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Abstract. In the present paper, the concept of “a quadrilateral coordinated with
a circle that forms Pascal points” (“coordinated quadrilateral” for short) is defined
as a quadrilateral for which there exists a circle that forms Pascal points on the
sides of the quadrilateral, and for which it holds that the following four points are
collinear: the point of intersection of the extensions of the two opposite sides of
the quadrilateral, the center of the circle, and the two Pascal points formed by it.

We investigate and prove the properties of this quadrilateral. These properties
may be divided into two sets: (i) properties of the straight lines, line segments,
and angles associated with the coordinated quadrilateral and (ii) properties of
the circles associated with the coordinated quadrilateral. In addition, we show a
method for constructing the coordinated quadrilateral.
Key Words: coordinated quadrilateral, circle that forms Pascal points, collinearity
of points, geometric construction
MSC 2020: 51M04 (primary), 51M05, 51M15, 51N20

1 Introduction

In order to define the quadrilateral coordinated with a circle that forms Pascal points, we shall
recall the definition of Pascal points and the circle that forms Pascal points. These concepts
are the basis for the theory of the convex quadrilateral and a circle that forms Pascal points
on its sides (see [2–7]).

A circle that forms Pascal points (see [2])
For a convex quadrilateral ABCD, in which E is the point of intersection of the diagonals

and F is the point of intersection of the extensions of sides BC and AD, a circle that forms
Pascal points is any circle that passes through points E and F and also through interior
points of sides BC and AD (see Figure 1).

ISSN 1433-8157/ © 2023 Heldermann Verlag

https://isgg.net/jgg/


128 D. Fraivert: The Quadrilateral Coordinated With a Circle that Forms Pascal Points. . .

Figure 1: P and Q are Pascal
points formed by circle ω.

Figure 2: Line PQ passes
through the center O of circle
ω which forms P and Q.

Figure 3: Points P , Q, O
and F are collinear, there-
fore ABCD is a coordinated
quadrilateral.

Pascal points on the sides of a quadrilateral (see [2])
Let ω be a circle that forms Pascal points, and M = ω ∩BC, N = ω ∩ AD. Also, let

K and L be the points of intersection of ω with the extensions of diagonals BD and AC,
respectively (see Figure 1). We further denote P = KN ∩ LM and Q = KM ∩ LN .

There holds: P ∈ [AB], Q ∈ [CD].
Points P and Q are called Pascal points formed by circle ω on sides AB and CD.
If for a given convex quadrilateral, there exists one circle that forms Pascal points on sides

AB and CD, then there is an infinite number of such circles (see [4, Proof of Theorem 1]).
In this set of circles there will be one single circle ω where the Pascal points formed by it are
collinear with the center of the circle.

For this circle, several additional properties hold (see [2, Theorems 6-9], [3], [5, Theorems
3, 5, 6]). In particular, let us note the following two properties:
Property (i) Chords KL and MN of circle ω are parallel to each other (see [2, Theorem 6]);
Property (ii) An inversion with respect to circle ω transforms points P and Q into one

another (see [2, Theorems 7–8]). That is to say, points P , Q, F1, and I constitute
a harmonic quadruple where F1 and I are the points of intersection of circle ω with
straight line PQ (see Figure 2).

We shall now define the concept of “a quadrilateral coordinated with the circle that forms
Pascal points” (for short, “coordinated quadrilateral”).

Definition 1. Let ABCD be a convex quadrilateral in which E is the point of intersection
of its diagonals, and F is the point of intersection of the extensions of sides AD and BC.

If for this quadrilateral there is a circle ω (whose center is O) which forms Pascal points
P and Q, and for which the four points F , O, P , and Q are collinear, then quadrilateral
ABCD is coordinated with circle ω (see Figure 3).
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Figure 4: ∡FEG = 90◦. Ray FP bisects angle
AFB, and ray GP1 bisects angle BGC.

Figure 5: KLNM is an isosceles trapezoid and
therefore point F is the midpoint of arc K̂L.
K1L1N1M1 is an isosceles trapezoid and there-
fore point U is the midpoint of the arc K̂1L1.

This article contains three sections:
In Section 2 we study the collinearity properties of the points, the properties of the angles,

and the properties of the ratios of the lengths of segments of sides associated with a given
coordinated quadrilateral.

In Section 3 we study the properties of the circles associated with a given coordinated
quadrilateral.

In Section 4 we show a way to construct a coordinated quadrilateral and prove the cor-
rectness of the construction.

