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Abstract. We find a general trisectrix polar curve and then deduce special
trisectrices including some of well known ones. The strategy is by trisecting angle
and using some elementary properties of Euclidean geometry.
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1 Introduction

During the history of geometry, construction of a given angle by straightedge and compass has
been a challenge problem. In particular, dividing an angle to n equal parts by this manner
was of most importance. The special case n = 3 has occupied many scientists in the history.

As a matter of fact, it is impossible to trisect an arbitrary angle by straightedge and
compass. However, sometimes, using a certain curve as an additional tool, called a trisectrix,
helps it to become possible. Below is the history of some known trisectrices.

A historical trisectrix is the parabola which allows to trisect exactly an arbitrary angle
with straightedge and compass. This trisection has been described by René Descartes in his
book La Géométrie [2] (see also [6]).

The Tschirnhausen cubic is a plane curve defined by the polar equation r = ℓ sec3(θ/3).
This curve, sometimes known as de L’Hôpital’s cubic or the trisectrix of Catalan, has been
studied by von Tschirnhausen, de L’Hôpital, and Catalan [4, pp. 87-90] (see also [5]).
Tschirnhausen trisectrix is the negative pedal of a parabola with respect to the focus of the
parabola.

Between the years 1723 and 1728, the Italian mathematician, Guido Grandi, studied the
“rhodonea” curves which translates to “rose” curves.1 A rose is the set of points in polar
coordinates specified by the polar equation r = ℓ cos(kθ) (see also [1]). When k is an integer
there are k or 2k petals depending whether k is odd or even. If k is irrational then the number

1http://www-history.mcs.st-andrews.ac.uk/Biographies/Grandi.html
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Figure 1: A triangle with a cevian t.

of petals is infinite. A rose with k = 1/3 is a Limacon trisectrix [4]. This rose has a single
petal with two loops.

The trisectrix of Maclaurin [4] is a cubic plane curve defined as the locus of the intersection
points between two lines, each in uniform rotation around a point, one of them going three
times as fast as the other. The equation in polar coordinates is r = ℓ(4 cos(θ) − sec(θ)). This
curve is named after Colin Maclaurin who investigated the curve in 1742. The Maclaurin
trisectrix is an anallagmatic curve, and the origin is a crunode.

Freeth nephroid curve, defined in the polar system by r = ℓ(1 + 2 sin(θ/2)), is a strophoid
of a circle with the pole at the center and a fixed point on the circumference of the circle. In
a paper published by the London Mathematical Society in 1879, the English mathematician
T. J. Freeth, described various strophoids, including the strophoid of a limacon trisectrix [3].

The main purpose of this paper is to find the general trisectrix curve

r = 2pc

1 − p
cos θ

3 , (1)

where 0 < p < 1. Then, particular trisectrices, including some of the above well known ones,
are deduced for certain values of p. Our strategy is to trisect the angle ∠BAC in △ABC
(Figure 2), take a3 = pa for 0 < p < 1, and establish in Theorem 5 the following relation.

(1 − p)3b4 − p2(3 − 2p)b2c2 + p3a2c2 − p3c4 = 0.

This, arranging the vertices of △ABC in polar coordinate system as A = (0, 0), B = (c, 0)
and C = (r, θ) turns to the polar equation

r3 − 3p2c2

(1 − p)2 r − 2p3c3

(1 − p)3 cos θ = 0, (2)

the solution of which is our trisectrix (1).

2 Preliminaries

In a triangle △ABC, a cevian of the vertex A, by definition, is any line segment AT from the
vertex A intersecting the opposite edge BC at T (Figure 1). The word “cevian” is in honor
of the Italian mathematician Giovanni Ceva, who is the first studied cevians and proved the
well known useful Ceva’s Theorem about cevians. We follow the standard labeling shown in
Figure 1 and recall the following two well known theorems of geometry.
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Figure 2: A triangle with two trisector cevians t1 and t2.

Theorem 1 (Angle Bisector Theorem). Suppose AT is the angle bisector of ∠BAC. Then,
c

b
= u

v
.

