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Abstract. A surface is under pressure and deforming. Is it bending without
or with deforming the surface-metric? This is an important question in many
applications. Mathematical concepts to deal with these kind of problems are
differential geometry and infinitesimal bendings. Shadow-curves are an intuitive
visualization tool. We prove in this paper that as long as the shadow-lines stay
stationary during the deformation the surface is infinitesimal rigid.
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1 Introduction

Closed convex surfaces (so called “Eiflächen”) are infinitesimal rigid. “Open” surfaces are
not, but you can enforce rigidity by certain boundary conditions for the boundary (surface-)
curves or by certain conditions for the deformation vector field. In many applications it is
nearly impossible to impose conditions on the deformation vector field. Appropriate boundary
conditions for the boundary curves are the “way to go”. We prove in this paper that as long
as the shadow-lines stay stationary during the deformation the surface is infinitesimal rigid.

The shadow-line is the “boundary curve” between light and dark on the surface. Let e
be the light direction of ”parallel lightning”, that means all light rays are parallel. We do not
use spotlights. The shadow-line is them given by ⟨e, N⟩ = 0. N is the normal vector of the
surface and ⟨, ⟩ the scalar product. ⟨e, N⟩ > 0 descripes the “lighted part” of the surface.
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(a) Shadow-lines on a car hood

(b) Pressure distribution on a car hood (c) Shadow-lines are stationary under pressure,
therefore the surface is infinitesimal rigid

2 Related Work

From the application point of view it makes no sense to impose conditions on the deformation
vector field. The famous results of Grotemeyer [2] contain, at least to my knowledge the
only conditions imposed to the boundary curves, which enforce rigidity by purely geometric
constraints.

3 Shadow-Line Method

3.1 Basic Facts and Notations
We consider a parametrized c2 surface X : U → E3.

Xu := ∂

∂u
X(u, w), (1)

Xw := ∂

∂w
X(u, w), (2)

Xuw := ∂

∂w
Xu(u, w), . . . (3)

TuX is the tangend space of X, and N the normal vector. The matrix representation of
the first fundamental form with respect to the basis {Xu, Xw} of TuX is given by

{gij}2
i,j=1 =

(
⟨Xu, Xu⟩ ⟨Xu, Xw⟩
⟨Xw, Xu⟩ ⟨Xw, Xw⟩

)
(4)
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The Weingarten map L = TuX → TuX is defined by L := −dNu ◦ (dXu)−1. The matrix
representation of the second fundamental form (the bilinear form definded by ⟨L(A), B⟩ for
each A, B ∈ TuX) is given by

{hij}2
i,j=1 =

(
⟨Xuu, N⟩ ⟨Xuw, N⟩
⟨Xwu, N⟩ ⟨Xww, N⟩

)
(5)

k := det(L) is the Gaussian curvature.

3.2 Deformations and Infinitesimal Bendings
Definition 1.

(a) X(U) and X̃(U) are two surfaces with a common parameter domain U . X and X̃ are
called isometric, if gij = g̃ij.

(b) A family of surfaces
Xt(u, w) := X(u, w) + t · Z(u, w)

is called a deformation generated by a deformation vector field Z(u, w).
(c) This deformation vector field Z(u, w) is called an infinitesimal bending of the surface

X(u, w) if L(c̃) = L(c) + o(ε) for each surface curve c := X(u(s)), w(s)) and c̃ :=
Xt(u(s), w(s)).

Definition 2 (First Variation). Let {X(U)}t∈I be a deformation generated by a deforma-
tion vector field Z(u, w) and f : U × I → R a continuous mapping with continuous partial
derivatives.

Then
δf := ∂f

∂t
|t=0

is called the first variation of f .

Theorem 1 (Characterization of infinitesimal bendings). The following statements are equiv-
alent:

(I) Z(u, w) is an infinitesimal bending.

