Family of Conics Having Double Contact with two Intersecting Ellipses

Anastasia Taouktsoglou ${ }^{1}$, George Lefkaditis ${ }^{2}$
${ }^{1}$ Democritus University of Thrace, Xanthi, Greece
ataoukts@pme.duth.gr
${ }^{2}$ Patras University, Patras, Greece
glef@upatras.gr

Abstract

In this paper we prove using Projective Geometry, Analytic Geometry and Calculus the converse of the theorem, which is proved with Synthetic Projective Geometry in J. L. S. Hatton's book The Principles of Projective Geometry Applied to the Straight Line and Conic, Cambridge University Press, 1913, p. 287, case (b). This theorem, as well as its converse, refer to properties that exist when a conic C_{3} contacts two other intersecting conics C_{1} and C_{2} and specifically concern the existing harmonic pencil between common chords of C_{1}, C_{2} and the pair of their contact chords with C_{3}. With the proof of the converse theorem, which is achieved here in the case of two concentric ellipses, the problem of constructing a conic C_{3} is also addressed. In addition we investigate the type of conic C_{3}, which is tangent to C_{1}, C_{2}, and the condition that is required for C_{3} to be an ellipse, a hyperbola or a degenerate parabola, either inscribed or circumscribed to C_{1}, C_{2}. Finally, we refer to the existing involution between the common fixed chords and the changing contact chords. Key Words: harmonic pencil, concentric ellipses, conjugate points, double contact conic, involution

MSC 2020: 51N15 (primary), 51N20, 68U05

1 Introduction

The notion of harmonic pencil of lines is a fundamental notion in Projective Geometry (s. [5, p. 24]): In the real projective plane a pencil of four concurring lines $O A, O B, O C, O D$, denoted by $O(A, B, C, D)$, is called harmonic pencil or harmonic bundle, if the cross ratio of the four lines (in that order), by times also denoted by $O(A, B, C, D)$, is equal to -1 (s. Figure 1).

Figure 1: A harmonic pencil i.e. $O(A, B, C, D)=-1$

Figure 2: C_{3} has double contact with C_{1}, C_{2} and so $O(A, B, M, R)=-1$

In particular, four lines $O A, O B, O C, O D$ through the origin O, with equations $y=\lambda_{i} x$, $i=1,2,3,4$, form a harmonic pencil $O(A, B, C, D)$, if their gradients $\lambda_{i}, i=1,2,3,4$ satisfy the following equation:

$$
\begin{equation*}
\frac{\lambda_{3}-\lambda_{1}}{\lambda_{2}-\lambda_{3}}=-\frac{\lambda_{4}-\lambda_{1}}{\lambda_{2}-\lambda_{4}} \tag{1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\lambda_{4}=\frac{2 \lambda_{1} \lambda_{2}-\lambda_{3}\left(\lambda_{1}+\lambda_{2}\right)}{\lambda_{1}+\lambda_{2}-2 \lambda_{3}} . \tag{2}
\end{equation*}
$$

So, given two fixed lines through O, say $O A, O B$, determined by their gradients λ_{1}, λ_{2}, one can correspond to each line $O C: y=\lambda_{3} x$, the unique line $O D: y=\lambda_{4} x$, where λ_{4} is given by (2), so that the four lines form a harmonic pencil. This transformation is called harmonic conjugation with respect to the two given lines.
J. L. S. Hatton in [2, p. 287], case (b) gives a property of two intersecting conics having double contact with a third conic, which concerns a harmonic pencil:

Let two conics C_{1}, C_{2} intersect at four points A, B, C, D, that define a complete quadrangle ${ }^{1}$. Let O be any of the three diagonal points of this quadrangle. If there exists a conic C_{3}, which has double contact with C_{1} at M, N and double contact with C_{2} at R, S, then $M N, R S, A C, B D$ meet at O and it holds $O(A, B, M, R)=-1$, i.e. the chords of contact

[^0]of C_{1}, C_{2} with C_{3} and two of the chords of intersection of C_{1}, C_{2} are concurring and form a harmonic pencil (s. Figure 2).

Conversing the above theorem we will investigate the following question:
Let two conics C_{1}, C_{2} intersect at four points A, B, C, D with diagonal point O. Let $M N, R S$ be chords of C_{1}, C_{2} respectively passing through O and forming a harmonic pencil with the chords of intersection $A C, B D$ of C_{1}, C_{2}, i.e. $O(A, B, M, R)=-1$. Is there a conic passing through M, N, R, S and having double contact with C_{1} and C_{2} at M, N and R, S respectively?

In this initial question O can be any of the three diagonal points of the complete quadrangle defined by A, B, C, D, i.e. O can be any vertex of the common polar triangle of C_{1}, C_{2} (s. [1, p. 278, 294]). In what follows we will investigate this question especially in the case of two ellipses $C_{1}, C_{2}{ }^{2}$ having common centre O in relation to existence, number and type of conics that pass through M, N, R, S and have double contact with C_{1} and C_{2} at M, N and R, S respectively. Although we will study in depth the case that the diagonal point O lies inside C_{1}, C_{2}, our investigation method can also be applied in case O lies outside C_{1}, C_{2}. In our study we will use methods of Projective Geometry, Analytic Geometry and Calculus.

After the proof of the converse theorem, the two theorems are unified in the case of two concentric ellipses as follows:

Theorem 1. For there to be a conic C_{3} having double contact with two intersecting ellipses C_{1} and C_{2} with common centre O sufficient and necessary condition is the common chords of C_{1}, C_{2} and the pair of contact chords of C_{3} with C_{1} and C_{2} to form a harmonic pencil with centre O.

Based on this Theorem we can construct any of the infinite number of conics C_{3}, which passes through the four points of contact and tangents to the corresponding tangent lines to these four points.

Remark 1. The results of the above Theorem hold true for any two regular conics (not just ellipses) C_{1} and C_{2} having four intersection points and for any vertex O of its common polar triangle. If the configuration of the two conics C_{1} and C_{2} and the point O is not projectively equivalent to that of the above Theorem, minor modifications of its proof are necessary. We will occasionally hint at this possibility.

