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Three Collinear Points
Generated by a Tetrahedron
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Abstract. Let ABCD be a tetrahedron. For each point P inside of the tetra-
hedron ABC D, there is a unique set of points {E, F, G, H, I, J} such that (1) E,
F, G, H, I, and J are points on the edges DA, AB, BC, CD, AC, and BD,
respectively, and (2) the segments EG, FH, and IJ concur at P. If the three
planes FGJ, GHI, EHJ, intersect, say at A*, then we will prove that the three
points A, P, A* are collinear. Let A’ be the intersection of the line AP and the
plane BC'D. If the points B*, C*, D* are defined similar to A*, and if the points
B', C', D" are defined similar to A’, we will find the volume of the tetrahedra
A*B*C*D* and A'B'C'D’. We use barycentric coordinates to prove these results.
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1 Introduction

This note is motivated by Theorems 1 and 2 of [3], which we state here as Lemmas 1 and 2,
respectively.

Lemma 1. Suppose the points E, F', G, H, I, and J are points on the edges DA, AB, BC,
CD, AC, and BD, respectively, of a tetrahedron ABCD such that the segments EG, FH,
and I.J intersect at P. Then the following are true:
1. The segments (BH, CJ and DG), (AH, CE and DI), (AJ, BE and DF), (AG, BI
and CF') intersect, say at A', B', C', and D', respectively.
2. The segments AA', BB', CC", and DD’ intersect at P. (See Figure 1.)

Lemma 2. Suppose P is a point inside of a tetrahedron ABC'D. Suppose A', B', C', D" are
intersections of (the line AP and the face BCD), (BP and ACD), (CP and ABD), and
(DP and ABC), respectively. Then the following are true:
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Figure 1: The labelings used in Lemmas 1 and 2 are explained.

1. The segments (BC' and CB'), (DC" and CD'), (AD' and DA’), (AB' and BA’), (AC’
and CA’), and (BD' and DB') intersect, say at E, F, G, H, I, and J, respectively.
The points E, F, G, H, I, and J are points on the edges DA, AB, BC, CD, AC and
BC' respectively.

2. The segments EG, FH, and I.J intersect at P. (See Figure 1.)

Definition 1. Throughout this note, let ABC'D be a tetrahedron in R?. And we denote a
point inside of the tetrahedron ABC'D by P. Then Lemma 2 says that there is a unique set
of points {E, F,G,H,I,J} such that (1) E, F,G,H,I, and J are points on the edges DA,
AB, BC, CD, AC, and BD, respectively, and (2) the segments FG, FH, and I.J concur at
P. Let us call the six tuple of ordered point [E, F, G, H, I, J] to be the edge-coordinates of P
with respect to the tetrahedron ABCD. Let I'y, I'g, I'c, I'p be the planes EFI, FGJ, GHI,
EHJ, respectively.

We will prove the following theorem.

Theorem 1. Let P be an interior point of a tetrahedron ABCD, and let [E, F,G,H, I, J] be
the edge-coordinates of P with respect to the tetrahedron ABCD. If the three planes I'g, T'¢,
['p intersect, say at A*, then the three points A, P, and A* are collinear. (See Figure 2.)

Our proof of this theorem is computational using barycentric coordinates. We briefly
introduce barycentric coordinates in the next section, and prove Theorem 1 in Section 3. If
points B*, C*, and D* are defined similarly to A*, we will find the volumes of the tetrahedra
A'B'C'D" and A*B*C*D* in Section 4.

2 Barycentric Coordinates

Since we are interested in the three-dimensional space, we only explain the barycentric coor-
dinates in the space R3. There are several ways to introduce barycentric coordinates. Here,
we use volumes, and this is sometimes called normalized barycentric coordinates. (See [2,
218-220] for two-dimensional case.)

