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Abstract. We solve Castillon’s problem using inversion in complex circle. This
approach leads to an analytic solution to the problem similar but distinct from
the standard solution due to Lagrange a Carnot. While the standard solution
parametrizes the given circle by stereographic projection, the proposed approach
makes use of circular inversions. Though the two approaches appear fairly differ-
ent, each of them leads finally to a group of Möbius transformations, in one case
over real and in the other over complex numbers.
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1 Introduction

The well-known problem of classical geometry is formulated as follows [6]:

Castillon’s Problem. Given a circle in the real plane and distinct points p1, p2, . . . , pn

not on the circle, inscribe a polygon a1a2 . . . an in the circle so that the side aiai+1 (an+1 = a1)
passes through the point pi.

Castillon’s problem, also known as Cramer-Castillon, is considered difficult, although it
has already been solved. A nice description of the history of the problem and its various
solutions can be found, for example, in [1].

Already in antiquity, for n = 3, the problem was dealt with by Pappus, but it was
named after other mathematicians: Cramer, who presented it to Castillon. The latter solved
the problem by means of synthetic geometry. Another solution, also within the realm of
synthetic geometry, can be found, for example, in [6].

Of interest to us is the analytical solution first presented for n = 3 by Lagrange and then
modified and generalized for arbitrary n by Carnot [3, par. 330, Problem XLV on p. 383].
However, we will approach the problem not through the standard projective plane, but rather
through the lens of spherical geometry.
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The main tool for finding a solution will be the inversion in circle. We will show that
the inversion can be defined not only for the case of a real one but also for a complex circle.
We will then use such a generalized inversion for our solution. Restriction of the inversion to
the set relevant to our problem coincides with a Möbius transformation. This allows us to
conveniently compose several such mappings. As a result, we can easily compute the solution
as a fixed point of a composed transformation.

Finally, we briefly compare our solution with the standard analytical solution by Carnot.

2 Preliminaries

2.1 Inversion in Circle
The map is determined by a given fixed circle and is defined for all points except the center
of the circle.

Definition 2.1. Let C be a circle in R2 with the center p and radius r and let q ∈ R2 be a
point distant from p. The image of q in the inversion in the circle C is such a point q′ that

• q′ is on ←→pq,
• (q − p) · (q′ − p) = r2.

The inversion is obviously an involution. It is a bijective transformation of R2 − {p}.
From the definition we straightforwardly derive an analytic formula for the inversion:

q′ = p +
(

r

|q − p|

)2
(q − p). (1)

Let us recall some properties of circular inversion important for our work. We are con-
sidering the inversion in the circle C centered at p.

• Fixed points are points of the circle C.
• A straight line passing through the center p of C is invariant.
• The image of a straight line not passing through the center of C is a circle passing

through p, except the point p. If the straight line intersects C, its image also contains
the intersection points.

• A circle not passing through p is mapped to a circle.
• A circle orthogonal to the circle C is invariant.

A more detailed description of these and other properties can be found in the literature
[4, 5, 8, 9].

2.2 Outline of the Solution
Let the points p1, p2, p3 do not lie on the circle K and let △a1a2a3 be a solution, i.e.:

• a1, a2, a3 ∈ K,
• pi ∈ ←−−−−→aiai+1.

If C1 is a circle orthogonal to K, then inversion by the circle C1 leaves the circle K invariant.
Moreover, if the center of C1 lies on the line ←−−→a1a2, then the image of the point a1 in the
inversion by C1 is necessarily the point a2.

Similarly, if C2 resp. C3 are orthogonal to K and their centers are on ←−−→a2a3 resp. ←−−→a3a1,
inversion by C2 maps a2 to a3 and inversion by C3 maps a3 to a1. The composition f3 ◦ f2 ◦ f1
(fi is the inversion by Ci) then maps the point a1 to itself.
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Figure 1: A solution a1a2a3 of the problem given by the points p1, p2, p3.

Let us modify the Castillon problem by adding the condition, that the points p1, p2 and
p3 lie on the outside of the circle K. Then obviously the properties we require from the circle
C1 can be satisfied, for example, by a circle centered at point p1 with an appropriate radius.
The same applies to the remaining two circles.

So the problem is solved in case the points p1, p2 a p3 lie on the outside of the given
circle K:

1. Let Ci be the circle centered in pi and orthogonal to the circle K.
2. The point a1 is found as a fixed point of the map f3 ◦ f2 ◦ f1 (fi being the inversion

by Ci).