2 Properties of lines and angles associated with a given
coordinated quadrilateral

Theorem 1. Let ABCD be a quadrilateral (in which E = [AC] ∩ [BD], F = AD ∩ BC)
that is coordinated with circle ω (E, F ∈ ω) forming Pascal points P and Q on sides AB
and CD, respectively (where M = ω ∩ [BC], N = ω ∩ [AD], K = ω ∩ BD, L = ω ∩ AC).
Also, let G be the point of intersection of the continuation of sides AB and CD, and let ψ be
the circle passing through points E and G. P1 and Q1 are the Pascal points formed by ψ on
sides BC and AD; P1 and Q1 are collinear with the center O1 of ψ (where M1 = ψ ∩ [AB],
N1 = ψ ∩ [CD], K1 = ψ ∩BD, L1 = ψ ∩ AC). Then

(i) Straight line P1Q1 passes through point G.
(ii) ∡FEG = 90◦ (see Figure 4);

(iii) Ray FP bisects angle AFB, and ray GP1 bisects angle BGC.

Proof. (i)–(ii) According to Property (i) in the introduction, quadrilateral KLNM is a trape-
zoid inscribed in circle ω, therefore it is an isosceles trapezoid in which the diagonals intersect
at point P and the extensions of sides KM and LN intersect at point Q (see Figure 5).
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Figure 6: Straight lines AB and DC intersect at a point which
belongs to line RS.

Therefore, straight line PQ bisects bases MN and KL of the trapezoid and is perpendicular
to them. From this, it follows that diameter IF of circle ω is perpendicular to chord KL and
bisects arc K̂L (at point F ) and M̂N (at point I). From the fact that F̂L = K̂F , it follows
that ∡KEF = ∡FEL. In other words, EF bisects angle KEL.

Similarly, since center O1 of circle ψ is collinear with Pascal points P1 and Q1, it follows
that K1L1 ∥ N1M1 and K1M1 = L1N1. In other words, quadrilateral K1L1N1M1 is an
isosceles trapezoid.

We denote by J and U the points of intersection of straight line P1Q1 with circle ψ (see
Figure 5), and we obtain P1Q1⊥K1L1. Therefore, point U is the midpoint of arc K̂1L1.
Hence, ∡K1EU = ∡UEL1, and therefore EU bisects ∡K1EL1.

Since angles KEL and K1EL1 are supplementary adjacent angles, their angle bisectors
are perpendicular to each other. In other words, ∡FEU = 90◦. In addition, ∡FEI = 90◦ (an
inscribed angle that subtends diameter FI of circle ω). Therefore ∡IEU is a straight angle,
and points I, E, and U lie on a single straight line.

We denote by R and S the points of intersection of straight-line EU with sides AD and
BC, respectively. In triangle AED there holds (1) segment ER is an angle bisector of interior
angle AED, and (2) segment EF is an angle bisector of exterior angle AEB (see Figure 6).
Therefore, points F , A, R, and D form a harmonic quadruple. In other words, there holds:
(D,A;R,F ) = −1.

Similarly, in triangle BEC there holds (1) segment ES is an angle bisector of interior
angle BEC, and (2) segment EF is an angle bisector of exterior angle BEA. Therefore,
points F , B, S, and C form a harmonic quadruple. I.e., (C,B;S, F ) = −1.

We have thus obtained that for each of the two straight lines FD and FC there are four
points – F , A, R, D and F , B, S, C (point F is common the two quadruples) which satisfy
the following equality of cross-ratios: (D,A;R,F ) = (C,B;S, F ).
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Therefore straight lines AB, RS, and DC intersect at a single point (see [10, Exercise
233]). Since it has been given that straight lines AB and DC intersect at point G, straight
line RS also passes through point G. From the definition of points R and S, it follows that
straight line RS passes through point U .

Let us assume that U and G are two different points of straight line RS. In this case, either
G is an interior point of chord EU (i.e., G lies within circle ψ) or G lies on the continuation
of chord EU (i.e., G lies outside circle ψ) (see Figure 6).

However, both cases lead to a contradiction to the data that point G belongs to circle ψ.
Therefore, points U and G must coincide. It thus follows that the line P1Q1 passes through
point G (we proved item (i) of Property 1), and it also follows that ∡FEG = 90◦ (we proved
item (ii)).