2 Two Concentric Intersecting Ellipses

In the real projective plane we consider two conics C_{1}, C_{2} having four intersection points A, B, C, D. The three diagonal points of A, B, C, D form the common polar triangle of both conics. Let O be the diagonal point lying in the interior of C_{1}. In what follows, we assume that O is also in the interior of C_{2} and both, C_{1} and C_{2} are ellipses. Using a homology we can always map two intersecting ellipses to two concentric ellipses. Therefore we assume that O is the common centre of C_{1}, C_{2}. With no loss of generality we consider C_{2} as a circle, since there is always a projectivity mapping an ellipse on a circle. We choose a coordinate system

[^1]

Figure 3: Two concentric ellipses with $O(A, B, M, R)=-1$
so that C_{1}, C_{2} have the following equations:

$$
\begin{align*}
& C_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \tag{3}\\
& C_{2}: x^{2}+y^{2}=r^{2}, \quad b<r<a \tag{4}
\end{align*}
$$

(s. Figure 3). In this case lines $O A, O B$ are symmetric with respect to $x^{\prime} x$ axis. If $y=\lambda_{i} x$, $i=1,2$ are the equations of $O A, O B$ respectively, then it holds

$$
\begin{equation*}
\lambda_{1}=-\lambda_{2} \tag{5}
\end{equation*}
$$

Let $M N: y=\lambda_{3} x$ be the line of an arbitrary diameter of C_{1} and $R S: y=\lambda_{4} x$ the harmonic conjugate line of $M N$ with respect to the given lines $O A, O B$, intersecting C_{2} at R, S. According to (2) and (5) it holds

$$
\begin{equation*}
\lambda_{4}=-\frac{\lambda_{1} \lambda_{2}}{\lambda_{3}}=\frac{\lambda_{1}^{2}}{\lambda_{3}} \tag{6}
\end{equation*}
$$

Since $A\left(x_{A}, y_{A}\right)$ is an intersection point of C_{1}, C_{2}, the following hold

$$
\begin{equation*}
\frac{x_{A}^{2}}{a^{2}}+\frac{y_{A}^{2}}{b^{2}}=1, \quad y_{A}=\lambda_{1} x_{A}, \quad x_{A}^{2}+y_{A}^{2}=r^{2} \tag{7}
\end{equation*}
$$

Eliminating x_{A}, y_{A} we obtain

$$
\begin{equation*}
r^{2}=\frac{a^{2} b^{2}}{b^{2}+\lambda_{1}^{2} a^{2}}\left(1+\lambda_{1}^{2}\right) \tag{8}
\end{equation*}
$$

For $M\left(x_{M}, y_{M}\right)$ and $R\left(x_{R}, y_{R}\right)$ it holds respectively

$$
\begin{equation*}
\frac{x_{M}^{2}}{a^{2}}+\frac{y_{M}^{2}}{b^{2}}=1, \quad y_{M}=\lambda_{3} x_{M} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{R}^{2}+y_{R}^{2}=r^{2}, \quad y_{R}=\lambda_{4} x_{R} . \tag{10}
\end{equation*}
$$

Figure 4: M^{\prime} is the conjugate point of M with respect to $R S$ and C_{2}

So, according to (6) and (8) we have

$$
\begin{equation*}
x_{M}^{2}=\frac{a^{2} b^{2}}{b^{2}+\lambda_{3}^{2} a^{2}}, \quad y_{M}=\lambda_{3} x_{M} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{R}^{2}=\frac{\lambda_{3}^{2}\left(1+\lambda_{1}^{2}\right)\left(b^{2}+\lambda_{3}^{2} a^{2}\right)}{\left(\lambda_{3}^{2}+\lambda_{1}^{4}\right)\left(b^{2}+\lambda_{1}^{2} a^{2}\right)} x_{M}^{2}, \quad y_{R}=\frac{\lambda_{1}^{2}}{\lambda_{3}} x_{R} \tag{12}
\end{equation*}
$$

3 Construction of Conic C_{3}

Let P be the pole of $R S$ with respect to circle C_{2} and T be the intersection point of $P M$ and $R S$. We consider point M^{\prime} so that M, M^{\prime} are harmonic conjugate to P, T. In what follows we will call M^{\prime} the conjugate point of M with respect to $R S$ and C_{2}. Since conics C_{1}, C_{2} are concentric and so $R S$ is a diameter of C_{2}, the tangent lines of C_{2} at R, S are parallel and point P lies at infinity. Consequently, $P M$ is a line through M parallel to the tangent lines of C_{2} at R, S and M^{\prime} is the symmetric point of M with respect to T (s. Figure 4). The tangent line of C_{2} at R or S is perpendicular to $R S$. So, its gradient and also the gradient of $M M^{\prime}$ is equal to (s. (6))

$$
\begin{equation*}
-\frac{1}{\lambda_{4}}=-\frac{\lambda_{3}}{\lambda_{1}^{2}} . \tag{13}
\end{equation*}
$$

So, point $M^{\prime}\left(x_{M^{\prime}}, y_{M^{\prime}}\right)$ satisfies the following equations:

$$
\begin{equation*}
y_{M^{\prime}}-y_{M}=-\frac{1}{\lambda_{4}}\left(x_{M^{\prime}}-x_{M}\right), \quad \frac{y_{M}+y_{M^{\prime}}}{2}=\lambda_{4} \frac{x_{M^{\prime}}+x_{M}}{2} . \tag{14}
\end{equation*}
$$

According to (11) and (13) it holds:

$$
\begin{equation*}
x_{M^{\prime}}=\frac{\lambda_{3}^{2}-\lambda_{1}^{4}+2 \lambda_{1}^{2} \lambda_{3}^{2}}{\lambda_{1}^{4}+\lambda_{3}^{2}} x_{M}, \quad y_{M^{\prime}}=\frac{\left(2 \lambda_{1}^{2}-\lambda_{3}^{2}+\lambda_{1}^{4}\right) \lambda_{3}}{\lambda_{1}^{4}+\lambda_{3}^{2}} x_{M} . \tag{15}
\end{equation*}
$$

Let C_{3} be the conic through M, N, R, S, M^{\prime}. We will prove that C_{3} has double contact with C_{1} at M, N and double contact with C_{2} at R, S.
Remark 2. For more constructions of conics from five points or four points and a tangent line in one of them we refer to [1, p. 162] and [5, p. 254].

