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Three Collinear Points
Generated by a Tetrahedron
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Abstract. Let ABCD be a tetrahedron. For each point P inside of the tetra-
hedron ABCD, there is a unique set of points {E, F, G, H, I, J} such that (1) E,
F , G, H, I, and J are points on the edges DA, AB, BC, CD, AC, and BD,
respectively, and (2) the segments EG, FH, and IJ concur at P . If the three
planes FGJ , GHI, EHJ , intersect, say at A∗, then we will prove that the three
points A, P , A∗ are collinear. Let A′ be the intersection of the line AP and the
plane BCD. If the points B∗, C∗, D∗ are defined similar to A∗, and if the points
B′, C ′, D′ are defined similar to A′, we will find the volume of the tetrahedra
A∗B∗C∗D∗ and A′B′C ′D′. We use barycentric coordinates to prove these results.
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1 Introduction

This note is motivated by Theorems 1 and 2 of [3], which we state here as Lemmas 1 and 2,
respectively.

Lemma 1. Suppose the points E, F , G, H, I, and J are points on the edges DA, AB, BC,
CD, AC, and BD, respectively, of a tetrahedron ABCD such that the segments EG, FH,
and IJ intersect at P . Then the following are true:

1. The segments (BH, CJ and DG), (AH, CE and DI), (AJ , BE and DF ), (AG, BI
and CF ) intersect, say at A′, B′, C ′, and D′, respectively.

2. The segments AA′, BB′, CC ′, and DD′ intersect at P . (See Figure 1.)

Lemma 2. Suppose P is a point inside of a tetrahedron ABCD. Suppose A′, B′, C ′, D′ are
intersections of (the line AP and the face BCD), (BP and ACD), (CP and ABD), and
(DP and ABC), respectively. Then the following are true:
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Figure 1: The labelings used in Lemmas 1 and 2 are explained.

1. The segments (BC ′ and CB′), (DC ′ and CD′), (AD′ and DA′), (AB′ and BA′), (AC ′

and CA′), and (BD′ and DB′) intersect, say at E, F , G, H, I, and J , respectively.
The points E, F , G, H, I, and J are points on the edges DA, AB, BC, CD, AC and
BC respectively.

2. The segments EG, FH, and IJ intersect at P . (See Figure 1.)

Definition 1. Throughout this note, let ABCD be a tetrahedron in R3. And we denote a
point inside of the tetrahedron ABCD by P. Then Lemma 2 says that there is a unique set
of points {E, F, G, H, I, J} such that (1) E, F, G, H, I, and J are points on the edges DA,
AB, BC, CD, AC, and BD, respectively, and (2) the segments EG, FH, and IJ concur at
P . Let us call the six tuple of ordered point JE, F, G, H, I, JK to be the edge-coordinates of P
with respect to the tetrahedron ABCD. Let ΓA, ΓB, ΓC , ΓD be the planes EFI, FGJ , GHI,
EHJ , respectively.

We will prove the following theorem.

Theorem 1. Let P be an interior point of a tetrahedron ABCD, and let JE, F, G, H, I, JK be
the edge-coordinates of P with respect to the tetrahedron ABCD. If the three planes ΓB, ΓC,
ΓD intersect, say at A∗, then the three points A, P , and A∗ are collinear. (See Figure 2.)

Our proof of this theorem is computational using barycentric coordinates. We briefly
introduce barycentric coordinates in the next section, and prove Theorem 1 in Section 3. If
points B∗, C∗, and D∗ are defined similarly to A∗, we will find the volumes of the tetrahedra
A′B′C ′D′ and A∗B∗C∗D∗ in Section 4.

2 Barycentric Coordinates

Since we are interested in the three-dimensional space, we only explain the barycentric coor-
dinates in the space R3. There are several ways to introduce barycentric coordinates. Here,
we use volumes, and this is sometimes called normalized barycentric coordinates. (See [2,
218–220] for two-dimensional case.)