(iii) In the proof of (a), we saw that point I is the midpoint of M̂Nof circle ω. Therefore
∡MFI = ∡NFI. In other words, FI bisects angle MFN , which means that ray FP being
the bisector of angle AFB (see Figure 5). Similarly, point J is the midpoint of M̂1N1 of circle
ψ, and therefore ∡M1GJ = ∡N1GJ . In other words, ray GP1 is the bisector of angle BGC
(see Figure 6).

Theorem 2. In addition to the data from Theorem 1, we mark eight points of intersection
as follows (see Figure 7): T = PQ ∩ P1Q1, V = NM ∩ N1M1, Z = ω ∩ FG, Z1 = ψ ∩ FG,
S = NM ∩ PQ, W = NM ∩ FE, W1 = N1M1 ∩ EG, S1 = N1M1 ∩ P1Q1. There holds:

(i) Quadrilaterals TSV S1, SWEI, and EW1S1J are cyclic.
(ii) Straight line MN passes through point G, and straight line N1M1 passes through point F .

(iii) Straight line IW passes through point Z, and straight line JW1 passes through point Z1.

Proof. (i) In proving Theorem 1 we have seen that NM⊥PQ, N1M1⊥P1Q1, and ∡FEG =
90◦. Therefore in each of the quadrilaterals – TSV S1, SWEI, and EW1S1J – there are two
opposite right angles. Therefore, these quadrilaterals are cyclic.

(ii) From the proof of Theorem 1, it follows that points I, E, and G are collinear. There-
fore straight-line IE passes through point G, in other words straight lines AB and IE intersect
at point G. Let us prove that straight lines NM and IE also intersect at point G. To do
this, let us denote the point of intersection of straight lines NM and IE by X and then prove
that points X and G coincide.

Let us use the method of complex numbers in plane geometry. We choose a system of
coordinates so that circle ω is the unit circle (center O of circle ω is located at the origin, and
the radius is OE = 1). In this system, the equation of the unit circle is z · z = 1, where z and
z are the complex coordinate and the complex conjugate of the coordinate of an arbitrary
point Z located on circle ω. We denote the complex coordinates of points E, F , I, K, L, M ,
and N as e, f , i, k, l, m, and n, respectively. These points are located on the unit circle, and
therefore there holds:

e = 1
e
, f = 1

f
, l = 1

l
, k = 1

k
, l = 1

l
, m = 1

m
and n = 1

n
. (1)

FI is a diameter of the circle ω, therefore holds that

i = −f. (2)

In addition, since center O and Pascal points P and Q are collinear, it follows that segments
KL and MN are parallel to each other and therefore (see [2, Theorem 6])

mn = kl. (3)



132 D. Fraivert: The Quadrilateral Coordinated With a Circle that Forms Pascal Points. . .

Figure 7: Straight lines NM and N1M1 pass through points G and
F respectively.

The equation of straight-line PQ that passes through center O of unit circle ω is

pz = pz (4)

(where z is the complex coordinate of an arbitrary point Z that belongs to straight line PQ).
We use the following property (see [11, p. 181]): Let T (t), Q(q), R(r), and S(s) be four

points on the unit circle, and let U(u) be the point of intersection of straight lines TQ and
RS. Then for coordinate u and its conjugate, u, there holds:

u = t+ q − r − s

tq − rs
and u = qrs+ trs− tqs− tqr

re− tq
. (5)

In our case, since P = KN ∩LM , we can express the complex coordinate of point P and the
conjugate of the coordinate by using the complex coordinates of points K, L, M , and N , as
follows:

p = n+ k −m− l

nk −ml
and p = mnl +mkl −mnk − nkl

ml − nk
.

By Equation (3), the expression for p can be simplified to

p = mn(m+ l − n− k)
ml − nk

.
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We substitute expressions for p and p in Equation (4) and obtain:

mn(m+ l − n− k)
ml − nk

z = n+ k −m− l

nk −ml
z.

Hence:
z = 1

mn
z. (6)

Point F lies on straight line PQ. Therefore, f = 1
mn
f =⇒ mn = 1

f
f , and finally

mn = kl = f 2. (7)

Now, let us find the complex coordinate of point X and its conjugate. First we find the
equations of straight lines MN and IE, which are defined using pairs of points that belong
to unit circle ω. For straight line MN , we obtain z+mnz = m+ n =⇒ z = − 1

mn
z+ m+n

mn
,

or, according to Equation (7), we thus obtain

z = − 1
f 2 z + m+ n

f 2 . (8)

For straight-line IE, we obtain z + iez = i + e =⇒ z = − 1
ie
z + i+e

ie
, or, according to

Equation (2),
z = 1

fe
z + f − e

fe
. (9)

We then solve the system of Equations (8) and (9): 1
fe
z + f−e

fe
= − 1

f2 z + m+n
f2 , and hence(

1
fe

+ 1
f2

)
z = m+n

f2 − f−e
fe

. Finally, for the coordinate of intersection point X, we obtain:

zx = x = em+ en+ ef − f 2

f + e
.

