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On Spiral Structures in Tilings
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Abstract. In this paper, the existence of spiral structure in certain types of
tilings is investigated. Following a question posed by Branko Grünbaum, it is
demonstrated that all Archimedean tilings can be partitioned in a spiral like manner
thereby fulfilling a definition given in 2017 for this visual effect. Furthermore, to
show that this is not possible for every arbitrary periodic tiling, non “spirable”
examples are constructed in the sense of this definition. Lastly, an intuitive result
for one-armed spirals is established: one-armed spirals and periodic tilings cannot
coexist.
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1 Introduction

Spiral tilings have been featured in nature [11, 12] as well as in the ancient arts [8]. However,
these were only considered as mathematical objects when the Voderberg spiral (Figure 1)
was discovered in 1936. There have been studies on spiral tilings since then but these works
focus on the construction of tiles [3, 4, 9] rather than on the recognition of spiral structures
in a given tiling. This is because no formal definition had been published and most authors
relied on the spiral appearance of the tilings. Grünbaum and Shephard first made an attempt
to define spiral tilings in [5] (see exercises of Section 9.5), but it is not general enough and
disregards the psychological aspect of spiral tilings. A recently proposed definition [6] (with a
refinement in [7]) attempts to provide precision and extends the work beyond monohedral
tilings (although it lacks the shortness and elegance of the older definition). In this paper,
our goal is to examine the existence of spiral structures in certain types of tilings using the
recently formulated more general definition.

First, let us clarify some terms: A tiling T of the plane is a countable family of sets, called
tiles, that cover the plane without gaps or overlaps of non-zero area. If the intersection of
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Figure 1: The Voderberg spiral [10].

three or more tiles is nonempty, then this intersection is called a vertex of T . An edge is (part
of) the intersection of two tiles that connects two vertices. In this research, all tiles considered
are closed topological disks and uniformly bounded.

The isometries that map the tiling onto itself form the symmetry group of T , denoted by
S(T ). If this group contains two linearly independent translations, T is said to be periodic.
All tilings considered in this paper are k-hedral tilings, that is, tilings that have only finitely
many congruence classes with respect to the isometries present in each tiling’s symmetry
group. If a tiling has only one congruence class, it is called a monohedral tiling and a single
representative of a congruence class is called a prototile.

Definition L ([6]). A partition of a plane tiling into more than one separate classes, called
arms, is defined as a spiral-like partition or L-partition under the following conditions. (The
plane is identified with the complex plane C where the origin is represented by a selected
point of the tiling.)
L1: For each arm A (as a union of tiles from one class) there exists a curve θ : R+

0 → A ⊂ C
with θ(t) = r(t) exp(iφ(t)) called a thread, where both r and φ are continuous and
unbounded and φ is monotone. Curve θ does not meet or cross itself or any thread from
another arm of the tiling.

L2: For each tile T in A, the intersection of the interior of T with the image of θ is nonempty
and connected.

A plane tiling, with uniformly bounded tiles, for which it is possible to create an L-partition
is called L-spirable and an L-partitioned tiling is called an L-tiling.

In other words, for each spiral arm, a curve should enter the interior of each tile exactly
once, winding infinitely around a central point without self-intersections.

Some examples of L-tilings are shown in the succeeding section. These L-tilings have no
spiral structure and coloring the tiles is needed to distinguish the arms. Nevertheless, these
can be partitioned in a manner in which they fulfill Definition L. Further definitions were given
in [6] in order to differentiate such tilings from those with an inherent spiral structure. In the
first part of this paper, we will focus on spiral-like tilings without requiring that these tilings
be true spirals such as the Voderberg spiral. However, Definition L only caters multi-armed
spiral tilings and thus, a separate definition is provided for one-armed spirals.
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Definition O (for one-armed spirals). A k-hedral plane tiling without singular points is called
a spiral tiling with one arm under the following conditions (The plane is identified with the
complex plane C where the origin is represented by a selected point of the tiling.):
O1: There exists a curve b : R+

0 → C with b(t) = r(t) exp (iφ(t)) called spiral boundary, where
both r and φ are continuous and unbounded. Curve b does not meet or cross itself and
runs completely on boundaries of tiles.