Let V be the volume of the tetrahedron ABCD. Let Q be any point in the space. Let
VQBCD be the volume of the tetrahedron QBCD if Q and A are on the same side of the plane
BCD, and VQBCD to be the negative of the volume of the tetrahedron QBCD if Q and A are
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Figure 2: The planes ΓB, ΓC , and ΓD, are represented by the quadrilaterals A∗GFJ , A∗GIH, and
A∗HEJ , respectively. For the locations of the points H and I, please see Figure 1.

on the opposite sides of the plane BCD. Similarly, VQACD, VQABD, and VQABC are defined.
Then the (normalized) barycentric coordinates [a, b, c, d] of Q are given by

a = VQBCD

V
, b = VQACD

V
, c = VQABD

V
, d = VQABC

V
.

Note that every point in the space has unique barycentric coordinates. Let [a, b, c, d]
be the barycentric coordinates of a point Q with respect to the tetrahedron ABCD. Since
VQBCD+VQACD+VQABD+VQABC = V for any choice of Q, we must always have a+b+c+d = 1.

The point Q is inside of the tetrahedron ABCD if, and only if, a, b, c and d are all
positive numbers.

Definition 2. Recall that P is a point inside of the tetrahedron ABCD. And we let [a, b, c, d]
be the barycentric coordinates of P . Hence, a, b, c and d are all positive numbers such that
a + b + c + d = 1.

Next, we will give examples that are necessary for the proof of Theorem 1.
Example 1. The barycentric coordinates of the vertices of the tetrahedron ABCD are given
by A = [1, 0, 0, 0], B = [0, 1, 0, 0], C = [0, 0, 1, 0], D = [0, 0, 0, 1]. The plane ABC is given by
the set

{[x, y, z, w] : w = 0} = {[x, y, z, 0] : x + y + z = 1}.

Hence, the set of all points on the face ABC is given by the set

{[x, y, z, 0] : x + y + z = 1 and x, y, z ≥ 0}.

The line AB is given by {[x, y, 0, 0] : x + y = 1}, and the edge AB (the segment AB) is given
by {[x, y, 0, 0] : x + y = 1 and x, y ≥ 0}.

Example 2. The line AP can be thought as the set of points [1, 0, 0, 0]s + [a, b, c, d]t = [s +
at, bt, ct, dt], where s + t = 1. This gives us

AP = {[x, y, z, w] : x = s + at, y = bt, z = ct, w = dt, s + t = 1}.
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Similarly, we have

BP = {[x, y, z, w] : x = at, y = s + bt, z = ct, w = dt, s + t = 1},

CP = {[x, y, z, w] : x = at, y = bt, z = s + ct, w = dt, s + t = 1}, and
DP = {[x, y, z, w] : x = at, y = bt, z = ct, w = s + dt, s + t = 1}.

Sometimes, we substitute s by 1 − t.

Example 3. Let A′, B′, C ′, D′ be intersections of (the line AP and the face BCD), (BP
and ACD), (CP and ABD), and (DP and ABC), respectively. Since the plane BCD =
{[x, y, z, w] : x = 0}, the 1st barycentric coordinate of A′ is x = 0. So by letting x = s + at =
1 − (1 − a)t = 0 in the line AP in Example 2, we have t = 1

1−a
= 1

b+c+d
. This gives us

A′ =
[
0, b

b+c+d
, c

b+c+d
, d

b+c+d

]
. As a summary, we have

A′ =
[
0,

b

b + c + d
,

c

b + c + d
,

d

b + c + d

]
, B′ =

[
a

a + c + d
, 0,

c

a + c + d
,

d

a + c + d

]
,

C ′ =
[

a

a + b + d
,

b

a + b + d
, 0,

d

a + b + d

]
, D′ =

[
a

a + b + c
,

b

a + b + c
,

c

a + b + c
, 0
]

.

From A′, we have

BA′ =
{
[x, y, z, w] : x = 0, y = s + b

b+c+d
· t, z = c

b+c+d
· t, w = d

b+c+d
· t, s + t = 1

}
.

Let H be the intersection of BA′ and the edge CD. Since CD = {[0, 0, z, w] : z + w = 1},
the 2nd barycentric coordinate of H must be 0. From this, we have y = s + b

b+c+d
· t = 0.

