. Fig. 3b), which belongs to the third class of so-called
angle-symmetric 6R linkages [12] due to the above discussed angle property. Note that for
e0 = e1 = e2 = 0 we get the already mentioned Bricard octahedron of type III (cf. case n = 3
in Section 1.1). ⋄
Remark 3. In this context it should also be noted that the relative motion between two
consecutive faces of a continuous flexible Kokotsakis belt of the isogonal type is rational.
Therefore another approach towards this overconstrained mechanism could be based on the
study of the motion of its spherical image by means of quaternions using techniques for the
factorization of quaternionic motion polynomials [7, 19]. ⋄

4 Continuous Flexible SQ Surfaces

On page 168 of Sauer’s book [20] the following open problem is mentioned: Do there exist
continuous flexible SQ surfaces? A key result for the answering of this question is the following
generalization of Theorem 3.2 of [22]:

Theorem 3. A non-degenerate SQ surface is continuous flexible, if and only if this holds
true for every (3 × 3) building block.

Proof. The arguments used for the proof of Theorem 3.2 of [22] do not rely on the planarity
of the involved quads.

Based on this result a partial answer to Sauer’s question is given in Section 4.2.

4.1 Associated Overconstrained Mechanism
We start this section with the definition of reciprocal-parallel quad meshes:

Definition 3. Two quad meshes Q and V are called reciprocal-parallel if the following con-
ditions are fulfilled:

⋆ Q and V are combinatorial dual; i.e. vertices of one mesh correspond to the faces of the
other and vice versa.

⋆ The edges of both meshes are related by the implied bijection that edges of adjacent
faces are mapped to edges between corresponding adjacent vertices and vice versa.

⋆ Edges, which are related by this bijection, are parallel.

Sauer [20] showed that every infinitesimal flexible quad surface Q possesses in general a
unique (up to scaling) reciprocal-parallel quad mesh V . The reciprocal-parallel surface of the
latter mesh V is only uniquely determined (up to scaling) if Q is composed of skew quads,
otherwise there exist infinitely many, which are in a parallelism relation5 to each other (cf.
[20, Theorem 16.22]).

The corresponding deformation of the V mesh during the continuous flexion of Q has to
be a conformal transformation, as the vertex stars are rigid. The corresponding kinematic
structure of V is composed of rigid vertex stars linked by cylindrical joints (cf. Fig. 5). Note
that in general such a structure only has the trivial finite flexibility resulting from the homo-
thetic transformation. This motion can be omitted by fixing the length of one edge in the
structure. These modified linkages are in general rigid but those stemming from continuous
flexible quad surfaces Q have an overconstrained motion.

5Corresponding faces and edges of these meshes are parallel.
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a)

Vi

V0

V1

Vn−1

b)

Figure 3: Generalized Kokotsakis belt of the isogonal type: (a) Edges with the same absolute values
of their rotation angles during the continuous flexibility are illustrated with the same color. (b)
For n = 3 we obtain an overconstrained angle-symmetric 6R linkage.

a) b)

Figure 4: A (3×3) building block of a V-hedron with skew quads (a) and its spherical image (b). The
vertex Vi and the line-segment Vi−1Vi have the same color, where i = 0 corresponds to black, i = 1
to red, i = 2 to magenta and i = 3 to purple. Note that the illustrations of Figs. 4, 5 and 7 are
rendered with respect to the same view. The animations of the mobility of the V-hedron and its
spherical image are online available at https://www.dmg.tuwien.ac.at/nawratil/skew_qua
d_spatial.gifand https://www.dmg.tuwien.ac.at/nawratil/skew_quad_spherical.gif,
respectively.

4.2 V-Hedra with Skew Quads

We study this class in more detail, as it is a generalization of V-hedra with planar quads
having many applications to structural engineering practice [13, 14].