Let V be the volume of the tetrahedron ABCD. Let () be any point in the space. Let
Voscep be the volume of the tetrahedron QBCD if ) and A are on the same side of the plane
BCD, and Vgpep to be the negative of the volume of the tetrahedron QBCD if () and A are
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Figure 2: The planes I'g, ', and I'p, are represented by the quadrilaterals A*GFJ, A*GIH, and
A*HEJ, respectively. For the locations of the points H and I, please see Figure 1.

on the opposite sides of the plane BC'D. Similarly, Vgacp, Voasp, and Vgapc are defined.
Then the (normalized) barycentric coordinates |a, b, c,d] of @) are given by

. VQBCD’ - VQACD’ . VQABD7 J— VoaBc
V V V V
Note that every point in the space has unique barycentric coordinates. Let [a,b,c,d]
be the barycentric coordinates of a point ) with respect to the tetrahedron ABC'D. Since
Voscp+Voacp+Voapp+Voapc = V for any choice of (), we must always have a+b+c+d = 1.
The point @ is inside of the tetrahedron ABCD if, and only if, a, b, ¢ and d are all
positive numbers.

Definition 2. Recall that P is a point inside of the tetrahedron ABC'D. And we let [a, b, ¢, d]
be the barycentric coordinates of P. Hence, a, b, ¢ and d are all positive numbers such that
a+b+c+d=1.

Next, we will give examples that are necessary for the proof of Theorem 1.

Fxample 1. The barycentric coordinates of the vertices of the tetrahedron ABC D are given
by A=[1,0,0,0], B=10,1,0,0], C =[0,0,1,0], D = [0,0,0,1]. The plane ABC'is given by
the set

{lz,y, z,w]: w =0} ={[z,y,2,0]: z +y+ 2z = 1}.

Hence, the set of all points on the face ABC' is given by the set
{lz,y,2,0]: v+ y+2z=1and z,y,z > 0}.

The line AB is given by {[x,y,0,0]: x +y = 1}, and the edge AB (the segment AB) is given
by {[z,y,0,0]: z +y =1 and z,y > 0}.

Ezample 2. The line AP can be thought as the set of points [1,0,0,0]s + [a,b, ¢, d|t = [s +
at, bt, ct, dt], where s +t = 1. This gives us

AP ={[z,y,z,w|: x = s+at,y =bt,z = ct,w =dt,s +t = 1}.
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Similarly, we have

BP ={[z,y,z,w]: x =at,y =s+bt,z =ct,w=dt, s+t =1},
CP=A{[x,y,z,w|: z =at,y=0bt,z=s+ct,w=dt,s+t =1}, and
DP ={[z,y,z,w]: x =at,y =bt,z = ct,w =s+dt,s+t = 1}.

Sometimes, we substitute s by 1 — t.

Ezample 3. Let A’, B',C", D" be intersections of (the line AP and the face BCD), (BP
and ACD), (CP and ABD), and (DP and ABC), respectively. Since the plane BCD =
{[x,y, z,w]: x = 0}, the 1% barycentric coordinate of A" is z = 0. So by letting x = s+ at =

1 —(1—a)t =0 in the line AP in Example 2, we have t = ;& = b+i+d. This gives us
A = {O, b+i’+d, Trord’ b+g+d}. As a summary, we have

A — o b c d B a 0 c d
| Vb4 ce+d btcet+d b+ce+d|’ lat+ce+d Tat+ct+d a+c+d|’

, a b 0 d D a b c 0
Cla+b+d a+b+d Ta+b+dl|’ Clat+b+ca+b+ca+b+ce |

From A’, we have

BA’:{[x,y,z,w] r=0,y=s-+ tr= e tw = ts+t—1}

b+c+d ’ b+c+d b+c +d

Let H be the intersection of BA" and the edge C'D. Since CD = {[0,0,z,w]: z + w = 1},

the 2" barycentric coordinate of H must be 0. From this, we have y = s + b+c+d -t = 0.
Since s+t=1anda+b+c+d=1, we have t = bJer_ierd. Hence, H = {O O?chwTd] As a
summary, we have
d b d b c
H = 0,0, J=10,——,0, —— G =10 0
[ +d +d] [’b+w’b+J’ [’b+db+d]’

d b
E=|—"00——|, I:‘l,ac,ﬂ, and F=|——0\—" 00|
a+d a+d a+c a+c a+b a+b

By Definition 1, [E, F,G, H, I, J] is the edge-coordinate of the point P.
Example 4. The line GJ is given by
GJ=1{] ] 0 b ¢ ts+t=1
=< |r,y,z,w]: = = -8 b,z = cs,w=——-1,8 =1;.
7y7 Y 7y b+c b+d Y b+c ) b+d Y