Since s + t = 1 and a + b + c + d = 1, we have t = b+c+d
c+d

. Hence, H =
[
0, 0, c

c+d
, d

c+d

]
. As a

summary, we have

H =
[
0, 0,

c

c + d
,

d

c + d

]
, J =

[
0,

b

b + d
, 0,

d

b + d

]
, G =

[
0,

b

b + c
,

c

b + c
, 0
]

,

E =
[

a

a + d
, 0, 0,

d

a + d

]
, I =

[
a

a + c
, 0,

c

a + c
, 0
]

, and F =
[

a

a + b
,

b

a + b
, 0, 0

]
.

By Definition 1, JE, F, G, H, I, JK is the edge-coordinate of the point P .
Example 4. The line GJ is given by

GJ =
{

[x, y, z, w] : x = 0, y = b

b + c
· s + b

b + d
· t, z = c

b + c
· s, w = d

b + d
· t, s + t = 1

}
.

Let Q =
[
0, b

b+c
· s + b

b+d
· t, c

b+c
· s, d

b+d
· t
]

∈ GJ for some s+ t = 1. Then the line FQ is given
by

FQ =
{

[x, y, z, w] : x = a

a + b
· l, y = b

a + b
· l +

(
b

b + c
· s + b

b + d
· t

)
· r,

z =
(

c

b + c
· s
)

· r, w =
(

d

b + d
· t

)
· r, l + r = 1

}
.
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The collection of the lines FQ for all possible s and t such that s + t = 1 is the plane FGJ.
Let s · r = m and t · r = n. Then l + m + n = l + sr + tr = l + (s + t)r = l + r = 1, and the
plane FGJ = ΓB is given by the set

ΓB =
{
[x, y, z, w] : x = a

a+b
l, y = b

a+b
l + b

b+c
m + b

b+d
n, z = c

b+c
m, w = d

b+d
n, l + m + n = 1

}
.

Similarly, we have

ΓC =
{
[x, y, z, w] : x = a

a+c
l, y = b

b+c
m, z = c

a+c
l + c

b+c
m + c

c+d
n, w = d

c+d
n, l + m + n = 1

}
,

ΓD =
{
[x, y, z, w] : x = a

a+d
l, y = b

b+d
m, z = c

c+d
n, w = d

a+d
l + d

b+d
m + d

c+d
n, l + m + n = 1

}
,

and
ΓA =

{
[x, y, z, w] : x = a

a+b
l + a

a+c
m + a

a+d
n, y = b

a+b
l, z = c

a+c
m, w = d

a+d
n, l + m + n = 1

}
.

3 Proof of Theorem 1

Proof of Theorem 1. Suppose that P = [a, b, c, d] is a point inside of the tetrahedron ABCD.
So, a, b, c and d are all positive numbers such that a + b + c + d = 1.

From Example 3, we have

H =
[
0, 0,

c

c + d
,

d

c + d

]
, J =

[
0,

b

b + d
, 0,

d

b + d

]
, G =

[
0,

b

b + c
,

c

b + c
, 0
]

,

E =
[

a

a + d
, 0, 0,

d

a + d

]
, I =

[
a

a + c
, 0,

c

a + c
, 0
]

, and F =
[

a

a + b
,

b

a + b
, 0, 0

]
.

And from Example 4, we have equations of the planes ΓB, ΓC , and ΓD.
Assume that 1 − 2a ̸= 0.

Case 1: We will prove that A∗ =
[

−a
1−2a

, b
1−2a

, c
1−2a

, d
1−2a

]
is a point on the plane ΓB. From

Example 4, we have that

ΓB =
{
[x, y, z, w] : x = a

a+b
l, y = b

a+b
l + b

b+c
m + b

b+d
n, z = c

b+c
m, w = d

b+d
n, l + m + n = 1

}
.

Let l = − a+b
1−2a

, m = b+c
1−2a

, n = b+d
1−2a

. Then,

l + m + n = − a + b

1 − 2a
+ b + c

1 − 2a
+ b + d

1 − 2a
= −a + b + c + d

1 − 2a
= 1,

and we have

x = a
a+b

l = a
a+b

(
− a+b

1−2a

)
= −a

1−2a
,

y = b
a+b

l + b
b+c

m + b
b+d

n − b
a+b

(
− a+b

1−2a

)
+ b

b+c
· b+c

1−2a
+ b

b+d
· b+d

1−2a
= b

1−2a
,

z = c
b+c

m = c
b+c

· b+c
1−2a

= c
1−2a

, and w = d
b+d

n = d
b+d

· b+c
1−2a

= d
1−2a

.