For n = 4 the equations q2 = q1 = q0 = 0 of Eq. (10) read as follows:

q2 :=f0[e0f3(e1e2f2 + e2e3f1 + e1e3 − f1f2) + e1e2e3f2 − e3f1f2 − e2f1 − e1],
q1 :=e1e2f0f2f3 + e2e3f0f1f3 + e1e3f0f3 − e1e3f1f2 − f0f1f2f3 − e1e2f1 − e2e3f2 + 1+

e0(e1e2e3f1f3 − e1e2e3f0f2 − e1f1f2f3 + e3f0f1f2 + e2f0f1 − e2f2f3 + e1f0 − e3f3),
q0 :=e0(e1e3f1f2 + e1e2f1 + e2e3f2 − 1) + f3(e1e2e3f1 − e1f1f2 − e2f2 − e3).

(11)

We can solve this set of equations explicitly for e1, e2, e3 in dependence of e0, f0, . . . , f3,

https://www.dmg.tuwien.ac.at/nawratil/skew_quad_spatial.gif
https://www.dmg.tuwien.ac.at/nawratil/skew_quad_spatial.gif
https://www.dmg.tuwien.ac.at/nawratil/skew_quad_spherical.gif
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which yields the following two solutions:

e1 = e0f0f2(f2
1 −1)(f2

3 −1)±R1R2
e2

0(f0f2−f1f3)(f0−f1f2f3)+(f0f3−f1f2)(f0f2f3−f1) ,

e2 = ∓R1R2
e2

0(f0f1−f2f3)(f0f2−f1f3)+(f0f1f3−f2)(f0f2f3−f1) ,

e3 = e0f1f3(f2
0 −1)(f2

2 −1)±R1R2
e2

0(f0f2−f1f3)(f0f1f2−f3)+(f0f3−f1f2)(f0f1f3−f2)

(12)

with

R1 :=
√

e2
0(f0f1 − f2f3)(f0f2 − f1f3) + (f0f1f3 − f2)(f0f2f3 − f1),

R2 :=
√

e2
0(f0f1f2 − f3)(f1f2f3 − f0) + (f0f1f2f3 − 1)(f1f2 − f0f3).

(13)

Remark 4. Alternatively, the above given equations q2 = q1 = q0 = 0 from Eq. (11) can also
be solved explicitly for f1, f2, f3 in dependence of f0, e0, . . . , e3, which yield the following
two solutions:

f1 = −(f2
0 +1)e0e1(e2

3+1)(e2
2−1)+f0(e2

0e2
1e2

2−e2
0e2

1e2
3−e2

0e2
2e2

3−e2
1e2

2e2
3+e2

0+e2
1+e2

2−e2
3)±R+R−

2e2(e2
3+1)(e0f0+e1)(e0e1−f0) ,

f2 = (f2
0 +1)e0e1(e2

3+1)(e2
2+1)−f0(e2

0e2
1e2

2+e2
0e2

1e2
3−e2

0e2
2e2

3−e2
1e2

2e2
3−e2

0−e2
1+e2

2+e2
3)∓R+R−

2e2e3f0(e2
1+1)(e2

0+1) ,

f3 = −(f2
0 +1)e0e1(e2

3−1)(e2
2+1)−f0(e2

0e2
1e2

2−e2
0e2

1e2
3+e2

0e2
2e2

3+e2
1e2

2e2
3−e2

0+e2
1+e2

2−e2
3)±R+R−

2e3(e2
2+1)(e1f0+e0)(e0e1−f0)

(14)

with

R± := [f0(e2
0e

2
1e

2
2 + e2

0e
2
1e

2
3 − e2

0e
2
2e

2
3 − e2

1e
2
2e

2
3 − e2

0 − e2
1 + e2

2 + e2
3)

− (f 2
0 + 1)e0e1(e2

3 + 1)(e2
2 + 1) ± 2f0e2e3(e2

1 + 1)(e2
0 + 1)]

1
2 .