O2: If T1, T2 are direct neighbors and can be mapped (as a pair)1 by rotation and translation
onto another pair, these tiles must also be direct neighbors. This rule can be ignored
if the image pair lies at the beginning of the boundary (i.e., contains b(0)). (Direct
neighbors means here that T1 ∩ T2 contains more than a finite number of points but not
from the spiral boundary.)

2 L-spirability of Archimedean tilings

Archimedean tilings are vertex-transitive tilings that are made up of at most two regular
polygonal tiles. A tiling with vertices surrounded by, in a cyclic order, n1-gon, n2-gon, . . . ,
and nk-gon is denoted by n1.n2 . . . nk. In [2], the authors demonstrated that all Laves tilings
are L-spirable. In this section, we will show that their duals, the Archimedean tilings, are
L-spirable as well.

The creation of L-partitions for this class of tilings is not as simple as in the Laves tilings.
The simpler cases are listed in Figure 2. Threads are not shown in Figure 2 since their
construction is straightforward. Among the Archimedean tilings, only the 3.12.12 tiling has
complicated threads, as seen in Figure 3.

Note that a thread has the freedom to choose its path (the sequence of tiles it enters) in a
spiral arm. In rare cases, it is necessary to run along the entire boundary of two tiles in order
to avoid entering the interior of a tile twice. This is the case for the 3.12.12 tiling as shown in
Figure 3. Thus, we have just demonstrated the following theorem:

Theorem 1. All Archimedean tilings are L-spirable.

Combining a result from [2] with the result established above gives us the following
corollary:

Corollary 1. All Archimedean tilings and their dual tilings are L-spirable.

One might think that any well-behaved2 tiling can be L-partitioned. In fact, in [2], the
authors made a conjecture that every periodic monohedral tiling admits an L-partition, which
is one of the open problems in [6]. However, we will demonstrate in the next section that this
is not the case.

3 Counterexamples for L-spirability

The prototile shown in Figure 4a forms a periodic monohedral tiling T1 as seen in Figure 4b.
T1’s symmetry group is p4, where the centers of four-fold symmetries are the centers of each
tile and the vertices where four tiles meet. A fundamental domain for this tiling is any region

1Here and below “mapped as a pair” means that the tiles can be respectively mapped by a direct isometry τ
onto another pair of tiles τ(T1) and τ(T2).

2This term is used in [5] to describe tilings that are either normal, balanced or periodic.
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(a) 36 (b) 34.6 (c) 33.4.4 (d) 32.4.3.4 (e) 3.4.6.4

(f) 3.6.3.6 (g) 44 (h) 4.6.12 (i) 4.8.8 (j) 63

Figure 2: L-partitions of Archimedean tilings except the 3.12.12 tiling.

Figure 3: L-spirable Archimedean 3.12.12 tiling with threads sometimes running along tiles’ bound-
aries.

that can be translated to cover the whole plane without overlapping. One possible choice of a
fundamental domain of T1 is the area with a thicker border in Figure 4b, which we will denote
by D1. The idea for constructing this prototile is from [1, Appendix A1 and Page 75], with
some modifications for our purpose.

Let us consider a region on the east of the center of T1. Suppose (without loss of generality)
threads are running clockwise and a thread is passing through a region north of D1. Note
that a thread cannot run entirely on the borders of D1, since otherwise, it will enter a tile
twice. In particular, a thread running on one side of the square boundary of D1 will enter the
interior of the gray tile twice, which is forbidden by Definition L. With this, threads must
cross the boundary of D1 or its copies, and thus, it is enough to consider all threads crossing
the upper edge of D1 to illustrate that T1 is not L-spirable.

With these assumptions, we can identify all possible paths for a thread, each represented
by the sequence in which the thread enters the tiles, as seen in Table 1.

There are sequences on Table 1 with tiles enclosed in a parenthesis. These entries
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(a) (b)

Figure 4: A non L-spirable periodic monohedral tiling T1

correspond to paths in which one includes the tile in parenthesis and another that does not.
For instance, a thread that enters blue→gray→yellow runs a similar path with gray→yellow,
except for the first tile in the sequence. Hence, we can simplify the table by writing the initial
blue tile in the sequence in parenthesis. Figure 5 illustrates how a thread may enter these
sequences of tiles. All of these paths violate the angular monotonicity of a thread with a center
point assumed to lie at an appropriate distance westward of D1 (indicated by an asterisk ∗
in Table 1) or fail to maintain the connectedness of a thread within each tile (indicated by
double asterisks ∗∗). For the unnumbered sequences in Table 1, we find that any possible
thread arrives at a contradiction before reaching the sequence’s last tile.