Therefore, the complex conjugate of x is:

x =
1

em
+ 1

en
+ 1

ef
− 1

f2

1
f

+ 1
e

=
f2n+f2m+fmn−emn

ef2mn
f+e
fe

,

and using Equation (7) we obtain

x = m+ n+ f − e

f 2 + fe
.

We now prove that points A, B, and X are collinear. For that, it is sufficient to prove
that the following equality holds for these points (see [11, p. 156]):

a(b− x) + b(x− a) + x(a− b) = 0. (10)

We use Equations (5) and express the complex coordinates (and their complex conjugates)
of points A and B through the coordinates of the points located on unit circle ω.

a = f + n− e− l

fn− el
and a = eln+ efl − fln− efn

el − fn
(because A = FN ∩ EL, see Figure 6);
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b = f +m− e− k

fm− ek
and b = ekm+ efk − fkm− efm

ek − fm
(because B = FM ∩ EK).

Consider the left-hand side of Equation (10). If we substitute the expressions for a, a, b,
b, x, and x, we obtain

eln+ efl − fln− efn

el − fn
×
(
f +m− e− k

fm− ek
− m+ n+ f − e

f 2 + fe

)
+

ekm+ efk − fkm− efm

ek − fm
×
(
m+ n+ f − e

f 2 + fe
− f + n− e− l

fn− el

)
+

em+ en+ ef − f 2

f + e
×
(
f + n− e− l

fn− el
− f +m− e− k

fm− ek

)
denote=

A

(f 2 + fe) (el − fn) (fm− ek)+ B

(f 2 + fe) (fn− el) (ek − fm)+ C

(f + e) (fn− el) (fm− ek) .

The last three fractions on the left-hand side of Equation (10) are obtained after adding the
fractions in the parentheses and denoting the numerators by A, B, and C.

The common denominator of these fractions is f(f + e)(el − fn)(fm − ek). Hence, the
last expression can be brought in the following form:

A+B − fC

f(f + e)(el − fn)(fm− ek) .

After opening the parenthesis, replacing products mn and kl with f 2, and collecting
similar terms in each expression, we obtain:

A = e2f 2n2 − e3fln− ef 4n− ef 3lm+ 2e2f 3l + e2f 3m+ 2e2f 3n− e3f 2l − 2ef 5 − ef 2lm2

− e3f 3 + 2e2f 2lm− ef 3n2 + e2f 2ln+ f 5n+ f 4lm− 2ef 4l − e2f 3k − e2fkn2 + ef 3kn

+ ef 4m+ e3fkn− e2f 4,

B = −2e2f 3k + e3fkm+ ef 3kn− e2f 2m2 + ef 4m− 2e2f 2kn+ e3f 2k + ef 2kn2 − 2e2f 3m

− e2f 3n+ e3f 3 + 2ef 4k − e2f 2km− f 4kn+ ef 3m2 + 2ef 5 − f 5m+ e2f 4 − ef 4n+ e2flm2

+ e2f 3l − e3flm− ef 3lm,

− fC = −ef 3m2 + e2f 2m2 + ef 2lm2 + e2f 2km− e3fkm− 2ef 4k − 2e2f 2lm− e2flm2

+ e3flm+ 2ef 4l + 2e2f 2kn+ e2fkn2 − e3fkn+ ef 3n2 − e2f 2n2 − ef 2kn2 − e2f 2ln

+ e3fln− 2ef 4m+ e2f 3m+ 2ef 3lm+ 3e2f 3k − e3f 2k + 2ef 4n− e2f 3n− 2ef 3kn

− 3e2f 3l + e3f 2l + f 5m− f 4lm− f 5n+ f 4kn.

It can be ascertained that the sum of these three expressions is 0. Therefore, Equation (10)
holds. Therefore straight line AB passes through point X (where X = NM ∩ IE).

In summary, we obtained that straight line IE intersects straight line AB at points X
and G. Therefore these points coincide. Likewise, it also follows that straight lines AB, CD,
IE, P1Q1, and MN intersect at point G.