LetQ:[O b -s+b+id- L-s,ber }GGJforsomes—I—t—l Then the line F'Q) is given

7 b+c ’ b+c
by
a b b b
FQ = = Ly = ¢
@ {[m,y,z,w] o a+b Y a+b (b—i—c S+b—|—d )r,
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The collection of the lines F'() for all possible s and ¢ such that s +¢ = 1 is the plane FG.J.
Let scr=mandt-r=n. Then |+ m+n=1014+sr+tr=10+(s+t)r =1+r =1, and the
plane FGJ = I'p is given by the set

FB:{[x’y7Z’w]:x:aL+bl’y_ a+bl+mm+ﬁbdn,z:ﬁm,w— b+dn l+m+n= 1}
Similarly, we have

FCZ {[x,y,z,w] :x:aiﬂl’y:ﬂm"z: a+cl+@m+c+dn w= c+dn l+m+n_1}

FD:{[x,y,z,w]:x:a+dl, bidmz:chn,w a+dl+b+—dm—|——nl+m+n—1}
and
Pa={ley 2w o= gl + gom+ fgn.y = Jhloz = g8omow = qn, L+ m+n =1},

3 Proof of Theorem 1

Proof of Theorem 1. Suppose that P = [a, b, ¢,d] is a point inside of the tetrahedron ABCD.
So, a, b, c and d are all positive numbers such that a +b+c+d = 1.
From Example 3, we have

oputact] et ol

ctdc+d b+d b+d "b+c b+’

=] 00 _-% | 1:[“,0,0,0}, and F= |- " ool
a-+d a+d a+c a+tc a+b a+bd

And from Example 4, we have equations of the planes I'g, ', and I'p.
Assume that 1 — 2a # 0.

Case 1: We will prove that A* = [l:gzﬂ 1—bza7 T l_d%} is a point on the plane I'g. From
Example 4, we have that

FB:{[x,y,z,w] +bl,y*a+bl+@m+b+—dnz el w*mnl—i-mﬂLn—l}
Let | = — &2 = 2y = 254 Then,
a+b b+c b+d —a+b+c+d
[+m+n=— + + = =1,

1—2a 1—2a 1-—2a 1—2a
and we have

x:Ll:L(_aer): —a

a+b a+b 1—2a 1—2a?
b b b . b (_ ath ) b+c Cb+td _ b
Y=anl teemt e — o ( - ) + b+c + b+d 1-2a — 1-2a°
_ ¢ btc __ c . d d  btc _ _d
zZ= b-‘rcm b+c 1-2a = 1-2a’ and w= b-‘r—dn b+d 1-2a = 1-2a°

This shows that A* € I'g.

Case 2: From Example 4, we have

Fcz{[aj,y,z,w]:x_%cl y_ﬂm Z_a+cl+ﬂm+c+d w_@n l+m+n—1}
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If welet [ = 1“'2%), m =5 n=L in ¢, then I +m+n =1 and
a —a b b
xr = l: s y: m = s
a+tc 1—2a b+c 1—2a
c - c . c —c+c+c c d d d
Z = m n = = , and w = n =
a+tc b+c c+d 1—2a 1—2a c+d 1—2a

This shows that A* € T'¢.

Case 3: From Example 4, we have

FD:{[x,y,z,w]:x a+dl,y—bidm z = +dnw—a+dl—|—b+dm+ nH—m—l—n—l}
If we let [ = lagj), m= 2L n=L iy o, then I +m+n =1 and
a l —a b b
x: = :7m:
atd 1-2¢ YT bv+d" T 124
c c d d I+ d N d —d+d+d d
z = n = an w = m n = = .
c+d 1—2a’ a+d b+d c+d 1—2a 1—2a

This shows that A* € I'p.