3.1 The Equation of Conic C_{3}

The equation of C_{3} is given by

$$
C_{3}:\left|\begin{array}{cccccc}
x^{2} & x y & y^{2} & x & y & 1 \tag{16}\\
x_{M}^{2} & x_{M} y_{M} & y_{M}^{2} & x_{M} & y_{M} & 1 \\
x_{N}^{2} & x_{N} y_{N} & y_{N}^{2} & x_{N} & y_{N} & 1 \\
x_{R}^{2} & x_{R} y_{R} & y_{R}^{2} & x_{R} & y_{R} & 1 \\
x_{S}^{2} & x_{S} y_{S} & y_{S}^{2} & x_{S} & y_{S} & 1 \\
x_{M^{\prime}}^{2} & x_{M^{\prime}} y_{M^{\prime}} & y_{M^{\prime}}^{2} & x_{M^{\prime}} & y_{M^{\prime}} & 1
\end{array}\right|=0
$$

Substituting $x_{N}=-x_{M}, y_{N}=-y_{M}, x_{S}=-x_{R}, y_{S}=-y_{R}$ in (16) and using determinant properties we get

$$
C_{3}:\left|\begin{array}{cccc}
x^{2} & x y & y^{2} & 1 \tag{17}\\
x_{M}^{2} & x_{M} y_{M} & y_{M}^{2} & 1 \\
x_{R}^{2} & x_{R} y_{R} & y_{R}^{2} & 1 \\
x_{M^{\prime}}^{2} & x_{M^{\prime}} y_{M^{\prime}} & y_{M^{\prime}}^{2} & 1
\end{array}\right|=0
$$

considering that in general $x_{M}, x_{R} \neq 0$ and $\lambda_{3} \neq \lambda_{4}$.
Remark 3. We notice that the conic C_{3} is concentric with C_{1}, C_{2} (s. (17)).
Substituting $x_{M}, y_{M}, x_{R}, y_{R}, x_{M^{\prime}}, y_{M^{\prime}}$ in (17) through (11), (12), (15) and considering that in general $\lambda_{3} \neq \lambda_{1}$, (17) turns to

$$
\begin{equation*}
F(x, y):=\alpha x^{2}+2 \beta x y+\gamma y^{2}+\delta=0 \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha=\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(b^{2}+a^{2} \lambda_{1}^{2}\right)-\lambda_{1}^{4}\left(a^{2}-b^{2}\right), \tag{19}\\
& \beta=\lambda_{1}^{2} \lambda_{3}\left(a^{2}-b^{2}\right), \tag{20}\\
& \gamma=\left(1+\lambda_{1}^{2}\right)\left(b^{2} \lambda_{1}^{2}-a^{2} \lambda_{3}^{2}\right)+\lambda_{1}^{4}\left(a^{2}-b^{2}\right), \tag{21}\\
& \delta=\left(1+\lambda_{1}^{2}\right)\left(\lambda_{3}^{2}-\lambda_{1}^{2}\right) a^{2} b^{2} . \tag{22}
\end{align*}
$$

So, the equation of conic C_{3} is the following:

$$
\begin{align*}
{\left[(\lambda _ { 1 } ^ { 2 } - \lambda _ { 3 } ^ { 2 }) \left(b^{2}+\right.\right.} & \left.\left.a^{2} \lambda_{1}^{2}\right)-\lambda_{1}^{4}\left(a^{2}-b^{2}\right)\right] x^{2}+2 \lambda_{1}^{2} \lambda_{3}\left(a^{2}-b^{2}\right) x y \\
& +\left[\left(1+\lambda_{1}^{2}\right)\left(b^{2} \lambda_{1}^{2}-a^{2} \lambda_{3}^{2}\right)+\lambda_{1}^{4}\left(a^{2}-b^{2}\right)\right] y^{2}+\left(1+\lambda_{1}^{2}\right)\left(\lambda_{3}^{2}-\lambda_{1}^{2}\right) a^{2} b^{2}=0 \tag{23}
\end{align*}
$$

Figure 5 shows the conic C_{3} passing through M, N, R, S, M^{\prime}.

3.2 Proof of the Double Contact of C_{3} with C_{1}

The tangent line of C_{3} at M has the following equation:

$$
\begin{equation*}
\left(\frac{\partial F}{\partial x}\right)_{M}\left(x-x_{M}\right)+\left(\frac{\partial F}{\partial y}\right)_{M}\left(y-y_{M}\right)=0 \tag{24}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left(\alpha x_{M}+\beta y_{M}\right)\left(x-x_{M}\right)+\left(\beta x_{M}+\gamma y_{M}\right)\left(y-y_{M}\right)=0 \tag{25}
\end{equation*}
$$

A. Taouktsoglou, G. Lefkaditis: Family of Conics Having Double Contact...

Figure 5: The Double Contact Conic C_{3}

On the other hand the tangent line of C_{1} at M has the following equation:

$$
\begin{equation*}
\frac{x_{M} x}{a^{2}}+\frac{y_{M} y}{b^{2}}=1 . \tag{26}
\end{equation*}
$$

In order for the two lines to coincide we have to show that

$$
\left|\begin{array}{cc}
\alpha x_{M}+\beta y_{M} & \beta x_{M}+\gamma y_{M} \tag{27}\\
b^{2} x_{M} & a^{2} y_{M}
\end{array}\right|=0
$$

According to (11) we must prove equivalently

$$
\left|\begin{array}{cc}
\alpha+\beta \lambda_{3} & \beta+\gamma \lambda_{3} \tag{28}\\
b^{2} & a^{2} \lambda_{3}
\end{array}\right|=0
$$

which can be easily verified by substituting α, β, γ through (19), (20), (21). Since (28) depends only on λ_{3} and not on point M, it is obvious that C_{3} and C_{1} have a double contact at M, N.