Similarly, if we choose ψ as the unit circle, it can be proven that the straight line N1M1
passes through point F .

(iii) In triangle IFG, segments FE and GS are altitudes to sides IG and IF , respectively.
These segments intersect at point W (see Figure 8), therefore straight line IW contains the
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Figure 8: The intersection points of lines IW and JW1 with line
FG belong to circles ω and ψ respectively.

altitude to side FG (we denote this altitude by IZ ′), i.e., IZ ′⊥FG. On the other hand, in
circle ω, angle FZI is a right angle (inscribed angle subtending the diameter), therefore there
holds also IZ⊥FG. Hence points Z and Z ′ coincide and there holds IW⊥FG.

Similarly, in triangle JFG, segments GE and FS1 are altitudes to sides JF and JG,
respectively. These segments intersect at point W1, and therefore straight line JW1 contains
the altitude to the third side (denoted by IZ ′

1). On the other hand, in circle ψ, angle JZ1G
is a right angle. Therefore points Z1 and Z ′

1 coincide, that is, JW1⊥FG.

Other properties resulting from Theorems 1 and 2 (see Figure 7).
Property (1) The angle between angle bisectors FP and GP1 is equal to the angle between

straight lines MN and M1N1.
Property (2) The angle between straight lines FP and M1N1 is equal to the angle between

straight lines GP1 and MN .
Proof of Property (1): Since quadrilateral TSV S1 is cyclic, it follows that ∡PTP1 =

∡SV F .
Proof of Property (2): We denote ∡TFS1 = γ. In right-angled triangle TFS1, there holds:

∡FTS1 = 90◦ − γ. Therefore, in right-angled triangle GST there holds ∡STG = 90◦ − γ. It
result ∡TGS = γ, and ∡TFS1 = ∡TGS.

The following property describes the ratios of segments and the lengths of segments
associated with Pascal points.
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Theorem 3. In addition to the data of Theorem 2, we denote the following angles (see
Figure 9): ∡AFP = ∡PFB = ϕ, ∡S1FP1 = α, ∡TFS1 = γ, ∡DFQ = β, ∡BGP1 =
∡P1GC = φ, ∡PGS = δ, ∡TGS = γ, ∡MGC = θ. Therefore:

(a) (i) AP

PB
= cos(ϕ+ δ)

cos(ϕ− δ) , (ii) P1T

TQ1
= cos(ϕ+ γ)

cos(ϕ− γ) , (iii) CQ

QD
= cos(ϕ+ θ)

cos(ϕ− θ) ,

(iv) CP1

P1B
= cos(φ+ α)

cos(φ− α) , (v) PT
TQ

= cos(φ+ γ)
cos(φ− γ) , (vi) AQ1

Q1D
= cos(φ+ β)

cos(φ− β) .

(b) (i) AB = FP sinϕ
(

1
cos(ϕ− δ) + 1

cos(ϕ+ δ)

)
,

(ii) PQ = FT sinϕ
(

1
cos(ϕ− γ) + 1

cos(ϕ+ γ)

)
,

(iii) CD = FQ sinϕ
(

1
cos(ϕ− θ) + 1

cos(ϕ+ θ)

)
,

(iv) BC = GP1 sinφ
(

1
cos(φ− α) + 1

cos(φ+ α)

)
,

(v) P1Q1 = GT sinφ
(

1
cos(φ− γ) + 1

cos(φ+ γ)

)
,

(vi) AC = GQ1 sinφ
(

1
cos(φ− β) + 1

cos(φ+ β)

)
.

(c) Pascal-point pairs P , Q and P ′, Q′ divide the pairs of opposite sides in a quadrilateral
by ratios satisfying the following equality:

AP

PB
· CQ
QD

= CP1

P1B
· AQ1

Q1D
.

Proof. (a) Proof of formula a(i). From the data of Theorem 3, there holds that for the angles
of triangles PGS and FAP :

∡FPA = ∡GPS = 90◦ − δ and ∡FAP = 180◦ − ϕ− (90◦ − δ) = 90◦ + δ − ϕ.
Therefore, in △AFP , there holds

AP

sinϕ = FP

sin(90◦ + δ − ϕ) =⇒ AP = FP sinϕ
cos(ϕ− δ) . (11)

For the angles of triangle FAB, we obtain ∡FBA = 180◦−2ϕ−(90◦ + δ − ϕ) = 90◦−(ϕ+ δ).
Hence, in △FPB, there holds

PB

sinϕ = FP

sin (90◦ − (δ + ϕ)) =⇒ PB = FP sinϕ
cos (ϕ+ δ) (12)

From Equations (11) and (12), it follows that

AP

PB
= cos(ϕ+ δ)

cos(ϕ− δ) .