This shows that A∗ ∈ ΓB.
Case 2: From Example 4, we have

ΓC =
{
[x, y, z, w] : x = a

a+c
l, y = b

b+c
m, z = c

a+c
l + c

b+c
m + c

c+d
n, w = d

c+d
n, l + m + n = 1

}
,
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If we let l = −(a+c)
1−2a

, m = b+c
1−2a

, n = c+d
1−2a

in ΓC , then l + m + n = 1 and

x = a

a + c
l = −a

1 − 2a
, y = b

b + c
m = b

1 − 2a
,

z = c

a + c
l + c

b + c
m + c

c + d
n = −c + c + c

1 − 2a
= c

1 − 2a
, and w = d

c + d
n = d

1 − 2a
.

This shows that A∗ ∈ ΓC .
Case 3: From Example 4, we have

ΓD =
{
[x, y, z, w] : x = a

a+d
l, y = b

b+d
m, z = c

c+d
n, w = d

a+d
l + d

b+d
m + d

c+d
n, l + m + n = 1

}
.

If we let l = −(a+d)
1−2a

, m = b+d
1−2a

, n = c+d
1−2a

in ΓC , then l + m + n = 1 and

x = a

a + d
l = −a

1 − 2a
, y = b

b + d
m = b

1 − 2a
,

z = c

c + d
n = c

1 − 2a
, and w = d

a + d
l + d

b + d
m + d

c + d
n = −d + d + d

1 − 2a
= d

1 − 2a
.

This shows that A∗ ∈ ΓD.
Hence, from Cases 1–3, we have shown that A∗ =

[
−a

1−2a
, b

1−2a
, c

1−2a
, d

1−2a

]
is the intersection

of the planes ΓB, ΓC , and ΓD. Moreover, this shows that three planes ΓB, ΓC and ΓD intersect
if, and only if, a ̸= 1

2 .
Finally, we will show that A∗ =

[
−a

1−2a
, b

1−2a
, c

1−2a
, d

1−2a

]
is a point on the line AP . From

Example 2, the line AP is given by the set

AP = {[x, y, z, w] : x = s + at, y = bt, z = ct, w = dt, s + t = 1}.

Let s = −2a
1−2a

and t = 1
1−2a

. Then s + t = 1 and

x = s + at = −2a

1 − 2a
+ a

1 − 2a
= −a

1 − 2a
, y = bt = b

1 − 2a
,

z = ct = c

1 − 2a
, and w = dt = d

1 − 2a
.

This shows that A∗ =
[

−a
1−2a

, b
1−2a

, c
1−2a

, d
1−2a

]
is a point on the line AP . Therefore, the three

points A, P , A∗ are collinear.

Corollary 1. The three planes ΓB, ΓC, ΓD intersect if, and only if, a ̸= 1
2 . If a ̸= 1

2 , then the
barycentric coordinates of the intersecting point A∗ of the three planes ΓB, ΓC, ΓD is given
by A∗ =

[
−a

1−2a
, b

1−2a
, c

1−2a
, d

1−2a

]
.

Proof. Suppose the three planes ΓB, ΓC , ΓD intersect at A∗. From the proof of Theorem 1,
A∗ has the barycentric coordinate

[
−a

1−2a
, b

1−2a
, c

1−2a
, d

1−2a

]
. This is only possible when a ̸= 1

2 .
On the other hand, suppose a ̸= 1

2 . Then
[

−a
1−2a

, b
1−2a

, c
1−2a

, d
1−2a

]
is a point. Again, from

the proof of Theorem 1, it is the intersection of the three planes ΓB, ΓC , ΓD.

Remark 1. If a = 1
2 , then the only way the planes ΓB, ΓC , ΓD do not intersect is for these

planes to form a prism-like tunnel. If a ̸= 1
2 , then the three planes ΓB, ΓC , ΓD intersect at

A∗. If a < 1
2 , then A∗ and A are on the same side of the plane BCD. If a > 1

2 , then A∗ and
A are on the opposite sides of the plane BCD.
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Definition 3. Suppose (1 − 2a)(1 − 2b)(1 − 2c)(1 − 2d) ̸= 0. Then the planes (ΓB, ΓC , and
ΓD), (ΓA, ΓC , and ΓD), (ΓA, ΓB, and ΓD), and (ΓA, ΓB, and ΓC) intersect by Corollary 1,
and we denote their intersections by A∗, B∗, C∗, D∗, respectively. See Figure 3.