3.3 Proof of the Double Contact of C_{3} with C_{2}

The tangent line of C_{3} at R has the following equation:

$$
\begin{equation*}
\left(\frac{\partial F}{\partial x}\right)_{R}\left(x-x_{R}\right)+\left(\frac{\partial F}{\partial y}\right)_{R}\left(y-y_{R}\right)=0 \tag{29}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left(\alpha x_{R}+\beta y_{R}\right)\left(x-x_{R}\right)+\left(\beta x_{R}+\gamma y_{R}\right)\left(y-y_{R}\right)=0 . \tag{30}
\end{equation*}
$$

On the other hand the tangent line of C_{2} at R has the following equation:

$$
\begin{equation*}
x_{R} x+y_{R} y=r^{2} \tag{31}
\end{equation*}
$$

In order for the two lines to coincide we have to show that

$$
\left|\begin{array}{cc}
\alpha x_{R}+\beta y_{R} & \beta x_{R}+\gamma y_{R} \tag{32}\\
x_{R} & y_{R}
\end{array}\right|=0
$$

According to (12) the above equation is equivalent to

$$
\left|\begin{array}{cc}
\alpha \lambda_{3}+\beta \lambda_{1}^{2} & \beta \lambda_{3}+\gamma \lambda_{1}^{2} \tag{33}\\
\lambda_{3} & \lambda_{1}^{2}
\end{array}\right|=0
$$

Dividing by λ_{3} all elements of the determinant and using (6), equation (33) turns equivalently to

$$
\left|\begin{array}{cc}
\alpha+\beta \lambda_{4} & \beta+\gamma \lambda_{4} \tag{34}\\
1 & \lambda_{4}
\end{array}\right|=0
$$

which can be easily verified by substituting α, β, γ through (19), (20), (21). Since (34) depends only on λ_{4} and not on point R, it is obvious that C_{3} and C_{2} have a double contact at R, S. Furthermore, in general case that no three of the points M, N, R, S, M^{\prime} are collinear, C_{3} is the unique conic that has double contact with C_{1} at M, N and double contact with C_{2} at R, S. So, we have proved the following:

Proposition 1. Let C_{1}, C_{2} be two ellipses with common centre O intersecting at four points A, B, C, D. Let $M N, R S$ be chords of C_{1}, C_{2} respectively passing through O and forming a harmonic pencil with two of the chords of intersection, i.e. $O(A, B, M, R)=-1$. Then, there is a unique conic C_{3} passing through M, N, R, S and having double contact with C_{1} and C_{2} at M, N and R, S, respectively.

In what follows the above constructed conic C_{3} will be called the double contact conic of C_{1}, C_{2} with respect to $M N$ or simply the double contact conic of C_{1}, C_{2}.
Remark 4. Each diameter $M N$ of C_{1} corresponds to a unique double contact conic C_{3} of C_{1}, C_{2}. So, the family of conics having double contact with two intersecting ellipses is a one-parameter family of conics. The parameter of the family is exactly the gradient of diameter $M N$.
Remark 5. It is known from the Theory of Involution in Projective Geometry that if there exists a pencil of rays with two fixed rays, say $O A, O B$, as well as a variable pair of corresponding rays, say $O M, O R$, such that $O(A, B, M, R)=-1$, then there exists a hyperbolic involution with double rays $O A, O B$ in which the variable corresponds. Therefore, when conic C_{3} runs through the one-parameter family of the double contact conics of the concentric intersecting ellipses C_{1}, C_{2}, then a corresponding hyperbolic involution with centre O is created with double lines the intersection lines $A C, B D$ of C_{1}, C_{2}.

4 Characteristic Points of C_{3}

Constructing conic C_{3} we considered point M^{\prime} as the fifth point of the conic passing through M, N, R, S. Let us now consider point N^{\prime}, the conjugate point of N with respect to $R S$ and C_{2}. It can be easily verified in analytical way, that conic C_{3} passes also through N^{\prime}, since $x_{N}=-x_{M}, y_{N}=-y_{M}$ (s. (15) and (17)). It can also be verified in analytical way, that C_{3} passes through R^{\prime}, S^{\prime}, the conjugate points of R, S respectively with respect to $M N$ and C_{1} (s. Figure 6).

So, we have proved the following:

Figure 6: The constructed conic C_{3} passes also through $N^{\prime}, R^{\prime}, S^{\prime}$

Figure 7: The double contact conic C_{3} passes through M^{\prime}

Proposition 2. Let C_{1}, C_{2} be two ellipses with common centre O intersecting at four points A, B, C, D. Let $M N, R S$ be chords of C_{1}, C_{2} respectively passing through O and forming a harmonic pencil with two of the chords of intersection, i.e. $O(A, B, M, R)=-1$. Then, the double contact conic C_{3} of C_{1}, C_{2} passes through the conjugate points of M, N with respect to $R S$ and C_{2} and through the conjugate points of R, S with respect to $M N$ and C_{1}.

Remark 6. In the general case, let two conics C_{1}, C_{2} intersect at four points A, B, C, D with diagonal point O being the intersection point of $A C, B D$, which is not necessarily their centre. Let $M N, R S$ be chords of C_{1}, C_{2} respectively passing through O and forming a harmonic pencil with the chords of intersection $A C, B D$ of C_{1}, C_{2}, i.e. $O(A, B, M, R)=-1$ (s. Figure 7). Let P be the pole of $R S$ with respect to C_{2} and T be the intersection point of $P M$ and $R S$. We consider point M^{\prime} so that M, M^{\prime} are harmonic conjugate to P, T, i.e. M^{\prime} is the conjugate point of M with respect to $R S$ and C_{2}. If there is a conic C_{3} passing through M, N, R, S and having double contact with C_{2} at R, S, then $R S$ is the polar of P with respect to C_{2}, but also the polar of P with respect to C_{3}. Considering $P M$ as an intersecting line through P, its point of intersection T with $R S$ is the conjugate point of P with respect to the intersection points M, M^{\prime} of line $P M$ with C_{3}. So, C_{3} passes through M^{\prime}. Similarly, C_{3} passes through N^{\prime}, which is the conjugate point of N with respect to $R S$

Figure 8: Conic C_{3} in case C_{1} is a hyperbola and C_{2} an ellipse

Figure 9: Conic C_{3} in case C_{1}, C_{2} are both hyperbolas
and C_{2}, and also through R^{\prime}, S^{\prime}, which are the conjugate points of R, S with respect to $M N$ and C_{1} respectively.

Figures 7, 8 and 9 show the double contact conic C_{3} in the following cases respectively: C_{1}, C_{2} are both ellipses, C_{1} is a hyperbola and C_{2} is an ellipse and C_{1}, C_{2} are both hyperbolas.