Proof of formula a(ii). For the angles of triangles FTS1 and FTQ1, we obtain:
∡FTS1 = 90◦ − γ, and therefore ∡FQ1T = 90◦ − γ − ϕ = 90◦ − (γ + ϕ).

Hence, in △FTQ1 there holds

TQ1

sinϕ = FT

sin(90◦ + γ − ϕ)) =⇒ TQ1 = FT sinϕ
cos(ϕ− γ)) (13)
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Figure 9: ∡TFS1 = ∡TGS = γ =⇒ β − α = θ − δ = γ

For the angles of triangle FQ1P1, there holds:
∡FP1Q1 = 180◦ − 2ϕ− (90◦ + γ − ϕ) = 90◦ − (ϕ+ γ). Therefore, in △FTP , there holds

P1T

sinϕ = FT

sin (90◦ − (ϕ+ γ)) =⇒ P1T = FT sinϕ
cos (ϕ+ γ) (14)

From Equations (13) and (14) it follows that

P1T

TQ1
= cos(ϕ− δ)

cos(ϕ+ δ) .

Proof of formula a(iii). For the angles of triangles GSQ, FDQ, and FDC, we obtain:
∡SQG = 90◦ −θ, ∡FDQ = 90◦ −θ−ϕ, and ∡FCD = 180◦ −2ϕ−(90◦ −θ−ϕ) = 90◦ +θ−ϕ.
Hence, in △FDQ:

QD

sinϕ = FQ

sin (90◦ − (θ + ϕ)) =⇒ QD = FQ sinϕ
cos (ϕ+ θ) (15)

and in △FCQ:
CQ

sinϕ = FQ

sin (90◦ + (θ − ϕ)) =⇒ CQ = FQ sinϕ
cos (ϕ− θ) (16)

From Equations (15) and (16) it follows that

CQ

QD
= cos(ϕ+ θ)

cos(ϕ− θ) .
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Since the proofs of formulas a(iv)–a(vi) are similar to each other, we shall only give the
proof for formula a(vi).

Proof of formula a(vi). For the angles of triangles GS1M1, FBM1, and BCG, we obtain
∡GM1S1 = 90◦ − φ, ∡GBC = ∡FBM1 = (90◦ − φ) − α, and ∡GCB = 180◦ − 2φ − (90◦ −
φ− α) = 90◦ + α− φ. Therefore, in △GBP1 there holds that

P1B

sinφ = GP1

sin (90◦ − (φ+ α)) =⇒ P1B = GP1 sinφ
cos (φ+ α) (17)

and in △GCP1,

CP1

sinφ = GP1

sin (90◦ + α− φ) =⇒ CP1 = GP1 sinφ
cos (φ− α) (18)

From Equations (17) and (18) it follows that

CP1

P1B
= cos(φ+ θ)

cos(φ− θ) .

(b) The formulas of this section are obtained by summing the appropriate pairs of formulas
from Section (a): formula b(i) is obtained by adding formulas (11) and (12), formula b(ii) is
obtained by adding formulas (13) and (14), and so forth.

(c) Let us consider the products of the ratios by which points P and Q divide sides AB
and CD. From formulas a(i) and a(iii) we obtain:

AP

PB
· CQ
QD

= cos(ϕ+ δ)
cos(ϕ− δ) · cos(ϕ+ θ)

cos(ϕ− θ) =
1
2 [cos(δ − θ) + cos(2ϕ+ δ + θ)]
1
2 [cos(θ − δ) + cos(2ϕ− δ − θ)] =︸︷︷︸

δ+θ=2φ

= [cos(θ − δ) + cos(2ϕ+ 2φ)]
[cos(θ − δ) + cos(2ϕ− 2φ)] .

Similarly, from formulas a(iv) and a(vi) for the product of the ratios by which points P1
and Q1 divide sites BC and AD, there holds:

CP1

P1B
· AQ1

Q1D
= cos(φ+ α)

cos(φ− α) · cos(φ+ β)
cos(φ− β) =

1
2 [cos(α− β) + cos(2φ+ α + β)]
1
2 [cos(β − α) + cos(2φ− α− β)] =︸︷︷︸

α+β=2ϕ

= [cos(β − α) + cos(2φ+ 2ϕ)]
[cos(β − α) + cos(2φ− 2ϕ)] .