Theorem 2 (Stewart Theorem). The length t of the cevian AT is given by

b2u + c2v = a(t2 + uv).

We follow the labeling scheme in △ABC of Figure 2 and prove some properties of trisector
cevians.

Proposition 3. Let AT1, AT2 be trisector cevians with lengths t1, t2, respectively. Then,

a1 = act1

bt2 + ct1 + t1t2
, (3)

a2 = at1t2

bt2 + ct1 + t1t2
,

a3 = abt2

bt2 + ct1 + t1t2
. (4)

Proof. Applying Angle Bisector Theorem 1 for △ABT2, we get c
t2

= a1
a2

, and another apply
for △AT1C gives t1

b
= a2

a3
. It follows that

a1 = ct1

bt2
a3, a2 = t1

b
a3,

and hence,
a3 = abt2

bt2 + ct1 + t1t2
.

The relations for a1 and a2 are obtained similarly.

Proposition 4. For the trisector cevians AT1, AT2 with lengths t1, t2, respectively, we have

a1

a2 + a3
· a1 + a2

a3
= c2

b2 . (5)
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Figure 3: A triangle with two trisector cevians t1 and t2 (extended).

Proof. By triangle similarities △AMT1 ∼ △AQT2 as well as △APT2 ∼ △ANT1 in Figure 3
we have

T1M

T2Q
= t1

t2
= T1N

T2P
. (6)

Computing the areas in two ways and using (6), we approach to the result:

a1

a2 + a3
· a1 + a2

a3
= SABT1

SAT1C

· SABT2

SAT2C

= cT1M

bT1N
· cT2P

bT2Q
= c2

b2 .

Here, by SABC we mean the area of △ABC.

Note that there is nothing special about being trisector cevians in the proof of Theorem 4.
In fact, this theorem holds for any isogonal conjugate cevians. However, we will not effort
with this concept.

3 Finding a general trisectrix curve

Now, we attempt to find our general trisectrix curve (1). Suppose a3 = pa, 0 < p < 1, where
p = p(a, b, c) is a function of side lengths a, b and c. Then, a1 + a2 = (1 − p)a and from (5)
we have

a1 = apc2

(1 − p)b2 + pc2 . (7)

Now, from (4) we get

p = bt2

bt2 + ct1 + t1t2

or, bt2 = p
1−p

(ct1 + t1t2). Putting this in (3) and equating the right hand sides of the resulted
equation and (7) we obtain

apc2

(1 − p)b2 + pc2 = ac(1 − p)
c + t2

.

This leads to
t2 = (1 − p)2b2 − p2c2

pc
. (8)
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On the other hand, Stewart Theorem 2 implies

t2
2 = (1 − p)b2 + pc2 − p(1 − p)a2. (9)

Equate the right hand sides of (9) and the square of (8) and sum up to the following basic
result.

Theorem 5. In △ABC of Figure 2, let the trisector cevian AT2 meet the side a such that
a3 = ap, where 0 < p < 1. Then the sides of triangle satisfy the following.

(1 − p)3b4 − p2(3 − 2p)b2c2 + p3a2c2 − p3c4 = 0. (10)

Writing (10) in terms of p, leads to the following corollary.

Corollary 6. The angle ∠BAC can be trisected by straightedge and compass if and only if
roots of the cubic

(a2c2 − (b2 − c2)2)p3 + 3b2(b2 − c2)p2 − 3pb4 + b4 = 0

are constructable.

Suppose in △ABC of Figure 2 that the vertices have polar coordinates A = (0, 0),
B = (c, 0) and C = (r, θ). Then

b = r, a =
√

r2 + c2 − 2cr cos θ. (11)

Substituting these values in (10), gives

(1 − p)3r4 − p2(3 − 2p)r2c2 + p3c2(r2 + c2 − 2cr cos θ − c2) = 0,

which simplifies
r3 − 3p2c2

(1 − p)2 r − 2p3c3

(1 − p)3 cos θ = 0,

with a root
r = 2pc

1 − p
cos θ

3 .

We summarize the above discussion and get our general trisectrix curve.