Remark 7. Let now O be another diagonal point of the complete quadrangle defined by A, B, C, D, say the intersection point of $A B, C D$ (s. Figure 10). Let $M N, R S$ be chords of C_{1}, C_{2} respectively and lines $M N, R S$ pass through O and form a harmonic pencil with the lines of the intersection chords $A B, C D$ of C_{1}, C_{2}, i.e. $O(A, C, M, R)=-1$. Using the same method we can construct the double contact conic C_{3} passing through M, N, R, S and having double contact with C_{1} and C_{2} at M, N and R, S respectively. C_{3} passes through M^{\prime}, N^{\prime}, the conjugate points of M, N with respect to $R S$ and C_{2}, and also through R^{\prime}, S^{\prime}, the conjugate points of R, S with respect to $M N$ and C_{1} respectively.

Regarding this case, i.e. O being the intersecting point of $A B, C D$, Figures 10, 11 and 12 show the double contact conic C_{3} in the following cases respectively: C_{1}, C_{2} are both ellipses, C_{1} is a hyperbola and C_{2} is an ellipse and C_{1}, C_{2} are both hyperbolas.

5 Type of Conic C_{3}

Let C_{1}, C_{2} be the conics with equations (3), (4) respectively. We consider now the common tangent lines $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}$ of C_{1}, C_{2} (s. Figure 13). Let $E_{i}^{1}, E_{i}^{2}, i=1,2,3,4$ be the contact
A. Taouktsoglou, G. Lefkaditis: Family of Conics Having Double Contact...

Figure 10: Conic C_{3} in case C_{1}, C_{2} are both ellipses and O is the intersection point of $A B, C D$

Figure 11: Conic C_{3} in case C_{1} is a hyperbola, C_{2} is an ellipse and O is the intersection point of $A B, C D$

Figure 12: Conic C_{3} in case C_{1}, C_{2} are both hyperbolas and O is the intersection point of $A B, C D$ points of line ε_{i} and C_{1}, C_{2} respectively. Since ε_{1} is the tangent line of C_{1} at E_{1}^{1} it holds

$$
\begin{equation*}
\varepsilon_{1}: \frac{x x_{E_{1}^{1}}}{a^{2}}+\frac{y y_{E_{1}^{1}}}{b^{2}}=1 \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{2} x_{E_{1}^{1}}^{2}+a^{2} y_{E_{1}^{1}}^{2}=a^{2} b^{2} \tag{36}
\end{equation*}
$$

But ε_{1} is also a tangent line of C_{2}. So, the distance between O and ε_{1} is equal to r. Therefore,

Figure 13: The common tangent lines of conics C_{1}, C_{2}
it holds

$$
\begin{equation*}
\frac{a^{2} b^{2}}{\sqrt{b^{4} x_{E_{1}^{1}}^{2}+a^{4} y_{E_{1}^{1}}^{2}}}=r . \tag{37}
\end{equation*}
$$

According to (8), (36) and (37) we get

$$
\begin{equation*}
x_{E_{1}^{1}}=\frac{a}{\sqrt{1+\lambda_{1}^{2}}}, \quad y_{E_{1}^{1}}=\frac{b \lambda_{1}}{\sqrt{1+\lambda_{1}^{2}}} \tag{38}
\end{equation*}
$$

Then, the gradient of line $O E_{1}^{1}$ is equal to $\frac{y_{E_{1}}}{x_{E_{1}^{1}}}=\frac{b \lambda_{1}}{a}$.
Since $M N$ is an arbitrary diameter of C_{1}, it is expected that the choice of $M N$ effects the type of the double contact conic C_{3} of C_{1}, C_{2}. We will prove the following (s. Figure 14):

- If M is a point inside the elliptic arc $E_{4}^{1} E_{1}^{1}$ or $E_{2}^{1} E_{3}^{1}$, i.e. $\left|\lambda_{3}\right|<\frac{b\left|\lambda_{1}\right|}{a}$, then conic C_{3} is an ellipse.
- If M is a point outside circle C_{2} and outside the elliptic $\operatorname{arcs} E_{4}^{1} E_{1}^{1}$ and $E_{2}^{1} E_{3}^{1}$, i.e. $\frac{b\left|\lambda_{1}\right|}{a}<\left|\lambda_{3}\right|<\left|\lambda_{1}\right|$, then conic C_{3} is a hyperbola.
- If M is a point inside the circle C_{2}, i.e. $\left|\lambda_{1}\right|<\left|\lambda_{3}\right|$, then conic C_{3} is an ellipse.
- If M coincides to E_{1}^{1} or E_{3}^{1}, i.e. $\lambda_{3}=\frac{b \lambda_{1}}{a}$, then conic C_{3} degenerates to two parallel lines $\varepsilon_{1}, \varepsilon_{3}$.
- If M coincides to E_{2}^{1} or E_{4}^{1}, i.e. $\lambda_{3}=-\frac{b \lambda_{1}}{a}$, then conic C_{3} degenerates to two parallel lines $\varepsilon_{2}, \varepsilon_{4}$.
- If M coincides to A, C (resp. B, D), i.e. $\lambda_{3}=\lambda_{1}\left(\right.$ resp. $\left.\lambda_{3}=-\lambda_{1}\right)$, then segments $M N, R S$ coincide with $A C$ (resp. $B D$), and conic C_{3} degenerates to the double line $A C$ (resp. BD).
So, the following holds:
Proposition 3. Let C_{1}, C_{2} be two ellipses with common centre O intersecting at four points A, B, C, D. Let $M N, R S$ be chords of C_{1}, C_{2} respectively passing through O and forming a harmonic pencil with two of the chords of intersection, i.e. $O(A, B, M, R)=-1$. The choice of the chord $M N$ determines the type of the double contact conic C_{3} of C_{1}, C_{2} in the following way:

If λ_{1}, λ_{3} are the gradients of $A B, M N$ respectively, then

Figure 14: The choice of $M N$ determines the type of C_{3}

- C_{3} is an ellipse, if $\left|\lambda_{3}\right|<\frac{b\left|\lambda_{1}\right|}{a}$ or $\left|\lambda_{3}\right|>\left|\lambda_{1}\right|$,
- C_{3} is a hyperbola, if $\frac{b\left|\lambda_{1}\right|}{a}<\left|\lambda_{3}\right|<\left|\lambda_{1}\right|$ and
- C_{3} is a degenerate parabola (i.e. a pair of parallel lines or a double line) in all other cases.