Let us prove that the following equality holds: β − α = θ − δ. For angle β there holds:
β = ϕ+ γ = α + γ + γ = α + 2γ (see Figure 9), therefore β − α = 2γ.

For angle θ there holds: θ = φ+ γ = δ + γ + γ = δ + 2γ, therefore θ − δ = 2γ. Therefore
the above equality holds, and therefore

[cos(θ − δ) + cos(2ϕ+ 2φ)]
[cos(θ − δ) + cos(2ϕ− 2φ)] = [cos(β − α) + cos(2φ+ 2ϕ)]

[cos(β − α) + cos(2φ− 2ϕ)] ,

it thus follows that
AP

PB
· CQ
QD

= CP1

P1B
· AQ1

Q1D
.
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Figure 10: The circles Σ1, Σ2 and Σ3 are tangent to each other in pairs. The circle
Σ4 is perpendicular to the circles Σ1, Σ2, and Σ3. The circle Σ5 is perpendicular to
the circles Σ2, Σ3.

3 The properties of circles associated with a coordinated
quadrilateral

Theorem 4. In addition to the data of Theorem 2, let (see Figure 10):
Σ1 be a circle inscribing quadrilateral TSV S1;
Σ2 be a circle inscribing quadrilateral SWEI;
Σ3 be a circle inscribing quadrilateral EW1S1J ;
Σ4 be a circle whose center X is the midpoint of segment FG and whose radius is segment

XE;
Σ5 be a circle whose center Y is the midpoint of segment XE and whose radius is segment

Y E. Then:
(a) Circles Σ1, Σ2, and Σ3 are tangent to each other in pairs.
(b) Circle Σ4 is perpendicular to circles Σ1, Σ2, and Σ3.
(c) Circle Σ5 is perpendicular to circles Σ2 and Σ3.
(d) Circles Σ4 and Σ5 are tangent to each other.
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Figure 11: The tangents to circle Σ at
points K and M intersect at the mid-
point of segment PQ.

Figure 12: Triangles X1KQ and X1KP
are isosceles, therefore point X1 is mid-
point of segment PQ.

Proof. First we prove the following lemma (see Figure 11):

Lemma. Let KLMN be a quadrilateral in which ∡K = ∡M = 90◦; KLMN inscribed in
circle Σ; P is the point of intersection of the continuations of sides KN and LM , Q is the
point of intersection of the continuations of sides KL and MN ; X is the midpoint of segment
PQ;

Then: straight lines XK and XM are tangents to circle Σ at points K and M , respec-
tively.

Proof of the lemma. Let us prove that the tangent k to circle Σ at point K passes through
point X.

We denote by X1 the point of intersection of k with segment PQ (see Figure 12). In
triangle NPQ, segments QK and PM are altitudes to sides NP and NQ, respectively, which
intersect at point L. Therefore, straight line NL contains the third altitude, NH, to side PQ
of the triangle. We denote ∡HNP = α. Hence we obtain:

(i) ∡LKX1 = ∡QKX1 = ∡LNK = α (The angle formed by a tangent and a chord
ending at the point of contact is equal to one half the arc it intercepts on the circle);

(ii) ∡NPH = 90◦ − α;
(iii) ∡KQP = 90◦ − ∡KPQ = 90◦ − (90◦ − α) = α.
Therefore ∡QKX1 = ∡KQX1. In other words △QKX1 is an isosceles triangle in which

KX1 = QX1. (19)

Angles PKX1, X1KQ, and QKN are complementary to 180◦.
Therefore, ∡PKX1 = 180◦ − α − 90◦ = 90◦ − α. It follows that △PKX1 is an isosceles

triangle in which
KX1 = PX1. (20)

From Equations (19) and (20), we obtain that PX1 = QX1. In other words, X1 is the
midpoint of segment PQ and therefore points X and X1 coincide.

In a similar manner we prove that the tangent at point M to the circle inscribing quadri-
lateral KLMN also passes through the midpoint of segment PQ (i.e., through point X).
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We return to the proof of the theorem.
(a) For quadrilateral TSV S1 (see Figure 10), the data of the lemma holds, namely: angles

TSV and TS1V are right angles, the continuations of sides TS and S1V intersect at point
F , the continuations of sides SV and TS1 intersect at point G, and X is the midpoint of
segment FG. Therefore, straight lines XS and XS1 are tangent to circle Σ1 at points S and
S1, respectively.