A thread may also enter D1 from the northwest or northeast. However, threads will run
along the same path as when you translate the tiling one tile to the right. For example, as a
thread follows the path starting with the green tile outside D1 and then entering D1 through
the gray tile, this is the same as a thread coming from the blue tile (outside D1) and eventually
entering the yellow tile (Column 3 of Table 1). Thus, we arrive at the same contradictions as
the paths corresponding to threads 10–15 in Figure 5. Hence, the path of a thread entering
D1 from the northwest can be omitted in Table 1. Likewise, a thread entering D1 from the
northeast (orange→gray) is similar to the path starting from the blue tile and then entering
the red tile (Column 1 of Table 1).

Finally, we must consider those threads that leave D1 and later re-enter. The only paths
through which a thread can re-enter D1 are: (i.) crossing the western boundary of D1 through
the upper part of the red tile that extends into D1 or through the part of the gray tile directly
below the red part, or (ii.) crossing the eastern boundary through the gray tile. A re-entry
into the lower half of D1 can be omitted since no thread is able to reach this part. When
a thread re-enters through the western boundary, such threads could be translated to the
eastern edge of D1 and thus are equivalent to threads leaving D1 through the gray or yellow
tiles (sequences that correspond to threads 10-15 in Figure 5). When a thread re-enters D1
through the eastern boundary through the gray tile, this is equivalent to corresponding threads
leaving through the western edge (threads 1–3). Threads crossing eastern or western edge
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threads leaving D1 through threads stopping threads leaving D1 through
the western boundary within D1 the eastern boundary

(gray→)red (1∗) gray→red (4∗∗ and 5∗) (blue→)gray→yellow
(gray→)red→green (2∗ and 3∗∗) gray (6∗ and 7∗∗) (10∗ and 11∗∗)

gray→red→brown (gray→)blue (8∗) (blue→)gray→yellow→pink
gray→red→cyan blue→gray (9∗) (12∗ and 13∗∗)

gray→yellow (blue→)gray (14∗)
gray→violet yellow→gray (15∗∗)

(blue→)gray→yellow→dark gray

Table 1: Possible paths for a thread when it crosses the northern boundary of D1

Figure 5: Some possible paths of threads as indicated in Table 1

more than twice are disregarded since an edge of D1 lies within the union of only two tiles.
Although the sequences of tiles in Table 1 do not specify the exact behavior of threads in

an L-tiling, it is guaranteed that any thread entering these sequences of tiles will yield the
corresponding violation. For instance, two of the three paths for the sequence gray→red (1
and 5) contradict the inherent angular monotonicity of a thread. The other thread (4) cannot
continue its path since otherwise it will enter the gray tile twice. Any thread that follows the
gray→red sequence will always end up with one of the two contradictions indicated. Hence, T1
is unspirable in the sense of Definition L since it is impossible to have a thread that satisfies
Conditions L1 and L2.

The nonconvexity of the prototile in the previous tiling plays a crucial role and one could
conclude that such tiles are needed to construct non L-spirable tilings. The next tiling shows
that this is not the case for 2-hedral tilings. Let us take a look at the periodic tiling T2 in
Figure 6 which consists of convex tiles only. T2 has symmetry group pmm and its fundamental
domain is made up of unit square tiles and rectangular tiles where the ratio of the square tiles
to the rectangular tiles is 1:13.

Suppose T2 is L-spirable and let us consider a fundamental domain D2 in T2. Consider
a thread θ of an arm in D2. Without loss of generality, let us assume the following: (i) the
threads in T2 run clockwise, and (ii) the origin O of the complex plane is far enough southward
of D2. Note that we can assume this without loss of generality because θ cannot change
its direction since the rectangular tiles oriented horizontally in between the square tiles can
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Figure 6: The periodic tiling T2 with its fundamental domain D2 indicated by the thicker border

(a) (b)

Figure 7: Possible paths for threads entering region R. Yellow and blue tiles make up ∪Aθi
and ∪Bθi

,
respectively.

only be crossed once. Now, thread θ passes through a sequence of red framed square tiles in
Figure 7. Let R be the region consisting of the red framed square tiles. The tiles in R entered
by θ can be partitioned into two sets, Aθ and Bθ, where Aθ contains the first red square tile
that θ enters in each column and Bθ consists of all the other tiles in R entered by θ. Since R
has 11 columns, |Aθ| ≤ 11. The number of tiles in Bθ may increase every time θ enters a new
row.