Hence, from Cases 1-3, we have shown that A* = [1:ga, 1_l’2a, 5 1—d2a:| is the intersection
of the planes I'g, I'c, and I'p. Moreover, this shows that three planes I'g, I'c and I'p intersect
if, and only if, a # %

Finally, we will show that A* = {1:(2107 1_”2(1, e 1—d2a} is a point on the line AP. From
Example 2, the line AP is given by the set

AP ={[x,y,z,w| :x =s+at,y =bt,z =ct,w=dt, s+t =1}.

Let s = 1’22“ = 1_—1% Then s+t =1 and

+at —2a . a —a b
Tr =S at = = —= —
1—-2a¢ "1-2¢ 1-2a 7Y 1— 24’
c d
FTAT Y gy MY 1— 24

This shows that A* = {liga, 1_b2a, T 1—d2a:| is a point on the line AP. Therefore, the three

points A, P, A* are collinear. O]
Corollary 1. The three planes I'g, I'c, I'p intersect if, and only if, a # % Ifa # %, then the

barycentr[ic coordinates of the]mtersectz'ng point A* of the three planes I'g, I'c, I'p is given
by A* — —a b c d

1-2a’ 1-2a’ 1-2a’ 1-2a |~

Proof. Suppose the three planes I'g, I'c, I'p intersect at A*. From the proof of Theorem 1,

A* has the barycentric coordinate |;=5-, 7 b2a, T T 2a] This is only possible when a # 3 L

On the other hand, suppose a # % 3. Then L —a b £ d_| is a point. Again, from

1-—2a° 1-2a° 1-2a’ 1-2a
the proof of Theorem 1, it is the intersection of the three planes I'g, I'c, I'p. O

Remark 1. If a = %, then the only way the planes I'g, ['c, I'p do not intersect is for these
planes to form a prism-like tunnel. If a # 1 then the three planes I'g, I'c, I'p intersect at
A* Ifa < , then A* and A are on the same side of the plane BC'D. If a > l then A* and
A are on the opposite sides of the plane BC'D.
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Definition 3. Suppose (1 —2a)(1 —2b)(1 — 2¢)(1 — 2d) # 0. Then the planes (I'g, I'¢, and
I'p), (T4, e, and T'p), (T4, I'p, and I'p), and (I'4, ', and T'¢) intersect by Corollary 1,
and we denote their intersections by A*, B*, C*, D*, respectively. See Figure 3.

Remark 2. Suppose (1 — 2a)(1 — 2b)(1 — 2¢)(1 — 2d) # 0, or equivalently, A*, B* C*, D*,
exists. Then F € B*C*, F € C*D*, G € A*D*, H € A*B*, I € B*D*, J € A*C*. Hence,
[E,F,G,H,I,J] be the edge-coordinates of P with respect to the tetrahedron A*B*C*D*.
By Theorem 1, the planes EHI, EFJ, and FGI intersect. But planes FHI = ACD,
EFJ = ABD, FGI = ABC'. Hence, the intersection of these three planes is A. Lemma 1
applies to the tetrahedron A*B*C*D*. The three segments B*F, C*I, D*FE intersect, say at
A*. Then A" is the intersection of the line A* P and the plane B*C*D*. In other words, the
points A, P, A’, A*, A* are all collinear.

4 The Volumes of the Tetrahedra A’B'C’'D’ and A*B*C*D*

We will find the volume of the tetrahedra A’B'C’'D’ and A*B*C*D*. See Figure 3 for the
tetrahedron A*B*C*D*. o s
Notation: The determinant of the matrix [ R ] is denoted by | : -. :
1 - tn PR
The next lemma may be known, but since 1We could not find a refelrence to it, we will
prove it. A related result for a two-dimensional case can be found at the bottom of page 295
in [1] without a proof.

S1 - Sp

Lemma 3. Let S = [51, S9, 83, 84]7 T = [tl, tQ, t3, t4], U = [Ul, Ug, U3, U4], V= [Ul, V2, U3, 1)4] be
points given in barycentric coordinates of points in R® with respect to the tetrahedron ABCD.
Let V be the volume of the tetrahedron ABCD, and let

S1, S2, 83, 5S4
ty, 12, 13, 14
uy, U, Uz, Usg|
U1, U2, U3, U4

Then the volume V' of the tetrahedron STUV is given by |8|V, i.e., V' = |§|V.