(15)

⋄
Note that for a given skew central quad p and a set of real values e0, . . . , e3, f0 ,. . . , f3

fulfilling the three equations q2 = q1 = q0 = 0, the missing geometric parameters δi can be
computed from the equation sin δi ± sin λi − fi sin (δi − λi) = 0 (cf. Eq. (4)). For the minus
sign we get one further real solution beside the excluded degenerate case δi = λi. By shifting
these two values obtained for δi by π we obtain the solutions of the equation with respect to
the plus sign. Therefore we get a unique value for δi ∈ (0; π) with δi ̸= λi for each i = 0, . . . , 3.
Remark 5. Note that for each 8-tuple e0, . . . , e3, f0, . . . , f3 fulfilling the three equations
q2 = q1 = q0 = 0 a 5-dimensional set of continuous flexible (3 × 3) building blocks of V-hedra
with skew quads can be associated. This is due to the fact that τi and λi (for i = 0, . . . , 3)
are not uniquely determined by e0, . . . , e3, f0, . . . , f3 and that the shape of the central skew
quad is determined by 5 parameters, which can be seen as follows: Without loss of generality
one can assume that the first vertex of the central quad equals the origin of the fixed frame
(i.e. V0 = (0, 0, 0)T ), the second one is located on its x-axis (i.e. V1 = (x1, 0, 0)T ), the third
one belongs to the xy-plane (i.e. V2 = (x2, y2, 0)T ) and the fourth vertex is unrestricted (i.e.
V3 = (x3, y3, z3)T ). This yields in total 6 parameters which reduces to 5 by canceling the
factor of similarity (e.g. x1 = 1). ⋄
Example 2. The coordinates of the vertices of the skew central quad p are given by:

V0 = (5, 0, 0)T , V1 = (4, 3, 0)T , V2 = (1, 2, 2)T , V3 = (0, 0, 0)T , (16)
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Figure 5: The overconstrained mechanism which results from the reciprocal-parallelism to the (3×3)
building block of a V-hedron with skew quads illustrated in Fig. 4a. The animation of the
mobility of this mechanism is online available at https://www.dmg.tuwien.ac.at/nawrati
l/skew_quad_reciprocal.gif, where we fixed the length of the black edge, which is parallel
to V3V0.

i)

V1,1 V1,2

V2,1 V2,2

ii)

V1,1 V1,2 V1,3

V2,1 V2,2 V2,3

iii)

V1,1 V1,2 V1,3 V1,2+s

V2,1 V2,2 V2,3 V2,2+s

V3,1 V3,2 V3,3 V3,2+s

Figure 6: Schematic sketch of the construction of a ([3 + t] × [3 + s]) V-hedron with skew quads.
The red color of the edges indicates that their adding implies 2 free degrees for orientation. The
yellow color of the vertices expresses that one has 1 free degree for its selection on the black edge.
The green colored edges imply no additional degree of freedom as they are already determined
by the two adjacent yellow vertices.

from which the angles λi and τi for i = 0, . . . , 3 can be calculated. Moreover, the input data
is completed by the values:

e0 = 100, d0 = 0.3, d1 = 0.15, d2 = 0.2, d3 = 0.25, (17)

where di = tan δi

2 . From that we can compute the fi values according to Eq. (4) with respect
to the minus sign for all i = 0, . . . , 3. Then the formulas for the solution set related to the
upper sign in Eq. (12) yield

e1 = −0.86081001, e2 = −5.06077939, e3 = 0.57043281. (18)

One configuration of the resulting continuous flexible (3 × 3) building block of a V-hedron
with skew quads is illustrated in Fig. 4, where also the corresponding spherical image is
displayed. The associated overconstrained mechanism implied by the reciprocal-parallelism
(cf. Section 4.1) is shown in Fig. 5. In the captions of Figs. 4 and 5 we also provide links to
gif animations showing the overconstrained motion of these three mechanisms. ⋄

https://www.dmg.tuwien.ac.at/nawratil/skew_quad_reciprocal.gif
https://www.dmg.tuwien.ac.at/nawratil/skew_quad_reciprocal.gif
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4.2.1 Lower Bound on the Dimension of the Design Space