(II) ⟨Zu, Xu⟩ = 0, ⟨Zw, Xw⟩ = 0 and ⟨Zu, Xw⟩ + ⟨Zw, Xu⟩ = 0

(III) δgij = 0

Proof. (I) ⇐⇒ (II): L(c̃) = L(c) + o(ε) if and only if g̃rsu̇
ru̇s = giju̇

iu̇j + o(ε), but

⟨Xu, Xu⟩u̇2 + ⟨Xw, Xw⟩ẇ2 + 2⟨Xu, Xw⟩u̇ẇ

+ 2ε
(
⟨Xu, Zu⟩u̇2 + ⟨Xw, Zw⟩ẇ2 + (⟨Zw, Xu⟩ + ⟨Zu, Xw⟩)u̇ẇ

)
+ o(ε)
= giju̇

iu̇j + o(ε)

if and only if ⟨Zu, Xu⟩ = 0, ⟨Zw, Xw⟩ = 0 and ⟨Zu, Xw⟩ + ⟨Zw, Xu⟩ = 0.

(II) =⇒ (III):

δgij = δ⟨Xi, Xj⟩ + δt(⟨Xi, Zj⟩ + ⟨Xj, Zi⟩) + δt2(∼),
X1 = Xu, X2 = Xw, Z1 = Zu, Z2 = Zw
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Considering ⟨Zu, Xu⟩ = 0, ⟨Zw, Xw⟩ = 0 and ⟨Zu, Xw⟩ + ⟨Zw, Xu⟩ = 0, we get δgij = 0.
(III) =⇒ (II): δgij = 0 leads to

⟨Xi, Zj⟩ + ⟨Xj, Zi⟩ = 0 (6)

for all i, j = 1, 2 which is equivalent to

⟨Zu, Xu⟩ = 0, (7)
⟨Zw, Xw⟩ = 0, (8)

⟨Zu, Xw⟩ + ⟨Zw, Xu⟩ = 0. (9)

Definition and Theorem 2 (Rotation vector field Y ). For an infinitesimal bending Z(u, w)
there is a unique so called rotation vector field Y (u, w) with

[Y, Xu] = Zu and [Y, Xw] = Zw.

Proof. First, we prove the existence:

⟨Xu, Zu⟩ = 0 and ⟨Xw, Zw⟩ = 0

means that there are vector fields Y1(u, w) and Y2(u, w) with Zu = [Y1, Xu] and Zw = [Y2, Xw].
Further is ⟨[Y1, Xu], Xw⟩ + ⟨[Y2, Xw], Xu⟩ = 0 equivalent to det|Xu, Xw, Y1 − Y2| = 0, which
leads to

Y1 − Y2 = λ1Xu + λ2Xw.

Define Y := Y1 − λ1Xu = Y2 + λ2Xw.
To show uniqueness we assume there exists Y (u, w) and Ỹ (u, w) with [Y, Xu] = [Ỹ , Xu]

and [Y, Xw] = [Ỹ , Xw]. This implies [Y − Ỹ , Xu] = 0 = [Y − Ỹ , Xw] which means Y = Ỹ .

Remarks.
(1) The vector field Z(u, w) can be visualized as the velocity field of the deformation.
(2) The vector field Y (u, w) can be visualized as the “momentary rotation vector field” of

a rigid body attached to the surface.

Definition 3 (infinitesimal movement and infinitesimal rigidity).
(a) An infinitesimal bending Z(u, w) is called trivial or an infinitesimal movement if Z(u, w) =

[c, X(u, w)] + d with constant vectors c and d.
(b) A surface which allows only trivial infinitesimal bendings is called infinitesimal rigid.

Lemma 3 (Rigidity). A surface X(U) is infinitesimal rigid if and only if the first variation
of the second fundamental form is zero (δhij = 0) for all infinitesimal bendings (δgij = 0).

Proof. Let X(u) be inifintesimal rigid

X̃(u, w) = Xt(u, w) = X(u, w) + tZ(u, w)
= X(u, w) + t([c, X(u, w)] + d),

which means

X̃u = Xu + t[c, Xu],
X̃w = Xw + t[c, Xw]
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and

[X̃1, X̃2] = [X1, X2] + t[X1, [c, X2]] + t[[c, X1], X2] + o(t)
= [X1, X2] + t ([X1, [c, X2]] − [X2, [c, X1]]) + o(t)
= [X1, X2] + t (⟨X1, X2⟩c − ⟨X1, c⟩X2 − ⟨X2, X1⟩c + ⟨X2, c⟩X1) + o(t)
= [X1, X2] + t[c, [X1, X2]] + o(t).