Proof. The equation (18) of the conic C_{3} can be written in matrix notation as

$$
C_{3}:\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \tag{39}\\
\beta & \gamma
\end{array}\right)\binom{x}{y}+\delta=0
$$

or in homogeneous form as

$$
C_{3}:\left(\begin{array}{lll}
x & y & 1
\end{array}\right)\left(\begin{array}{lll}
\alpha & \beta & 0 \tag{40}\\
\beta & \gamma & 0 \\
0 & 0 & \delta
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=0
$$

It is known that the type of the conic (40) is determined by the invariants $I=\alpha+\gamma$, $J=\alpha \gamma-\beta^{2}$ and $\Delta=\delta J$ (s. [1, p. 362]). ${ }^{3}$ According to (19), (20), (21), (22) we get

$$
\begin{align*}
I & =\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(b^{2}+a^{2} \lambda_{1}^{2}\right)+\left(1+\lambda_{1}^{2}\right)\left(b^{2} \lambda_{1}^{2}-a^{2} \lambda_{3}^{2}\right) \tag{41}\\
J & =\left(1+\lambda_{1}^{2}\right)\left(b^{2}+a^{2} \lambda_{1}^{2}\right)\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(b^{2} \lambda_{1}^{2}-a^{2} \lambda_{3}^{2}\right) \tag{42}\\
\Delta & =-\left(1+\lambda_{1}^{2}\right)\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right) a^{2} b^{2} J \tag{43}
\end{align*}
$$

So, it holds (s. Figure 14):

- $J>0$ if and only if $\left|\lambda_{3}\right|<\frac{b\left|\lambda_{1}\right|}{a}$ or $\left|\lambda_{3}\right|>\left|\lambda_{1}\right|$. In each case it holds $I \Delta<0$ and so C_{3} is an ellipse.
- $J<0$ if and only if $\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(b^{2} \lambda_{1}^{2}-a^{2} \lambda_{3}^{2}\right)<0$, i.e. if $\frac{b\left|\lambda_{1}\right|}{a}<\left|\lambda_{3}\right|<\left|\lambda_{1}\right|$. In this case it holds $\Delta>0$ and so C_{3} is a hyperbola.
- $J=0$ if and only if $\left|\lambda_{3}\right|=\frac{b\left|\lambda_{1}\right|}{a}$ or $\left|\lambda_{3}\right|=\left|\lambda_{1}\right|$. In this case it holds $\Delta=0$ and so C_{3} is never a parabola. Now C_{3} is a degerate conic and the invariant δI will determine the type of C_{3} :

[^2]

Figure 15: The constructed conic C_{3} is either circumscribed or inscribed to C_{1}, C_{2}

- If $\left|\lambda_{3}\right|=\frac{b\left|\lambda_{1}\right|}{a}$, then $\delta I<0$, so C_{3} degenerates to a pair of parallel lines. In particular:
* If $\lambda_{3}=\frac{b \lambda_{1}}{a}$ the equation (23) of C_{3} turns to

$$
\begin{equation*}
C_{3}: b x+a \lambda_{1} y= \pm a b \sqrt{1+\lambda_{1}^{2}} \tag{44}
\end{equation*}
$$

i.e. C_{3} degenerates to the common tangent lines $\varepsilon_{1}, \varepsilon_{3}$ of C_{1}, C_{2}.

* If $\lambda_{3}=-\frac{b \lambda_{1}}{a}$ the equation (23) of C_{3} turns to

$$
\begin{equation*}
C_{3}: b x-a \lambda_{1} y= \pm a b \sqrt{1+\lambda_{1}^{2}} \tag{45}
\end{equation*}
$$

i.e. C_{3} degenerates to the common tangent lines $\varepsilon_{2}, \varepsilon_{4}$ of C_{1}, C_{2} (s. Figure 13).

- If $\left|\lambda_{3}\right|=\left|\lambda_{1}\right|$, then $\delta I=0$, so C_{3} is a double line. In particular:
* If $\lambda_{3}=\lambda_{1}$ the equation (23) of C_{3} turns to $C_{3}: y=\lambda_{1} x$ i.e. C_{3} degenerates to the double line $A C$.
* If $\lambda_{3}=-\lambda_{1}$ the equation (23) of C_{3} turns to $C_{3}: y=-\lambda_{1} x$ i.e. C_{3} degenerates to the double line $B D$ (s. Figure 13).
We notice that in case $J=0, C_{3}$ degenerates to a pair of parallel lines or to a double line. So, C_{3} is a degenerate parabola.

We can also verify the following:

- If $\left|\lambda_{3}\right|<\left|\lambda_{1}\right|$, then point M lies outside C_{2} and the above constructed conic C_{3} is circumscribed to C_{1}, C_{2}.
- If $\left|\lambda_{3}\right|>\left|\lambda_{1}\right|$, then point M lies inside C_{2} and the above constructed conic C_{3} is inscribed to C_{1}, C_{2} (s. Figure 15).
- If $\left|\lambda_{3}\right|=\left|\lambda_{1}\right|$, then conic C_{3} degenerates to a double line.

So, the following holds:
Proposition 4. Let C_{1}, C_{2} be two ellipses with common centre O intersecting at four points A, B, C, D. Let $M N, R S$ be chords of C_{1}, C_{2} respectively passing through O and forming a harmonic pencil with two of the chords of intersection, i.e. $O(A, B, M, R)=-1$. Then, the double contact conic C_{3} of C_{1}, C_{2} is circumscribed (resp. inscribed) to C_{1}, C_{2} in case M lies outside (resp. inside) C_{2} and degenerates to a double line in case M lies on C_{2}.

Figure 16 shows the one-parameter family of conics having double contact with two concentric intersecting ellipses.