Theorem 7. Suppose c > 0 is a constant and p = p(r, θ) is a constructable function with
0 < p < 1. Put A = (0, 0), B = (c, 0) and let C = (r, θ) be a point on the polar curve

r = 2pc

1 − p
cos θ

3 . (12)

Then ∠BAC is trisectable. In other words, (12) is a trisectrix.

Remark 8. When we refer to Equation (12), we typically use the core equations (11) without
mentioning them.
Remark 9. The trisectrix (12) depends on the choice a3 = pa for some 0 < p < 1. If, instead,
we had taken a1 = pa for 0 < p < 1 then we would have gotten the trisectrix curve

r = c(1 − p)
2p cos(θ/3) , (13)

which is the inversion of (12) with respect to the circle r = c.



52 G. Soleymanpour, A. S. Janfada: A General Trisectrix Curve and its Applications

4 Applications

In this section we deduce some special trisectrices as examples, by taking certain values of p
in trisectrix (12) or, its inversion (13). In particular, we obtain some well known trisectrices
mentioned in the introductory section.
Example 10 (Maclaurin trisectrix). Let 0 < p < 1 be a constant and consider the trisectrix
(13),

r = c(1 − p)
2p cos(θ/3) .

In the special case p = 1/3, the trisectrix r = c sec(θ/3) is the Maclaurin trisectrix.
Example 10 is the only application of trisectrix (13). All of the oncoming examples

concerns the application of trisectrix (12).
Example 11 (Limacon trisectrix). Suppose 0 < p < 1 is constant. Then the trisectrix (12) is
the limacon

r = 2cp

1 − p
cos θ

3 .

In particular, if p = 1/2 (i.e, the median of side BC coincides with T2), then the limacon
turns to

r = 2c cos θ

3
which is the limacon trisectrix r = c(1 + 2 cos θ) translated c units to the right on the polar
axis.
Example 12 (Freeth nephroid). In Figure 3, suppose CQ = qb for some 0 < q < 1. Then
it is easy to see that t2

2 − a2
3 = (1 − 2q)b2. Moreover, putting p2a2 = a2

3 in (9), we get
t2
2 − a2

3 = (1 − p)b2 + pc2 − pa2. Equating the right hand sides of the above two equations
implies the following.

p = qb

b − c cos θ
. (14)

Let q be a constant. Then, the corresponding trisectrix (12) with the above p is

r = c

1 − q
(cos θ + 2q cos θ

3).

In particular, when q = 1/2 (T2Q is the perpendicular bisector of AC) then the trisectrix is
the Freeth nephroid

r = 2c(cos θ + cos θ

3).

Reflection of this curve about line x = c/2 gives the curve r = c(1 + 2 sin θ
2) which is used to

construct regular heptagon (see [5, pp.135]).
Another interesting case occurs opposing to Freeth’s case, i.e, when the perpendicular

bisector of side AC intersects the side BC at T1. Therefore, t1 = a2 + a3. On the other hand,
by Theorems 1 and 2,

t1 = ab2

a2 + b2 − c2 ,
a3

a2
= b

t1
. (15)

The latter equation of (15) implies

b

b + t1
= a3

a2 + a3
= pa

t1
,
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from which and the former equation of (15) we obtain the following.

p = b

a + 2b − 2c cos θ
.

With this value of p, by a tedious but straightforward calculations, the corresponding trisectrix
(12) turns to

r =
c sin 5θ

3
sin 2θ

3
. (16)

Example 13 (Tschirnhausen cubic and Cayley sextic). Inspired by equation (14) in Example
12, suppose

p = kb2

a2 + mb2 + nc2 ,

where m, n, k are real constants establishing the inequality 0 < p < 1. With this p, the
equation of trisectrix (12) turns to

(m − k + 1)r2 − 2cr(cos θ + k cos θ

3) + (n + 1)c2 = 0.