Proof. Note that determinants have the property that
S1 vy @i+ by ... s, S1 ..., Qi ... Sy S1 ...y, by, ... S,
P : S E S o ol e S S PR CY)
tl ey Ci+di, tn tl ey Gyl tn tl ceey dia tn

Applying (a) multiple times, and since S1+S9+S3+S54 = 1, t1+t2+t3+t4 = 1, Ul tU2tU3+Uy =
1, and vy + v9 + v3 + v4 = 1, we can show that

S1, S2, 83, 5S4
ly, 12, 13, 14
Uy, U2, U3, Uy
U1, V2, U3, U4

b1 — 81, to— 82, 13— 583
:(5:—’&1—81, Ug — S2, U3 — S3|. (b)
U1 — 81, U2 — S2, U3 — S3

Let >’ be the volume of the parallelepiped defined by ST , SU , and SV in the affine coordi-
nate system having lines AB, AC, and AD as its coordinate axes with unit lengths being the
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segments AB, AC and A AD, respectively. Hence, the volume of the parallelepiped defined by
the vectors AB AC’ AD is the unit. Let & be the volume of the parallelepiped defined by
vectors AB AC AD Let S (81,82,83) T (tl,tg,tg) U = (ul,u2,u3) V = (Ul,vz,vg)
be points in R? with the usui rectangular coordinates. The_Lé | is the volume of the paral-

lelepiped defined by vectors ST = (t; — 51,1y — 82,t3 — 53), SU = (uy — 51, Uy — Sa, U — S3),

and SV = (v1 — 81,9 — S9,v3 — s3) by the Equation b. Hence, we have that % = [6|. (This
idea is similar to [2, p. 218].) Therefore, V' = ¢¥' = £[6|Z = [d]V. O

Theorem 2. Let A', B', C', D’ be intersections of (the line AP and the face BCD), (BP
and ACD), (CP and ABD), and (DP and ABC ), respectively. Then we have the following:

_ b c _ a c _ a b d
(1) A= { > btc+d’ btet+d? b+c+d} B = |:a+c+d’ O’ a+c+d’ a+c+d} ' = {a—&-b—i—d’ a+b+d’ O’ a+b+d:| ’
_ a b c
D= [a+b+c’ a+b+c’ at+b+tc? 0] ’
(2) IfV is the volume of the tetrahedron ABC D, the volume V' of the tetrahedron A’B'C'D’

abed V

is given by (et d)(aterd)(atbrd)(atbre)
(3) V' < év. The equality holds only when P is the centroid of the tetrahedron ABCD.

Proof. (1) is given in Example 2. (2) is an application of Lemma 3. So, we will prove

(3). Let f(a,b,c,d) = (b+c+d>(a+c+‘;’)’fg+b+d)(a+b+c). Then we want to maximize f(a,b,c,d)

subject toa+b+c+d =1; a,b,c,d > 0. We will use Lagrange’s multiplier method. Let
g(a,b,c,d) = a+ b+ c+ d. Then the critical points are given by Vf = AVg for some .
Since Vg = (1,1,1,1>, we must have A = g£ = g{ = g{ = % From % = g{, we have
(b—a)(bc+ bd + ca+ ¢* + cd + ad + dc + d*) = 0 after simplification. Since a, b, c,d > 0, this

implies @ = b. Similarly, we have a = b = ¢ = d. Since a+b+c+d =1, (a,b,¢,d) = (3,1, 1 1)

FEER AN
is the only critical point. Since lim, .o f(a,b,c,d) = 0, we can see that f(i, i, i, %) = 8% is

the maximum value of f. Again, the barycentric coordinates [i, i, i, i} is the centroid of the

tetrahedron ABCD. OJ

Theorem 3. Suppose (1 — 2a)(1 — 2b)(1 — 2¢)(1 — 2d) # 0. Then, we have the following:
(1) The barycentric coordinates of the points A*, B*, C*, D* are
A* = { —a b c d ] 7 B* — [ —b c d }