3 Solving the Problem

3.1 Inner Product in Complex Plane
The proposed procedure for solving the problem works fine provided that the points p1, p2,
and p3 lie outside the given circle. Naturally one would like to solve it also in case when
one or more of the given points are inside the circle. However, when we try to apply our
method to a point inside K, we need to construct a circle centered at this interior point that
is orthogonal to K. Unfortunately, such a circle does not exist in the real plane. Nevertheless,
we can try to carry out the computations in this case anyway:
Example 1. Given the unit circle K : x2 + y2 − 1 and a point p = (2/3, 1/3) inside the circle,
we want to find a circle C centered in p and orthogonal to K.

First, we find a point of intersection q = K ∩ C. As we want the circles to be orthogonal,
it must hold

(q − p) ⊥ (q − O),
where O = (0, 0). If we denote the coordinates of q by (qx, qy), this leads to the system of
equations

qx(qx − 2/3) + qy(qy − 1/3) = 0
q2

x + q2
y = 1

(2)

with no real and two complex conjugated solutions. Out of two such points we choose e.g.

q =
(6 − 2i

5 ,
3 + 4i

5

)
.

The square of the radius of C (i.e. the square of the distance of q and p) is −4/9. So the circle
centered in p and of the radius 2

3i is orthogonal to K.
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We see that we could try to solve Castillon’s problem even for points given inside the
circle. To do so, we need to use a circle with a real center and a radius such that its square
is a negative number. This leads to the definition of a symmetric complex inner product and
a complex circle.

Definition 3.1. Symmetric complex inner product is such a map C2 ×C2 → C, (u, v) 7→ u ·v
that

1. u · v = v · u
2. (u + w) · v = (u · v) + (w · v),

(ku) · v = k(u · v), where k ∈ C
3. u · u > 0 for u ∈ R2 and u ̸= 0.

Vectors u and v are orthogonal, if u · v = 0. A nonzero vector u is isotropic, if u · u = 0.

If u = (ux, uy), v = (vx, vy) ∈ C, then clearly

u · v = uxvx + uyvy (3)

is a symmetric complex inner product. Observe, that a symmetric complex inner product as
opposed to the Hermitian product is not positive definite: the vector u = (i, 1) is isotropic
and for v = (i, 0) it holds v · v = −1.

On the other hand, given any symmetric complex inner product there is a basis of the
vector space C2 such that the inner product is computed as in (3): such basis can be obtained
by the orthogonalization process and subsequent normalization, provided the given basis does
not contain any isotropic vector.

Since now we assume our basis to be orthonormal.

Remark 1. Since we consider a symmetric scalar product instead of the standard Hermitian
one in the complex plane (which refers to the plane of points whose coordinates are complex
numbers), the computation of orthogonal complements leads to solving linear equations and,
therefore, to standard linear algebra. So the orthogonal complement of a nonzero vector in
C2 is a one-dimensional vector subspace.

We now briefly review and verify notions familiar from the real plane and extend to the
plane over the complex numbers.

Let l be the line in C2 defined by

ax + by + c = 0, a, b, c ∈ C, (a, b) ̸= (0, 0), (4)

i.e. the set of points satisfying (4). Analogously let us consider the line l′ given by a′x + b′y +
c′ = 0.

• The lines l and l′ are parallel, if ab′ − ba′ = 0. Hence, two lines are parallel, if they
coincide or they have no point in common.

• Lines l and l′ are orthogonal, if (a, b) · (a′, b′) = 0. As there are isotropic vectors in C2,
a line can be orthogonal to itself, e.g. the line given by x + iy = 0.

• From Remark 1 it follows that for a line l and a point p there exists the unique line
passing through p and orthogonal to l, and also the unique line passing through p and
parallel to l. Sometimes these two lines coincide – it happens when l is orthogonal to
itself.
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3.2 Inversion in a Complex Circle
We wish to work with inversion in circles that do not pass through any real point, and contain
only complex points. Circles of complex points are defined as follows:
Definition 3.2. A complex circle in C2 centered at a point c = (cx, cy) ∈ R2 (a real point) is
the set of points in C2 satisfying the polynomial equation

(x − cx)2 + (y − cy)2 + v2 = 0,

where v ∈ R+. The purely imaginary number r = iv is the radius of the complex circle.
• Let C be a circle or a complex circle and let p ∈ C. The tangent line to C at p is the

unique line t such that p is the unique point both on C and t.
• Let C be a complex circle, let K be a real circle and let p ∈ C ∩ K. Then C and K are

orthogonal, if the tangent lines to C and K at p are orthogonal.
Remark 2. If p is a point on a complex circle C with the center c, then the tangent line to C
at p is orthogonal to the line ←→cp.