So we get for the normal vectors

Ñ = (N + t[c, N ])∥[Xu, Xw]∥
∥[X̃u, X̃w]∥

,

X̃ij = Xij + t[c, Xij]

and for the second fundamental form

h̃ij = (⟨Xij, N⟩ + t⟨Xij, [c, N ]⟩ + t⟨[c, Xij], N⟩) · ∥[Xu, Xw]∥
∥[X̃u, X̃w]∥

+ o(t)

= (⟨Xij, N⟩ + t(det|Xij, c, N | + det|N, c, Xij|)) · ∥[Xu, Xw]∥
∥[X̃u, X̃w]∥

+ o(t)

= ⟨Xij, N⟩ · ∥[Xu, Xw]∥
∥[X̃u, X̃w]∥

+ o(t).

This leads to
hij(t) = hij(·) · ∥[Xu, Xw]∥

∥[X̃u, X̃w]∥
+ o(t)

and δhij = 0. This completes the first part of the proof.

The first variation of the second fundamental form of an infinitesimal bending (δgij = 0)
vanishes (δhij = 0).

δhij = 0 ⇐⇒ hij(t) = hij(0) + o(t)

h̃ij = ∥[Xu, Xw]∥
∥[X̃u, X̃w]∥

hij + t⟨Zij, N⟩ + t⟨Xij, [Xu, Zw] + [Zu, Xw]⟩ + o(t).

This leads to

0 = ⟨Zij, N⟩ + ⟨Xij, [Xu, [Y, Xw]] + [[Y, Xu], Xw]⟩
= ⟨Zij, N⟩ + ⟨Xij, ⟨X1, X2⟩Y − ⟨X1, Y ⟩X2 − ⟨X2, X1⟩Y + ⟨X2, Y ⟩X1⟩
= ⟨[Yj, Xi] + [Y, Xij], N⟩ + ⟨Xij, ⟨X2, Y ⟩X1 − ⟨X1, Y ⟩X2⟩
= ⟨[Yj, Xi] + Γl

ij[Y, Xl], N⟩ + Γl
ij⟨Xl, ⟨X2, Y ⟩X1 − ⟨X1, Y ⟩X2⟩.

This implies
0 = ⟨[Yj, Xi] + Γl

ij[Y, Xl], N⟩ (10)
and

0 = Γl
ij⟨Xl, ⟨X2, Y ⟩X1 − ⟨X1, Y ⟩X2⟩ (11)

= Γl
ij (⟨X2, Y ⟩⟨Xl, X1⟩ − ⟨X1, Y ⟩⟨X2, Xl⟩)

= Γl
ij⟨[Y, Xl], [X2, X1]⟩
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Using Eq. (11) in Eq. (10) yields

0 = ⟨[Yj, Xi], N⟩ = ⟨Yj, [Xi, N ]⟩,

which implies
⟨Yj, [Xi, N ]⟩ = 0. (12)

Consider now Zuw = Zwu =⇒ [Yw, Xu] + [Y, Xuw] = [Yu, Xw] + [Y, Xwu]. This implies
[Yw, Xu] − [Yu, Xw] = 0 and further

=⇒ ⟨Xw, [Yw, Xu]⟩ = 0
⟨Xu, [Yu, Xw]⟩ = 0

⇐⇒ det|Xw, Yw, Xu| = 0 = det|Yw, Xu, Xw| ,

analogous for Yu.
This implies

⟨Yw, [Xu, Xw]⟩ = 0 and ⟨Yu, [Xu, Xw]⟩ = 0
⟨Yj, [Xi, Xl]⟩ = 0 and ⟨Yj, [Xi, N ]⟩ = 0 i, j, l = 1, 2

It follows that Y is constant and therefore Z = [c, X] + d. This concludes the proof.

3.3 Enforcing Rigidity – the Principle
Surfaces are in general not infinitesimal rigid, besides closed convex surfaces. But you can en-
force rigidity by ”certain geometric boundary conditions” for the boundary (surface-) curves.
You can enforce rigidity also through conditions for the deformation vectors, but in many
applications it is nearly impossible to impose these kind of conditions. Appropriate bound-
ary conditions for the boundary curves are the “way to go”. For more interesting details see
Efimov [1].