Remark 2. Suppose (1 − 2a)(1 − 2b)(1 − 2c)(1 − 2d) ̸= 0, or equivalently, A∗, B∗, C∗, D∗,
exists. Then E ∈ B∗C∗, F ∈ C∗D∗, G ∈ A∗D∗, H ∈ A∗B∗, I ∈ B∗D∗, J ∈ A∗C∗. Hence,
JE, F, G, H, I, JK be the edge-coordinates of P with respect to the tetrahedron A∗B∗C∗D∗.
By Theorem 1, the planes EHI, EFJ , and FGI intersect. But planes EHI = ACD,
EFJ = ABD, FGI = ABC. Hence, the intersection of these three planes is A. Lemma 1
applies to the tetrahedron A∗B∗C∗D∗. The three segments B∗F , C∗I, D∗E intersect, say at
A∗′. Then A∗′ is the intersection of the line A∗P and the plane B∗C∗D∗. In other words, the
points A, P , A′, A∗, A∗′ are all collinear.

4 The Volumes of the Tetrahedra A′B′C ′D′ and A∗B∗C∗D∗

We will find the volume of the tetrahedra A′B′C ′D′ and A∗B∗C∗D∗. See Figure 3 for the
tetrahedron A∗B∗C∗D∗.

Notation: The determinant of the matrix
[ s1 ··· sn

... ... ...
t1 ··· tn

]
is denoted by

∣∣∣∣∣
s1 ··· sn

... ... ...
t1 ··· tn

∣∣∣∣∣.
The next lemma may be known, but since we could not find a reference to it, we will

prove it. A related result for a two-dimensional case can be found at the bottom of page 295
in [1] without a proof.

Lemma 3. Let S = [s1, s2, s3, s4], T = [t1, t2, t3, t4], U = [u1, u2, u3, u4], V = [v1, v2, v3, v4] be
points given in barycentric coordinates of points in R3 with respect to the tetrahedron ABCD.
Let V be the volume of the tetrahedron ABCD, and let

δ =

∣∣∣∣∣∣∣∣∣
s1, s2, s3, s4
t1, t2, t3, t4
u1, u2, u3, u4
v1, v2, v3, v4

∣∣∣∣∣∣∣∣∣ .

Then the volume V ′ of the tetrahedron STUV is given by |δ|V, i.e., V ′ = |δ|V.

Proof. Note that determinants have the property that∣∣∣∣∣∣∣∣
s1 . . . , ai + bi, . . . sn
... ... ... ... ...
t1 . . . , ci + di, . . . tn

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
s1 . . . , ai, . . . sn
... ... ... ... ...
t1 . . . , ci, . . . tn

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
s1 . . . , bi, . . . sn
... ... ... ... ...
t1 . . . , di, . . . tn

∣∣∣∣∣∣∣∣ . (a)

Applying (a) multiple times, and since s1+s2+s3+s4 = 1, t1+t2+t3+t4 = 1, u1+u2+u3+u4 =
1, and v1 + v2 + v3 + v4 = 1, we can show that∣∣∣∣∣∣∣∣∣

s1, s2, s3, s4
t1, t2, t3, t4
u1, u2, u3, u4
v1, v2, v3, v4

∣∣∣∣∣∣∣∣∣ = δ = −

∣∣∣∣∣∣∣
t1 − s1, t2 − s2, t3 − s3
u1 − s1, u2 − s2, u3 − s3
v1 − s1, v2 − s2, v3 − s3

∣∣∣∣∣∣∣ . (b)

Let Σ′ be the volume of the parallelepiped defined by #   »

ST , #   »

SU , and #   »

SV in the affine coordi-
nate system having lines AB, AC, and AD as its coordinate axes with unit lengths being the



36 H. Katsuura: Three Collinear Points Generated by a Tetrahedron

segments AB, AC, and AD, respectively. Hence, the volume of the parallelepiped defined by
the vectors #    »