Hence a circle K centered at k and a complex circle C centered at c are orthogonal if and
only if ←→cp and ←→kp are orthogonal, where p ∈ C ∩ K.

In the following we will use the inversion also in complex circle. Fortunately, Definition 2.1
of the inversion stated in the beginning works well also for complex circles. For the sake of
completeness, we rephrase it:
Definition 3.3. The image of the point q ∈ C2 in inversion in a (real or complex) circle C
centered in p ∈ R2 (q ̸= p) with a radius r is such a point q′ ∈ C2 that

• q′ lies on the line ←→pq,
• (q − p) · (q′ − p) = r2.
The condition (q − p) · (q′ − p) = r2 at the end of the definition is a linear equation for

the coordinates of point q′, thus determining a line. This line and the line ←→pq are not parallel.
It follows that the point q′ is uniquely determined by this definition.
Example 2. Let C be the complex circle given by

x2 + y2 + 1.

Let q = (qx, qy) ̸= (0, 0) be any point in the plane. Its image in inversion in C is the point
q′ on the line through q and O such that (q − O) · (q′ − O) = −1, the square of the radius of
C. So we get

q′ =
(

− qx

q2
x + q2

y

, − qy

q2
x + q2

y

)
. (5)

Any circle centered in a real point with the square of its radius being a negative real
number is an image of C from Example 2 in an affine transformation over the real numbers
(shifting by a real vector and scaling by a positive real number). Therefore, this example
sufficiently illustrates the behavior of the plane in the inverse in all the circles of interest to
us.

In particular, we get that for a real point p also its image p′ is a real point. To visualize
the effect of the map, let us restrict ourselves to the real points and their images. We see
that the inversion by a complex circle with purely imaginary radius r is the composition of
the inversion by the concentric real circle of radius |r| and reflection through the center of
the circle. Hence, also the inversion in a complex circle maps lines and circles to lines and
circles.
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Figure 2: The real circle K is orthogonal to the complex circle C, hence the inversion in C leaves K
invariant.

Example 3. Consider the inversion in a complex circle C from Example 2. Let us study the
circle K with center in p = (−1, −1/2) and radius 3/2. For an intersection

q =
(4 − 3i

5 ,
2 + 6i

5

)

of the two circles we have (q − p) · (q − O) = 0, therefore C and K are orthogonal.
We can find images of some other points of the circle K, e.g.

q1 =
(

0,

√
5 − 1
2

)
, q2 = (−1, 1)

and we find out that they are mapped back to the circle K (see Figure 2).
Let C be a complex circle centered in p. The properties of inversion in C largely mirror

the properties of standard inversion:
(i) Each straight line passing through the center p is invariant, since the image of q by

definition lies on ←→pq.
(ii) Fixed points of the inversion are the points of C – we easily check this by examining

the images of the intersections of the circle with the line passing through its center, p.

Theorem 3.4. Let C be a complex circle. A circle orthogonal to C is invariant in the inversion
in C.

Proof. Let K be a circle orthogonal to C and let p ∈ K ∩ C. From Remark 2 we get that the
tangent line to K in p passes through the center of C, therefore is by (i) invariant. Furthermore,
both p and the other intersection point of K and C are fixed points of the inversion according
to (ii). A circle is uniquely determined by two points and the tangents at those points,
therefore the image of the circle K coincides with the circle K.

Thanks to this statement about inversion in a complex circle, we can use exactly the same
approach to solve Castillon’s problem as we proposed in Subsection 2.2.
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4 On the Side of Computations

In the formula (5) for inversion in the unit complex circle, just like for inversion in a real circle,
no complex numbers appear. We obtain the inversion in any complex circle by combining
the inversion (5) with translations by real vectors and scalings by real scaling factors. Thus,
the inversion in any complex circle (i.e., a circle with a real center and a purely imaginary
radius) maps a real point to a real point. Therefore, we can restrict our calculations to the
real plane.

If n points are given in Castillon’s problem, then we need to compose n such inversions.
If we were to use the formula (5), already for n = 3, it would lead to polynomials of degree
6. We want to avoid this complication.

For this purpose, we interpret the real plane as the Gauss plane, where a point p ∈ R2

with coordinates (px, py) is represented by the complex number px + ipy. For a complex
number z = zx + izy, z denotes the complex conjugate zx − izy.