Results based on constraints on the boundary curves are in the Grotemeyer [2] paper:
An open convex surface is rigid under infinitesimal bendings which do not change along the
boundary of the boundary curve:

• the normal section curvature of the surface
• the geodesic torsion of the surface
• the curvature of the boundary curve
• the torsion of the boundary curve
It is somewhat hard to visualize these curvature functions along the boundaries in an

intuitive way. Shadow-lines are an intuitive visualization tool. We prove in this paper that
the surface is infinitesimal rigid as long as the shadow-lines are stationary during the defor-
mation. The proofs of these or similar results are based on the “Integralformelmethode”. This
fundamental technique is nicely presented in all details in Huck et al [3]. A specific form of
Stokes theorem is used ∫ ∫

U

E ijTi∥jdF =
∫

∂U

Tj
duj

dt
dt ,

where Ti is a C1 vector field,
Ti := ErsδhirAs,
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E11 = 0, (13)
E22 = 0, (14)

E12 = 1
√

g
, (15)

E21 = − 1
√

g
, (16)

g := det(gij). (17)

Ti∥j is the covariant differentiation of the vector field Ti.
An appropriate tensor As then “delivers” the result. In more details:

Lemma 4. Air is a symmetric tensor and there is a positive definite, symmetric tensor Sks

with E ikErsAirSks = 0. Then
det(Air) ≤ 0

and for det(Air) = 0 we get Air = 0.

Proof. Diagonalize E ikErsAir with respect to Sks. E ikErsAirSks is then the trace, the sum of
the two real eigenvalues. If E ikErsAirSks = 0 then that means that det(E ikErsAir) ≤ 0 and
since Sks is positive definite det(Air) ≤ 0.

In the special case det(Air) = 0 we get:
Air symmetric =⇒ Air = ai · ar =⇒ E ikErsaiar = 0. As Sks is positive definite, we get
ai = 0 and finally Air = 0.

3.4 Enforcing Rigidity by Shadow-Line Constraints
Surfaces in CAD / CAM technology are often “inspected” by parallel lighting, that means
all light rays are parallel. We do not use spotlights. So called “shadow-lines” are of special
interest.

We prove now that a surface is rigid under inifinitesimal bendings which keep the shadow-
lines stationary.

e is the light direction of the shadow-line (“Eigenschattengrenze”) with ⟨e, N⟩ = 0. e is a
constant vector with ⟨e, N⟩ > 0 in the lighted part of the surface.

Theorem 5. An open convex surface with boundary curves which are shadow-lines (“Eigen-
schattengrenze”) by parallel lighting e is infinitesimally rigid under infinitesimal bending which
keep ⟨e, Xi⟩, i = 1, 2 stationary.

Proof. Along the boundary it holds that δ⟨e, Xi⟩ = 0 for i = 1, 2.
∫ ∫
U

E ijTi∥jdF =
∫

∂U

Tj
duj

dt
dt,

Tj := Ersδhjrδ⟨ei, Xs⟩.

This leads to ∫
∂U

(Ersδhjrδ⟨e, Xs⟩)
duj

dt
dt = 0
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and ∫ ∫
U

E ij(Ersδhjrδ⟨e, Xs⟩)∥idF = 0,

∫ ∫
U

E ijErsδhjrδ⟨e, Xs⟩∥idF = 0.

Considering

⟨e, Xs⟩∥i = ⟨e, N⟩hsi,

δ⟨e, Xs⟩∥i = δ⟨e, N⟩hsi + ⟨e, N⟩δhsi

so we get
∫ ∫
U

E ijErsδhjrδhsi⟨e, N⟩dF = 0,

∫ ∫
U

⟨e, N⟩det(δhir)
det(gir)

dF = 0.

Here, δhir is a symmetric tensor, hks is a symmetric, positive definite tensor and

E ihErsδhirhks = 0

implies det(δhir) ≤ 0.
In this special situation det(δhir) is even zero, which implies δhir = 0.
This means the surface is rigid under these kind of infinitesimal bendings.

4 Results

Deformations which do not change the metric are not a problem in design and manufacturing.
To guarantee the rigidity by simulation is an important goal. The shadow-lines are stationary
under pressure. That means we have the situation we want around the door handle.

(a) Pressure distribution on a car door (b) Shadow-lines are stationary under pressure,
therefore the surface is infinitesimal rigid
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