Let |Bn
θ | be the number of elements in Bθ from row n. Provided that R lies far enough

“northward” from O, to satisfy the monotonicity of θ, the angle of θ is limited such that no
more than two tiles can lie in Bθ in every row. (This argument using a limited angle for the
thread was also applied in a similar way to the first counter example.) Consequently, |Bn

θ | ≤ 2
holds for any row n.

Note that |B1
θ | = 0 and |Bj

θ | ≤ 2, j = 2, 3, 4, 5, 6. Thus, |Bθ| = ∑6
j=1 |Bj

θ | ≤ (2)(5) = 10.
It follows that |Aθ| + |Bθ| ≤ 21. The same holds for the other options in an analogous way:
θ running upwards through R and θ running in anti-clockwise direction. At this point, we
have shown that any thread intersecting region R will enter at most 21 red square tiles (with
the origin far enough southward). Some possible paths for threads entering region R are
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illustrated in Figure 7. Here, threads from one row of red squares enter the next row of red
squares in a downward direction. However, these threads can also run in upward direction,
yielding the same results for sets Aθ and Bθ. Now, each thread belongs to a spiral arm which
each is a connected unbounded tile set. Since D2 has four tiles on the boundary, there are at
most four threads leaving region R.

Suppose there are four threads intersecting R. This means that all the boundary tiles
belong to different arms. However, from the area of the red square tiles, the western boundary
tile cannot be reached by a monotonous thread if the center is far enough southward. This
implies that there are at most three threads intersecting R. This accounts only for at most 63
square tiles. Since there are 66 red square tiles, it is impossible to enter all the square tiles
with three or fewer threads. Therefore, T2 is not an L-spirable tiling.

Theorem 2. There exists a monohedral periodic tiling with a non-convex prototile for which
no L-partition exists in the sense of Definition L. Furthermore, there exists a 2-hedral tiling
with only convex tiles that is not L-spirable.

The presented counterexamples even hold for L-tilings with infinitely many arms.

4 One-armed spirals

Unlike L-tilings, one-armed spirals cannot be induced by partitioning — the structure of the
tiling itself can be viewed as a spiral with one arm.

In Definition O, the concept of direct neighbors in one-armed spirals is introduced. Here,
the nonempty intersection of two tiles is an edge that does not lie on the spiral boundary b.
The set containing all tile pairs sharing an edge in a k-hedral tiling can be partitioned into
congruence classes such that every pair of tiles belongs to the same class as its image under a
direct isometry. In particular, if Ti and Tj are two tiles in a tiling and Ti ∩ Tj is an edge, then
all the images of Ti and Tj (as a pair) under rotation and translation belong to the same class
as a pair. Such a class shall be called a tile pair class. Contrapositive from Definition O, if
two tiles Ti and Tj do not contain b(0) and Ti ∩ Tj , which contains more than a finite number
of points, lies on the spiral boundary, the rotational and translational images of Ti ∩ Tj should
also lie on the spiral boundary. In particular, if the intersection of an element of a tile pair
class that is disjoint from b(0) lies on b, each pair in the class should also have an intersection
that lies on b. Thus, we can associate a tile pair class to an edge class [e] defined by the set of
edges in a tiling whose elements are the images of e under direct isometries.

A sequence of edges {en} can be created from the edges lying on the spiral boundary b
whose order is determined by the function φ that gives rise to b. Consider an edge ek ∈ {en}.
If all edges in [ek] lie on b, then we call ek a strong b-edge. If an element of [ek] belongs to a
tile that contains b(0), then it can be the case that not all elements of [ek] lie on b. We call
el ∈ {en} a weak b-edge if there exists e′ in [el] such that e′ /∈ {en}.