A lower bound on the dimension of the design space of continuous flexible V-hedra with
skew quads can be obtained by comparing the number qpar of essential free parameters for
constructing a ([3 + t] × [3 + s]) skew quad mesh at the one hand-side with the number qcon

of algebraic conditions needed to make the mesh isogonal and continuous flexible. We do this
count of parameters and conditions in three steps illustrated in Fig. 6; in Step (i) we consider
a (3 × 3) building block, in Step (ii) we add to it s columns and in Step (iii) we extend the
(3 × [3 + s]) complex by t rows. In order to improve the clarity of the approach we label the
vertices by double indices; i.e. by Vrow,column.

i. Let us start with a non-planar quad with vertices V1,1, V1,2, V2,2 and V2,1. Its shape (up
to scaling) is determined by 5 parameters according to Remark 5. Now one can add
to each of the four vertices two edges, where each has 2 free degrees for orientation, in
order to get an arrangement of a (3 × 3) building block (cf. Fig. 6i), which therefore has
5 + 2 · 8 = 21 parameters.

Beside the three conditions q2 = q1 = q0 = 0 in each of the four vertices the isogonality
criterion has to hold, which can be expressed by two algebraic equations. This gives
in total 3 + 2 · 4 = 11 conditions for the arrangement of Fig. 6i to have a continuous
flexibility of the isogonal type.

ii. Now we add a column to the building block. First we add a vertex on each of the two
edges in the third column of Fig. 6ii. For each of these points V1,3 and V2,3 we have one
free parameter. In each of the two vertices we add again two edges, where each has 2
free degrees for orientation. Therefore the adding of a column implies 2 + 2 · 4 = 10
extra parameters.

On the other side, in each of the two vertices V1,3 and V2,3 the isogonality condition
has to hold and the (3 × 3) complex with center quad V1,2V1,3V2,3V2,2 has to fulfill the
three conditions q2 = q1 = q0 = 0. Thus the adding of a column increases the number
by conditions by 3 + 2 · 2 = 7.

iii. Now we add a row to the (3 × [3 + s]) complex. We add a vertex on each of the edges
in the third row of Fig. 6iii. For each of these 2 + s vertices V3,1, V3,2, . . . , V3,2+s there
exists one degree of freedom for the selection on the respective edge. Moreover, in each
of the 2 + s new vertices we add one vertical edges, where each has 2 free degrees for
orientation. Only in the first vertex V3,1 and last vertex V3,2+s we can additional add a
horizontal edge. Therefore the adding of a row implies (2+s)+2 ·(2+s)+2 ·2 = 10+3s
extra parameters.

In each of the 2 + s vertices the isogonality criterion has to hold. In addition 1 + s
new (3 × 3) complexes can be identified (where the vertices of the center quads are
V2,iV2,i+1V3,i+1V3,i for i = 1, . . . , 1+s), where each one has to fulfill the three conditions
q2 = q1 = q0 = 0. Thus the extension by a row implies 2 · (2 + s) + 3 · (1 + s) = 7 + 5s
additional conditions.

From these considerations the numbers qpar and qcon can be computed as:

qpar = 21 + 10s + (10 + 3s)t = 21 + 10s + 10t + 3st,

qcon = 11 + 7s + (7 + 5s)t = 11 + 7s + 7t + 5st.
(19)

Thus finally we get the lower bound6 q on the dimension of the design space of continuous
6Every irreducible component of the intersection of m affine hypersurfaces ∈ Cn is at least of dimension

n − m.
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t\s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 i > 15
0 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 9+3i
1 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 12+i
2 13 12 11 10 9 8 7 6 5 4 3 2 1 0 < 0
3 9 6 3 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
4 1 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
5 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