Figure 16: The family of conics having double contact with two intersecting ellipses

Figure 17: Conic C_{3} in case O is the intersection point of $A B, C D$

Remark 8. Let now O be the intersection point of $A B, C D$, so O lies at infinity (s. Figure 17). Let $M N, R S$ be chords of C_{1}, C_{2} respectively and lines $M N, R S$ pass through O and form a harmonic pencil with the lines of the intersection chords $A B, C D$ of C_{1}, C_{2}, i.e. $O(A, C, M, R)=-1$. Using the conjugate point of M^{\prime} of M with respect to $R S$ and C_{2}, we can construct the double contact conic C_{3} passing through M, N, R, S and having double contact with C_{1} and C_{2} at M, N and R, S respectively. The choice of the chord $M N$ determines again the type of the double contact conic C_{3} of C_{1}, C_{2}. Figure 17 shows the double contact conic C_{3} inscribed or circumscribed to C_{1}, C_{2} in case O lies at infinity.

6 Canonical Form of the Equation of C_{3}

We consider matrix $\binom{\alpha}{\beta}$ of the equation (39) of conic C_{3}. Let e_{1}, e_{2} be the eigenvalues of the matrix. It is known that the invariants I and J satisfy the equations $I=e_{1}+e_{2}$ and $J=e_{1} e_{2}$. Then, according to (41), (42) it can be easily verified that the eigenvalues of the matrix are

$$
\begin{equation*}
e_{1}=\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(b^{2}+a^{2} \lambda_{1}^{2}\right), \quad e_{2}=\left(1+\lambda_{1}^{2}\right)\left(b^{2} \lambda_{1}^{2}-a^{2} \lambda_{3}^{2}\right) \tag{46}
\end{equation*}
$$

with corresponding eigenvectors

$$
\begin{equation*}
v_{1}=\binom{\lambda_{3}}{\lambda_{1}^{2}}, \quad v_{2}=\binom{-\lambda_{1}^{2}}{\lambda_{3}} \tag{47}
\end{equation*}
$$

i.e.

$$
\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)\binom{\lambda_{3}}{\lambda_{1}^{2}}=e_{1}\binom{\lambda_{3}}{\lambda_{1}^{2}} \quad \text { and } \quad\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \gamma
\end{array}\right)\binom{-\lambda_{1}^{2}}{\lambda_{3}}=e_{2}\binom{-\lambda_{1}^{2}}{\lambda_{3}}
$$

Remark 9. Eigenvector v_{1} is parallel to line $R S$, since its gradient is equal to λ_{4} (s. (6)). Eigenvector v_{2} is vertical to v_{1}, since the above matrix is symmetric.

Hence, rotating the given coordinate axes through the origin O so that the new $\tilde{x}^{\prime} \tilde{x}$ axis is parallel to eigenvector v_{1} i.e. parallel to $R S$, the equation (39) of C_{3} (s. (39)) turns to

$$
\begin{equation*}
e_{1} \tilde{x}^{2}+e_{2} \tilde{y}^{2}=-\delta \tag{48}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
e_{1} \tilde{x}^{2}+e_{2} \tilde{y}^{2}=\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(1+\lambda_{1}^{2}\right) a^{2} b^{2} \tag{49}
\end{equation*}
$$

Since $e_{1}(-\delta) \geq 0$, we give the following cases:

- If $e_{1}<0, e_{2}<0$ i.e. $\left|\lambda_{3}\right|>\left|\lambda_{1}\right|$, then C_{3} is an ellipse inscribed to C_{1}, C_{2}.
- If $e_{1}>0, e_{2}>0$ i.e. $\left|\lambda_{3}\right|<\frac{b\left|\lambda_{1}\right|}{a}$, then C_{3} is an ellipse circumscribed to C_{1}, C_{2}.
- If $e_{1}>0, e_{2}<0$ i.e. $\frac{b\left|\lambda_{1}\right|}{a}<\left|\lambda_{3}\right|<\left|\lambda_{1}\right|$, then C_{3} is a hyperbola circumscribed to C_{1}, C_{2}.
- If $e_{1}=0$ i.e. $\left|\lambda_{3}\right|=\left|\lambda_{1}\right|$, then C_{3} degenerates to a double line, in particular to line $R S$.
- If $e_{2}=0$ i.e. $\left|\lambda_{3}\right|=\frac{b\left|\lambda_{1}\right|}{a}$, then C_{3} degenerates to two common tangent lines of C_{1}, C_{2} vertical to $R S$.
In case $\left|\lambda_{3}\right| \neq\left|\lambda_{1}\right|$, we get the canonical form of the equation of C_{3} (s. (8)):

$$
\begin{equation*}
\frac{\tilde{x}^{2}}{r^{2}}+\frac{\left(b^{2} \lambda_{1}^{2}-a^{2} \lambda_{3}^{2}\right)}{a^{2} b^{2}\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)} \tilde{y}^{2}=1 \tag{50}
\end{equation*}
$$

Equation (50) states a well known result: If C_{3} is an ellipse inscribed to the circle C_{2}, then its major axis is equal to the diameter $2 r$ of C_{2}. If C_{3} is an ellipse (resp. hyperbola) circumscribed to C_{2}, then its minor (resp. major) axis is equal to the diameter $2 r$ of C_{2}. If C_{3} degenerates to two tangent lines, then the distance between the lines is equal to the diameter $2 r$ of C_{2}. So, the following holds:

Proposition 5. Let C_{1} and C_{2} be an ellipse and a circle respectively with common centre O intersecting at four points A, B, C, D. Let $M N, R S$ be chords of C_{1}, C_{2} respectively passing through O and forming a harmonic pencil with two of the chords of intersection, i.e. $O(A, B, M, R)=-1$. Then, the diameter $R S$ of C_{2} is one of the axes of the double contact conic C_{3} of C_{1}, C_{2}, in case C_{3} is non-degenerate.

7 Double Contact Conics in Couples

Let C_{1}, C_{2} be two ellipses with common centre O intersecting at four points A, B, C, D. Let $M N, R S$ be chords of C_{1}, C_{2} respectively passing through O and forming a harmonic pencil with two of the chords of intersection, i.e. $O(A, B, M, R)=-1$. We proved that there is a unique conic C_{3} passing through M, N, R, S and having double contact with C_{1} and C_{2} at M, N and R, S, respectively.