Suppose el is a weak b-edge. Then there exists e′ in [el] such that e′ /∈ {en}. This means
that there are tiles T1 and T2 which are direct neighbors and T1 ∩ T2 = e′. Note that el should
be a part of a tile that contains b(0), since otherwise, Condition O2 will not be satisfied. If
all elements in the tile pair class of T1 and T2 are direct neighbors, except the tile pair that
contains el, then el is the only edge in [el] that lies on b. If there is a tile pair in the tile pair
class of T1 and T2 that are not direct neighbors, say τ(T1) and τ(T2), then τ(T1) ∩ τ(T2) lies
on b, and at least one of them contains b(0). Since there are only finitely many tiles that may
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Figure 8: A one-armed spiral tiling with four tile pair classes.

contain b(0), there are only finitely many images of [T1 ∩ T2] that lie on b. Thus, [el] ∩ {en} is
finite.

In any case, we have shown that an edge class can only have finitely many weak b-edges.
Since there are only a finite number of edges any tile can have and weak b-edges may only
appear on tiles that have a nonempty intersection with b(0), there are only finitely many
classes that contain weak b-edges. Thus, we have the following lemma:

Lemma 1. In an O-tiling there are only finitely many weak b-edges.

In Figure 8, the thicker edges build the spiral boundary b. The first two edges in the
sequence {en} are T1 ∩ T3 = e1 and T2 ∩ T3 = e2. They are the only weak b-edges in this
example since T3 is the only rhombus with edges lying on the boundary.

Proposition 1. A one-armed spiral tiling (according to Definition O) cannot be periodic.3

Proof Idea. A subset of tiles near the starting point b(0) can be distinguished from all other
tiles that intersect with b. This contradicts the inherent repeating pattern of periodic tilings.

Proof. Assume a periodic O-tiling with spiral boundary b. The path of b along the edges
creates a sequence of edges {en} starting from b(0). Let ek be the first strong b-edge in this
sequence. Note that there are only finitely many edges on b that are not strong b-edges by the
lemma above. This guarantees the existence of ek since the spiral boundary is an unbounded
curve. Moreover, any edge aside from ek sharing the first vertex of ek (from b(0)) is either a
weak b-edge or does not belong to b. Note that b cannot intersect the said vertex again since b
is self-avoiding.

Since the tiling is assumed to be periodic, we can translate ek, together with the tiles
that have nonempty intersection with ek, to a congruent region far enough away from b(0).
By definition of strong b-edge, the image of ek, say τ(ek), must be a strong b-edge, as well
as both adjacent b-edges of τ(ek), since weak b-edges can only exist near b(0). This implies

3An analogue result for tilings containing an inherent multi-armed spiral structure was given in [2].
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that the image region cannot be congruent to the pre-image region around ek, which is a
contradiction.

To give an example, consider the O-tiling in Figure 8 and the sequence of edges on its
spiral boundary b starting from b(0). In this tiling, the third edge in the said sequence is ek.
All the other edges after ek are strong b-edges. As mentioned, the first edge on b that shares
one vertex of ek, i.e., T2 ∩ T3, is a weak b-edge.

5 Conclusion

The motivation behind the definitions from [6] for spiral tilings is to capture, with mathematical
rigor, the psychological effect alluded to by Grünbaum and Shephard in their 1987 work.
The present work is a step towards answering Branko Grünbaum’s question4 about general
properties of tilings that may admit L-partitions, or fulfill other definitions from [6] (refined
in [7]).

We have shown that there exists a periodic monohedral tiling that does not admit an
L-partition, thereby answering one of the open problems in [6].

In our search for a complete characterization of L-spirable tilings, we have shown some
interesting properties in this paper. For one-armed spiral tilings, we have proven an intuitive
property: O-tilings cannot be periodic. We have also shown that all Archimedean tilings,
which are 2-hedral periodic tilings, are indeed L-spirable. One can use the same method used
in [2] to show that it is possible to construct an L-tiling for at least one example of each type
of isogonal tiling using the same partitions constructed in Figure 2. Although nonconvexity
played a crucial role in constructing our example for a non-spirable monohedral tiling, we
have also presented a convex 2-hedral tiling that fails to admit L-partitions, demonstrating
that convexity does not guarantee L-spirability.
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