AB, #    »

AC, #    »

AD is the unit. Let Σ be the volume of the parallelepiped defined by
vectors #    »

AB, #    »

AC, #    »

AD. Let Ṡ = (s1, s2, s3), Ṫ = (t1, t2, t3), U̇ = (u1, u2, u3), V̇ = (v1, v2, v3)
be points in R3 with the usual rectangular coordinates. Then |δ| is the volume of the paral-
lelepiped defined by vectors

#   »

ṠṪ = ⟨t1 − s1, t2 − s2, t3 − s3⟩,
#   »

ṠU̇ = ⟨u1 − s1, u2 − s2, u3 − s3⟩,
and

#   »

ṠV̇ = ⟨v1 − s1, v2 − s2, v3 − s3⟩ by the Equation b. Hence, we have that Σ′

Σ = |δ|. (This
idea is similar to [2, p. 218].) Therefore, V ′ = 1

6Σ′ = 1
6 |δ|Σ = |δ|V .

Theorem 2. Let A′, B′, C ′, D′ be intersections of (the line AP and the face BCD), (BP
and ACD), (CP and ABD), and (DP and ABC), respectively. Then we have the following:

(1) A′ =
[
0, b

b+c+d
, c

b+c+d
, d

b+c+d

]
, B′ =

[
a

a+c+d
, 0, c

a+c+d
, d

a+c+d

]
, C ′ =

[
a

a+b+d
, b

a+b+d
, 0, d

a+b+d

]
,

D′ =
[

a
a+b+c

, b
a+b+c

, c
a+b+c

, 0
]
.

(2) If V is the volume of the tetrahedron ABCD, the volume V ′ of the tetrahedron A′B′C ′D′

is given by abcd
(b+c+d)(a+c+d)(a+b+d)(a+b+c)V.

(3) V ′ ≤ 1
81V. The equality holds only when P is the centroid of the tetrahedron ABCD.

Proof. (1) is given in Example 2. (2) is an application of Lemma 3. So, we will prove
(3). Let f(a, b, c, d) = abcd

(b+c+d)(a+c+d)(a+b+d)(a+b+c) . Then we want to maximize f(a, b, c, d)
subject to a + b + c + d = 1; a, b, c, d > 0. We will use Lagrange’s multiplier method. Let
g(a, b, c, d) = a + b + c + d. Then the critical points are given by ∇f = λ∇g for some λ.
Since ∇g = ⟨1, 1, 1, 1⟩, we must have λ = ∂f

∂a
= ∂f

∂b
= ∂f

∂c
= ∂f

∂d
. From ∂f

∂a
= ∂f

∂b
, we have

(b − a)(bc + bd + ca + c2 + cd + ad + dc + d2) = 0 after simplification. Since a, b, c, d > 0, this
implies a = b. Similarly, we have a = b = c = d. Since a+b+c+d = 1, (a, b, c, d) = (1

4 , 1
4 , 1

4 , 1
4)

is the only critical point. Since lima→0 f(a, b, c, d) = 0, we can see that f(1
4 , 1

4 , 1
4 , 1

4) = 1
81 is

the maximum value of f . Again, the barycentric coordinates [1
4 , 1

4 , 1
4 , 1

4 ] is the centroid of the
tetrahedron ABCD.

Theorem 3. Suppose (1 − 2a)(1 − 2b)(1 − 2c)(1 − 2d) ̸= 0. Then, we have the following:
(1) The barycentric coordinates of the points A∗, B∗, C∗, D∗ are

A∗ =
[

−a
1−2a

, b
1−2a

, c
1−2a

, d
1−2a

]
, B∗ =

[
a

1−2b
, −b

1−2b
, c

1−2b
, d

1−2b

]
,

C∗ =
[

a
1−2c

, b
1−2c

, −c
1−2c

, d
1−2c

]
, D∗ =

[
a

1−2d
, b

1−2d
, c

1−2d
, −d

1−2d

]
.

(2) If V is the volume of the tetrahedron ABCD, then the volume V∗ of the tetrahedron
A∗B∗C∗D∗ is given by V∗ = 16abcd

|(1−2a)(1−2b)(1−2c)(1−2d)|V.