Let now R_{1}, S_{1} be the intersection points of $M N$ and C_{2} and M_{1}, N_{1} be the intersection points of $R S$ and C_{1}. Then, $M_{1} N_{1}, R_{1} S_{1}$ also form a harmonic pencil with the chords of intersection $A C, B D$. So, there is a unique conic, say C_{3}^{\prime}, passing through $M_{1}, N_{1}, R_{1}, S_{1}$

Figure 18: Couple of double contact conics C_{3}, C_{3}^{\prime}
and having double contact with C_{1} and C_{2} at R_{1}, S_{1} and M_{1}, N_{1} respectively. Figure 18 shows the couple of conics C_{3}, C_{3}^{\prime}.

Obviously, the equation of C_{3}^{\prime} is obtained by the equation (23) of C_{3} substituting λ_{3} by λ_{4} (s. (6)). So, C_{3}^{\prime} belongs to the one-parameter family of conics (23) too. In the general case one of the two conics C_{3}, C_{3}^{\prime} is an ellipse inscribed to C_{1}, C_{2} and the other one is an ellipse (resp. hyperbola) circumscribed to C_{1}, C_{2}. The major axis of the inscribed ellipse is harmonic conjugate to the minor (resp. major) axis of the circumscribed one with respect to the two chords of intersection. So, the following holds:

Proposition 6. Let C_{1}, C_{2} be two ellipses with common centre O intersecting at four points A, B, C, D. Every chord $M N$ of C_{1} passing through O corresponds to two double contact conics C_{3}, C_{3}^{\prime} of C_{1}, C_{2}. In the general case one of the two conics is an ellipse inscribed to C_{1}, C_{2} and the other one is an ellipse (resp. hyperbola) circumscribed to C_{1}, C_{2}. The major axis of the inscribed ellipse and the minor (resp. major) axis of the circumscribed one with the two chords of intersection are in hyperbolic involution with double lines the lines of the chords of intersection of C_{1}, C_{2}.

8 Common Tangent Lines of C_{1}, C_{2}

In case $\left|\lambda_{3}\right|=\frac{b\left|\lambda_{1}\right|}{a}$ conic C_{3} degenerates to the common tangent lines $\varepsilon_{1}, \varepsilon_{3}$ or $\varepsilon_{2}, \varepsilon_{4}$ of C_{1}, C_{2}. In the following we will give another construction of the common tangent lines of C_{1}, C_{2} using a parallel homology. The general solution of the construction of the common tangents of two conics using methods of Projective Geometry is given in [5, p. 226-229].

We consider an ellipse C_{1} and a concentric circle C_{2} having four intersection points A, B, C, D. We will define a parallel homology that maps circle C_{2} to ellipse C_{1} in the following way:

We take one of the common diameters of C_{1}, C_{2}, say $A C$. Let $E F$ be the diameter of C_{2}, which is perpendicular to $A C$ and $G H$ the diameter of C_{1}, which is conjugate to $A C$ (s. Figure 19). We define a parallel homology with axis of homology $A C$, which maps point E to point G (resp. to point H). So, line $E G$ (resp. $E H$) defines the direction of the parallel homology.

Since perpendicular diameters $A C, E F$ of C_{2} correspond to conjugate diameters $A C, G H$ of C_{1}, then C_{1}, C_{2} are in parallel homology. Let now $K L$ be the diameter of C_{2} vertical to $E G$ (resp. $E H$) and $\varepsilon_{2}, \varepsilon_{4}$ (resp. $\varepsilon_{1}, \varepsilon_{3}$) the lines from K, L parallel to $E G$ (resp. $E H$). Then lines $\varepsilon_{2}, \varepsilon_{4}$ (resp. $\varepsilon_{1}, \varepsilon_{3}$) are tangent lines of C_{2}, parallel to the direction of the homology.

Figure 19: Construction of common tangents of C_{1}, C_{2} using an homology

Therefore they are tangent lines to C_{1}, too. So, $\varepsilon_{2}, \varepsilon_{4}$ (resp. $\varepsilon_{1}, \varepsilon_{3}$) are common tangent lines of C_{1}, C_{2}. Hence the following holds:

Proposition 7. Let C_{1}, C_{2} be two ellipses with common centre O intersecting at four points A, B, C, D. Let $G H, E F$ be the diameters of C_{1}, C_{2} respectively conjugate to a common diameter of C_{1}, C_{2}, say $A C$. Every line which joins one end point of $G H$ with one end point of $E F$ defines the gradient of one couple of common tangent lines of C_{1}, C_{2} and the line that joins the remaining end points of GH and EF defines the gradient of the other couple of common tangent lines of C_{1}, C_{2}.

References

[1] G. Glaeser, H. Stachel, and B. Odehnal: The Universe of Conics. From the ancient Greeks to 21st century developments. Springer Spektrum, Berlin, Heidelberg, 2016. ISBN 978-3-662-45449-7. doi: 10.1007/978-3-662-45450-3.
[2] J. L. S. Hatton: The Principles of Projective Geometry Applied to the Straight Line and Conic. Cambridge University Press, 1913.
[3] G. Lefkaditis, T. Toulias, and S. Markatis: The Four Ellipses Problem. Int. J. Geom. 5(2), 77-92, 2016.
[4] G. Lefkaditis, T. Toulias, and S. Markatis: On the Circumscribing Ellipse of Three Concentric Ellipses. Forum Geom. 17, 527-547, 2017.
[5] J. Milne: An Elementary Treatise On Cross Ratio. Cambridge University Press, 1911.
[6] T. Toulias and G. Lefkaditis: Parallel Projected Sphere on a Plane: A New Plane-Geometric Investigation. Int. Electron. J. Geom. 10(1), 58-80, 2017. doi: 10.36890/iejg. 584443.

Received February 11, 2023; final form April 3, 2023.

[^0]: ${ }^{1}$ S. [1, p. 388].

[^1]: ${ }^{2}$ The case of two concentric intersecting ellipses is of a special interest investigating the Four Ellipses Problem (s. $[3,4,6]$).

[^2]: ${ }^{3} I$ and J are the trace and the determinant of matrix $\left(\begin{array}{c}\alpha \\ \beta \\ \beta\end{array}\right)$ and Δ is the determinant of matrix $\left(\begin{array}{ccc}\alpha & \beta & 0 \\ \beta & \gamma & 0 \\ 0 & 0 & \delta\end{array}\right)$.
 I, J, Δ are invariants under arbitrary rotations and translations of the coordinate axes.