1-2a’ 1-2a’ 1-2a’ 1-2a 1-2b7 1-2b7 1-2b7 1-2b

C«*:[a b —c d}’ D*:[a b c —d]_

1-2¢? 1-2¢? 1-2¢’ 1-2¢ 1-2d’ 1-2d’ 1-2d’ 1-2d

(2) If V is the volume of the tetrahedron ABCD, then the volume V* of the tetrahedron

* O Wk TY)* 16abced
A*B*C*D* is given by V* =0y (1= 2b) (130 (1= 2d)|V

Proof. Proof of (1) is a repeated application of the proof of Theorem 1. As for (2), by our
assumption, we have (1 — 2a)(1 — 2b)(1 — 2¢)(1 — 2d) # 0 by Corollary 1. Hence, (2) is an
application of Lemma 2. O

Remark 3. Unlike the inequality relation in Theorem 2(3) between V and V', there is no
inequality relation between V and V* in Theorem 3. In order to see this, we consider the
segment AA’. The segment AA" is given by AA’ = {[1 —y, £, L L]:0 <t < 1}. So, let
P(t)=[1—£,4,5,4,0 < < L Then P(0) = A, P(}) = [5, 1,1 1], P(3) = [1.1.1,1], and
P(1) = A’. So, there is no tetrahedron A*B*C*D* that corresponds to the point P(3), and

P(3) is the centroid of the tetrahedron ABCD.

_ 16abcd o 16(1—t)t3
Let fla.b,c.d) = mrgam=ani-zon-say- Then /U =1, 5505) = [ran@oap Hence,
t ot L
3

limt_,of(l—t,f5 )3 5) —O llmt_>1 f(1— 73,3,3) 00, and hmt_>1f(1—t,§ ,%

= (0. From
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Di

A

Figure 3: The tetrahedron A*B*C*D* is exhibited when the point P is the centroid of the tetrahe-
dron ABCD.

Theorem 3, the volume V* of the tetrahedron A*B*C*D* can be made as large as and as
close to zero as you wish depending on the choice of P.

Remark 4. It is not difficult to see that the following three statements (i)—(iii) are equivalent:
(i) P be the centroid of a tetrahedron ABCD.
(ii) A’, B’, C'", D" are the centroid of the triangular faces BCD, ACD, ABD, and BCD,

respectively.

(iii) F, F, G, H, I, and J are the mid-points of the edges DA, AB, BC, CD, AC, and BD,
respectively.

Let P = [i, i, i, %], the centroid of the tetrahedron ABC'D. We will investigate the

tetrahedron A* B*C™* D* that corresponds to the centroid P. If we let t = %, we have P = P (%)
and f( i, i, i, %) = 1 from Remark 3. So, Theorem 3 shows that the volumes of the tetrahedra
ABCD and A*B*C*D* are the same.

Moreover, the barycentric coordinates of A* and B* are given by [—%, %, %, %] and [%, —%, %,
%], respectively. Note that H = [0, 0, %, %] from Example 2. This shows that H is the midpoint
of the segment A*B*. Similarly, we can see that E, F, G, I, and J are also the midpoints
of the edges B*C*, C*D*, D*A*, B*D*, and A*C*, respectively. Then the six quadrilaterals
AB*CD*, A*BC*D, AC*BD*, A*CB*D, AB*DC*, and A*BD*C are all parallelograms since
all the diagonals of faces bisect each other. Hence, the hexahedron AB*CD*A*BC*D is a
parallelepiped. See Figure 3. In addition, for example, the parallelogram AB*C D* contains
the edge AC, and is on the plane parallel to the lines AC and BD. The parallelepiped
AB*CD*A*BC*D inscribes both tetrahedra ABCD and A*B*C*D*. Hence, the tetrahedra
ABCD and A*B*C*D* are not only having the same volume, but they are congruent. As a
matter of fact, the tetrahedra ABC'D and A*B*C*D* are mirror images of each other, but

are not identical unless the tetrahedron ABCD is regular.
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