Proof. Proof of (1) is a repeated application of the proof of Theorem 1. As for (2), by our
assumption, we have (1 − 2a)(1 − 2b)(1 − 2c)(1 − 2d) ̸= 0 by Corollary 1. Hence, (2) is an
application of Lemma 2.

Remark 3. Unlike the inequality relation in Theorem 2(3) between V and V ′, there is no
inequality relation between V and V∗ in Theorem 3. In order to see this, we consider the
segment AA′. The segment AA′ is given by AA′ = {[1 − y, t

3 , t
3 , t

3 ] : 0 ≤ t ≤ 1}. So, let
P (t) = [1 − t, t

3 , t
3 , t

3 ], 0 < t < 1. Then P (0) = A, P (1
2) = [1

2 , 1
6 , 1

6 , 1
6 ], P (3

4) = [1
4 , 1

4 , 1
4 , 1

4 ], and
P (1) = A′. So, there is no tetrahedron A∗B∗C∗D∗ that corresponds to the point P (1

2), and
P (3

4) is the centroid of the tetrahedron ABCD.
Let f(a, b, c, d) = 16abcd

|(1−2a)(1−2b)(1−2c)(1−2d)| . Then f(1 − t, t
3 , t

3 , t
3) = 16(1−t)t3

|(1−2t)(3−2t)3| . Hence,
limt→0 f(1 − t, t

3 , t
3 , t

3) = 0, limt→ 1
2

f(1 − t, t
3 , t

3 , t
3) = ∞, and limt→1 f(1 − t, t

3 , t
3 , t

3) = 0. From
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Figure 3: The tetrahedron A∗B∗C∗D∗ is exhibited when the point P is the centroid of the tetrahe-
dron ABCD.

Theorem 3, the volume V∗ of the tetrahedron A∗B∗C∗D∗ can be made as large as and as
close to zero as you wish depending on the choice of P .
Remark 4. It is not difficult to see that the following three statements (i)–(iii) are equivalent:

(i) P be the centroid of a tetrahedron ABCD.
(ii) A′, B′, C ′, D′ are the centroid of the triangular faces BCD, ACD, ABD, and BCD,

respectively.
(iii) E, F , G, H, I, and J are the mid-points of the edges DA, AB, BC, CD, AC, and BD,

respectively.
Let P = [1

4 , 1
4 , 1

4 , 1
4 ], the centroid of the tetrahedron ABCD. We will investigate the

tetrahedron A∗B∗C∗D∗ that corresponds to the centroid P . If we let t = 3
4 , we have P = P (3

4)
and f(1

4 , 1
4 , 1

4 , 1
4) = 1 from Remark 3. So, Theorem 3 shows that the volumes of the tetrahedra

ABCD and A∗B∗C∗D∗ are the same.
Moreover, the barycentric coordinates of A∗ and B∗ are given by [−1

2 , 1
2 , 1

2 , 1
2 ] and [1

2 , −1
2 , 1

2 ,
1
2 ], respectively. Note that H = [0, 0, 1

2 , 1
2 ] from Example 2. This shows that H is the midpoint

of the segment A∗B∗. Similarly, we can see that E, F , G, I, and J are also the midpoints
of the edges B∗C∗, C∗D∗, D∗A∗, B∗D∗, and A∗C∗, respectively. Then the six quadrilaterals
AB∗CD∗, A∗BC∗D, AC∗BD∗, A∗CB∗D, AB∗DC∗, and A∗BD∗C are all parallelograms since
all the diagonals of faces bisect each other. Hence, the hexahedron AB∗CD∗A∗BC∗D is a
parallelepiped. See Figure 3. In addition, for example, the parallelogram AB∗CD∗ contains
the edge AC, and is on the plane parallel to the lines AC and BD. The parallelepiped
AB∗CD∗A∗BC∗D inscribes both tetrahedra ABCD and A∗B∗C∗D∗. Hence, the tetrahedra
ABCD and A∗B∗C∗D∗ are not only having the same volume, but they are congruent. As a
matter of fact, the tetrahedra ABCD and A∗B∗C∗D∗ are mirror images of each other, but
are not identical unless the tetrahedron ABCD is regular.
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