Table 1: Lower bound on the dimension of the design space of continuous flexible ([3 + t] × [3 + s])
V-hedra with skew quads.

flexible ([3 + t] × [3 + s]) V-hedra with skew quads by

q := qpar − qcon − 1 = 9 + 3s + 3t − 2st. (20)

The subtraction of 1 comes from the fact that the structure has a 1-dimensional mobility;
i.e. a 1-dimensional set of configurations is associated with one design. The values of q in
dependence of s and t are printed in the symmetric Table 1. This table and Example 2 also
give a partial answer to the question posed by Robert Sauer whether continuous flexible SQ
surfaces exist (over C). It remains open if such a structure of infinite dimension in rows and
columns exists.

Remark 6. Doing a similar count for V-hedron with planar quads one ends up with q =
6 + 2s + 2t, where the edges V1,iV1,i+1 for i = 1, . . . , 1 + s as well as Vj,1Vj+1,1 for j = 1, . . . ,
1 + t can be assumed to be of unit length (without loss of generality) in order to reduce to
the essential set of free parameters. ⋄

4.2.2 Final Comments

We close this section by making the following two final comments:
1. The edges of the V-hedron can be subdivided into two families of discrete parameter

lines, which are called u-polylines and v-polylines for short. Due to the property pointed
out in Section 3.1, the rotation angles along any u-polyline or v-polyline are the same.
Note that this property is well known for V-hedra with planar quads (cf. [21, page 529])
but also holds for the skew case.

2. In view of Section 4.1 it should be noted that there is a further remarkable relation to
an overconstrained mechanism beside the one illustrated in Fig. 5. As already pointed
out by Sauer [20] the vertex star fulfilling the isogonality condition is reciprocal-parallel
to a skew isogram, which has the following additional property: If the four bars of the
isogram are hinged in the vertices by rotational joints, which are orthogonal to the plane
spanned by the linked bars (cf. Fig. 7), then one obtains a so-called Bennett mechanism
[2]. This is the only non-trivial mobile 4R loop.

If the quads of the V-hedron Q are skew then the four axes of the Bennett mechanisms,
which can be associated with a vertex of the mesh V , differ from each other (cf. Fig. 7).
Only in the case where Q is a V-hedron with planar quads, each vertex of V can uniquely
be associated with one rotational axis orthogonal to the planar vertex star. Then the
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Figure 7: The four Bennett mechanisms associated with the structure illustrated in Fig. 5; the
rotation axes are indicated by small cylinders.

resulting network of Bennett mechanisms is highly mobile7. Finally it should be noted
that in this case V is a discrete pseudospherical surface [20, 22, 29].

5 Conclusions, Open Problems and Future Research

We generalized continuous flexible Kokotsakis belts of the isogonal type by allowing that the
faces, which are adjacent to the line-segments of the rigid closed polygon p, to be skew. In
more detail we studied the case where p is a skew quad (SQ) as it corresponds to a (3 × 3)
building block of a V-hedron composed of skew quads, which gives a partial answer to the
question posed by Robert Sauer whether continuous flexible SQ surfaces exist. It remains an
open problem if such a structure of infinite dimension in rows and columns exists. Moreover
it would be interesting to check cases with a low value for q given in Table 1 (i.e. SQ meshes
of size (7 × 7), (6 × 9) and (5 × 18), respectively) for the existence of real solutions by means
of a numerical algebraic software (e.g. Bertini [1]). Moreover, this tool could also be used to
look for irreducible components with a higher dimension than q, whose geometric properties
may imply continuous flexible SQ surfaces of infinite size in rows and columns.

Further open questions regard the smooth analog of continuous flexible Kokotsakis belts
of the isogonal type and of V-hedra with skew quads. This study at hand is also the starting
point towards a full classification of continuous flexible (3 × 3) SQ building blocks, which is
subject to future research.
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