If m = k − 1 and n ̸= −1, then

r = (n + 1)c
2(cos θ + k cos θ/3) ,

where the spacial case k = 3, n = 7 is the Tschirnhausen cubic r = c sec3 θ
3 , also known as

Catalan trisectrix.
If n = −1 and m ̸= k − 1 then, r = 2c(cos θ + k cos(θ/3))/(m − k + 1), where the spacial

case k = 3 and m = 10 gives rise to the curve r = c cos3(θ/3), known as Cayley sextic [5, pp.
155] which is the inversion of Tschirnhausen cubic with respect to the circle r = c. This curve
is also the pedal curve (or roulette) of a cardioid with respect to its cusp.
Example 14 (Freeth supertrisectrix). Consider t2 = bq for some q > 0. By the law of cosines
in △AT2C,

2p2 = b2 + b2q2 − 2b2q cos θ

3 .

and by Stewart Theorem, b2q2 = c2p + b2(1 − p) − a2p + a2p2. Therefore,

p = 2b2(1 − q cos(θ/3))
a2 + b2 − c2 .

For constant q, the trisectrix (12) becomes

r = c

q
(1 − 2q cos θ

3 + 2 cos 2θ

3 ).

The special case q = 1, is called Freeth supertrisectrix (see [5, pp. 136]) and is strophoid of
limacon trisectrix.
Example 15 (Tomahawk trisector tool). In Example 14 let q = c

b
. Then t2 = c and AT1 is the

altitude (Figure 4). We have a1 = a2 = T2D, i.e., the circle with center T2 passing through T1
is tangent to side AC. The bold segments together with the semicircle in Figure 4 is looking



54 G. Soleymanpour, A. S. Janfada: A General Trisectrix Curve and its Applications

Figure 4: Tomahawk trisector tool and its trisecting method.

like a tomahawk, a native American axe [7], which is a trisector tool called by the same name.
This tool is shown in the left side of Figure 4.

A simple calculation shows that

p = 2b(b − c cos(θ/3))
a2 + b2 − c2 = b2 − c2

a2 .

Substituting this in trisectrix (12), we get

r = 2r cos θ/3 − 2c cos2 θ/3
cos θ/3 − cos θ

.

Solving this relation for r leads to

r = c cos θ

3 sec 2θ

3 .

Example 16. Suppose in Figure 2 that D is a point on side AC with CD = qb for some
0 < q < 1 and T2 is the intersection of angle bisector of ∠BDC with side BC. Then by Angle
Bisector Theorem 1 and the fact a3 = pa we have

p = bq

BD + bq
.

With this p, the trisectrix (12) leads to the equation BD = 2cq cos θ
3 . Now, if BD is the angle

bisector of ∠ABC, then q = a
a+c

. It follows that

BD2 = 4c2a2

(a + c)2 cos2 θ

3 . (17)

On the other hand, by the law of cosines in △ABD,

BD2 = c2 + b2c2

(a + c)2 − 2bc2

a + c
cos θ, (18)

since AD = bc/(a + c). Equating the right hand sides of (17) and (18), by a tedious but
straightforward calculation we get

r =
2c cos θ

3 sin(2θ
3 ± θ)

− sin 5θ
3



G. Soleymanpour, A. S. Janfada: A General Trisectrix Curve and its Applications 55

which is either the limacon r = −2c cos(θ/3) or the curve

r =
c sin 2θ

3
sin 5θ

3
.

Compare this trisectrix with (16).
Finally, let BD be the altitude to the side AC. Then

q = a2 + b2 − c2

2b2 .

In this case we have
c sin θ = BD = 2c(r2 − cr cos θ)

r2 cos θ

3
which simplifies to the following trisectrix

r =
2c cos θ cos θ

3
2 cos θ

3 − sin θ
.

5 Conclusion

We found the general trisectrix curve

r = 2pc

1 − p
cos θ

3 , 0 < p < 1, (19)

and its inversion with respect to the circle r = c which is

r = c(1 − p)
2p cos(θ/3) , 0 < p < 1. (20)

In the first row of Table 1, for a particular value of p in the curve (20) the Maclaurin trisectrix
is obtained. The remaining rows are special trisectrices concerned from the curve (19), the
well known trisectrices of them are specified with their names in the table.

The strategy in Section 3 may be used to find other general trisectrices. Furthermore, the
methodology in Section 4 may be applied to create more special trisectrices from either (19)
or (20).
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