Now we demonstrate that the restriction of the inversion in a circle (both real and com-
plex) to a suitable and relevant subset of the plane can be expressed as a Möbius transfor-
mation.

Proposition 4.1. Let K be the real unit circle x2 + y2 = 1 and let the point p ∈ R2 be not
on K. Let further C be a circle centered in the real point p and with a radius r. Then C and
K are orthogonal if and only if

pp − r2 = 1.

(The center p is interpreted as a complex number in the Gauss plane.)

Proof. Let q be an intersection of C and K. These two circles are orthogonal to each other if
and only if (q − O) ⊥ (q − p), i.e.

(q − O) · (q − p) = 0. (6)

Passing to the coordinates p = (px, py), q = (qx, qy), from the fact that q ∈ K we get

pxqx + pyqy = 1. (7)

On the other hand, we can rewrite (6) as follows:

((q − p) + (p − O)) · (q − p) = 0.

Since q ∈ C, together with (7) we obtain

r2 − (p2
x + p2

y) + 1 = 0,

which is the condition in the proposition.
Notice, that if the point p lies outside of the unit circle, this is actually the standard

Pythagorean theorem. If the point p lies inside the unit circle, the radius of the circle C is a
purely imaginary number.

Theorem 4.2. Let p ∈ R2 be not on the real unit circle. Let C be a circle (real or complex)
centered at p and orthogonal to the unit circle. If the point z lies on the real unit circle, then
it’s image z′ in inversion in C is

z′ = z − p

pz − 1 .
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Proof. Let r be the radius of C, so we have r2 ∈ R+, if p is outside of the unit circle, and
r2 ∈ R−, if p is inside the unit circle. The inversion in C is the composition of three more
elementary maps:

1. The translation by the vector −p. The point z is mapped to the point z − p.
2. The inversion in the circle centered in O = (0, 0) with radius r. By the inversion, the

point z is mapped to the point r2/z. Notice, that the formula is valid both for real and
purely imaginary radius of the circle.

3. The translation by the vector p.
As the result, z ∈ R2 is mapped to the point

z′ = r2

z − p
+ p = r2 + pz − pp

z − p
.

We are interested only in the points on the unit circle, which are such points z, that zz = 1.
Moreover, if we apply the Proposition 4.1, we get the formula stated in the Theorem.

When solving Castillon’s problem, we are interested only in the points on the given unit
circle. From the Theorem 4.2 we see, that the restriction of the inversion to points on the
unit circle is described as a Möbius transformation. This is very convenient, since these
functions (transformations of the Gaussian plane) form a group. Moreover, due to their
matrix representation they are convenient to work with: the transformation

z 7→ z′ = z − pj

pjz − 1

describing the restriction to the unit circle of the inversion in a circle centered in pj =
(pjx, pjx) = pj1 + ipj2 is represented by the matrix(

1 −pj

pj −1

)
. (8)

The matrix of the product of inversions given by p1, p2, . . . , pn is then found as the product
of the matrices of this type. The fixed point a1 that we look for, is a solution to the equation

x = a1x + a2

a3x + a2v
,

where the matrix (
a1 a2
a3 a4

)
is of the type (

s −t
t −s

)
resp.

(
s t
t s

)
for odd resp. even n.

5 Examples

We illustrate our solution on two examples: finding a triangle for three given points and
finding a pentagon for five given points, that is inscribed in the unit circle x2 + y2 = 1.
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Figure 3: Two solutions are found for the given points p1, p2, p3.

5.1 Three Points
Let

p1 = (1/3, 2/5), p2 = (−5/6, 0), p3 = (3/4, −1/5).

Each of the points pi determines the inversion fi in the complex circle centered at pi and
orthogonal to the given unit circle. The restriction of fi to the unit circle coincides with
Möbius transformation of the Gauss plane (the points pi being interpreted as complex numbers
in the Gauss plane) and is encoded in the matrix Mi:

M1 =
(

1 −1/3 − 2/5i
1/3 − 2/5i −1

)
,

M2 =
(

1 5/6
−5/6 −1

)
,

M3 =
(

1 −3/4 + 1/5i
3/4 + 1/5i −1

)
.

The composed transformation f3 ◦ f2 ◦ f1 is then represented by the matrix (the results of the
computations are displayed in approximate decimal expansion)

M = M3M2M1 =
(

2.073 − 0.867i −2.192 − 0.394i
2.192 − 0.394i −2.073 − 0.867i

)
.

Finally, the point a1 is found as a fixed point of the transformation:

(2.073 − 0.867i)a1 + (−2.192 − 0.394i)
(2.192 − 0.394i)a1 + (−2.073 − 0.867i) = a1.

As this is a quadratic equation, we get two solutions:

a1 = 0.851 + 0.525i, a′1 = 0.981 − 0.195i.

The point a2 is the image f1(a1), the point a3 is the image f2(a2):

a2 = −0.997 + 0.080i a′2 = −0.277 + 0.961i

a3 = 0.675 − 0.738i a3 = −0.971 − 0.238i
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Figure 4: Two solutions are found for the given points p1, . . . , p5.

5.2 Five Points
The method can by successfully applied for more points too. We find a pentagon p1p2 . . . p5
inscribed in the unit circle such that pi ∈ ←−−−−→aiai+1. Let

p1 = (−0.2, 0.4),
p2 = (−1.5, −1.2),
p3 = (−0.1, −0.9),
p4 = (1.1, −0.5),
p5 = (0.5, 0.7).

The points p2 and p4 lie outside the circle, so each gives the inversion in a real circle, all other
points determine the inversions in complex circles. The matrices Mi are constructed as in the
previous example, The matrix M is then the product of all five of them. Then the first point
of the pentagon is again found as a root of a quadratic equation, so in generic case, we again
obtain two solutions:

a1 = 0.469 + 0.883i, a′1 = 0.824 − 0.566i.

For the rest of the pentagon we again compute ai+1 = fi(ai):

a2 = −0.986 − 0.167i a′2 = −0.961 + 0.277i

a3 = −0.852 − 0.524i a′3 = −0.232 − 0.973i

a4 = 0.091 − 0.996i a′4 = 0.946 − 0.323i

a5 = 0.733 − 0.681i a′5 = −0.185 + 0.983i

All computations were done using the computer algebra system Maxima [7].

6 Conclusion

The solution presented in this paper is similar to the standard analytical solution [3, 10]. Let
us briefly recall the latter one.

There, each vertex of the solution lying on the unit circle is represented by one real
number using the stereographic projection: the center of the projection is at (−1, 0) and the
parameter u representing the vertex a = (ax, ay) is the y-coordinate of the projection of a
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a = (ax, ay)

(0, u)

Figure 5: Stereographic projection.

to the y-axis. The given point pi = (pix, piy) gives the transformation gi that transforms
the space of parameters of the points on the circle in such a way that the parameter ui

of the point ai of the solution is mapped to the parameter ui+1 of the point ai+1. So gi is
actually a transformation of the y-axis (i.e. parameter space). More precisely, it is the Möbius
transformation given by the matrix(

−piy 1 − pix

−1 − pix piy

)
. (9)

These particular transformations are composed exactly as in our solution. The fixed point u
of the composed transformation is then the parameter representing the first vertex a1 of the
sought polygon. So eventually a1 is computed by stereographic projection with the center
(−1, 0):

u 7→
(1 − u2

1 + u2 ,
2u

1 + u2

)
.

Our solution resembles the analytical solution according to Lagrange and Carnot, and
even the matrices representing the Möbius transformations corresponding to the given points
exhibit a significant degree of similarity. However, upon closer inspection, we can see that
the matrix (9) does not represent the circular inversion as in our solution.

The advantage of the well-known analytical solution seems to be that it operates with
Möbius transformations over the real numbers, unlike our solution, where we have to multiply
complex matrices. However, upon closer examination of the elementary computations we see
that the number of costly operations, namely the multiplications of real numbers, is the same
in both cases. Even the real numbers entering the calculations are the same: they are the
coordinates of the given points.

Furthermore, in our solution, we do not need to perform any stereographic projection at
the end because the fixed point is directly the desired point a1 on the unit circle. To find it,
we solve a quadratic equation over C. In the standard analytical solution, on the other hand,
a quadratic equation over the reals is solved for finding the parameter u.

Mentioning finally the last slight difference, the classical approach by Lagrange and Carnot
is not perfectly symmetric as problems can arise in the case when the vertex a1 of the solution
would be the center of the stereographic projection (−1, 0).

To conclude, on the computational side, both approaches are equal. The approach intro-
duced in the paper gives a nice geometrical interpretation of computations that are carried
out while solving the problem. It also does not introduce any special case that would need
an extra treating in an implementation.
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In [2], solving Castillon’s problem using circular inversion is presented as unsatisfactory
and complicated. However, introducing inversions in complex circles and interpreting each
mapping as a Möbius transformation leads to a nice and efficient solution.
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