Similarly, in quadrilateral SWEI there holds the following: angles ISW and IEW are
right angles, the continuations of sides IS and EW intersect at point F , the continuations
of sides SW and IE intersect at point G, and X is the midpoint of segment FG. Therefore
straight lines XS and XE are tangents to circle Σ2 at points S and E, respectively.

For quadrilateral EW1S1J there holds: angles JEW1 and JS1W1 are right angles, the
continuations of sides JE and S1W1 intersect at point F , the continuations of sides EW1 and
JS1 intersect at point G, and X is the midpoint of segment FG. Therefore straight lines XS1
and XE are tangent to circle Σ3 at points S1 and E, respectively.

We have thus obtained that (i) straight line XS is a common tangent to circles Σ1 and
Σ2 at point S, and therefore these circles are internally tangent to each other (circle Σ2 lies
inside circle Σ1); (ii) straight line XS1 is a common tangent to circles Σ1 and Σ3 at point S1,
and therefore these circles are internally tangent to each other (circle Σ3 lies inside circle Σ1);
and (iii) straight line XE is a common tangent to circles Σ2 and Σ3 at point E, and therefore
these circles are externally tangent to each other.

(b) From the proofs of the lemma and of Section (a), it follows that

XE = XS = XS1 = XF = XG.

Therefore points E, S, S1, F , and G lie on circle Σ4. Since the tangents to circles Σ1, Σ2,
and Σ3 pass through the center X of the circle Σ4, it follows that Σ4 is perpendicular to each
of the circles Σ1, Σ2, and Σ3 (see [1, Theorem 5.51]).

(c) The center Y of the circle Σ5 lies on the common tangent XE of the circles Σ2 and
Σ3. Therefore circle Σ5 is perpendicular to circles Σ2 and Σ3.

(d) Segment EX is both a diameter of circle Σ4 and a radius of circle Σ5. Therefore, the
perpendicular to EX that passes through the point E (which is common to Σ4 and Σ5) is a
common tangent of these circles. Therefore circles Σ4 and Σ5 are tangent to each other.

Theorem 5. In addition to the data of Theorem 2, let (see Figure 13): Σ6 be a circle that
passes through points T , O, and O1; Σ7 be a circle that passes through points F , P1, and Q1;
Σ8 be a circle that passes through points G, P , and Q.

Then:
(a) Circles ω, ψ, Σ6, Σ7, and Σ8 intersect at a single point (point H in Figure 13).
(b) The circles ψ and Σ7, ω and Σ8 are perpendicular to each other in pairs.
(c) The angle between circles ω and Σ7 is equal to the angle between circles ψ and Σ8.
(d) The angle between circles ω and ψ is equal to angle FTG (the angle between straight

lines PQ and P1Q1).

Proof. (a) Let H denote the point of intersection of circles ω and ψ. Let us prove that quadri-
lateral TOHO1 is cyclic. In circle ω there holds OI = OH. Therefore triangle OIH is an
isosceles triangle. We denote ∡OIH = ∡OHI = α, and hence ∡HOF = 2α (see Figure 14).

Quadrilateral EHGJ is inscribed in circle ψ, therefore ∡HGJ = ∡HEF =: β.
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Figure 13: Circles ψ, ω, Σ6, Σ7 and Σ8 intersect at a
single point (at point H).

Figure 14: ω ∩ ψ = H; TOHO1 is cyclic quadrilateral,
therefore also circle Σ6 passes through point H.

In addition, there holds that O1G = O1H, meaning that triangle O1GH is an isosceles
triangle and therefore ∡HO1J = 2β.
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Figure 15: Points G, H1, and F1 are collinear. Points H1, J , and U are
collinear.

In circle ω, angles FIH and FEH are inscribed angles subtending the same arc FH.
Therefore they are equal, i.e., α = β ⇒ 2α = 2β. Result from here ∡HOF = ∡HO1T . It
thus follows that quadrilateral TOHO1 is cyclic. Therefore, circle Σ6, which passes through
the three vertices T , O, and O1 of the quadrilateral, must also pass through the fourth
vertex, H.

We shall now prove that circles ω, ψ, and Σ7 intersect at point H.
Let H1 denote the point of intersection (in addition to F ) of circles ω and Σ7, and let

U denote the point of intersection (in addition to F ) of straight line FI and circle Σ7. We
perform the following auxiliary construction: we draw a tangent to circle ω at point F , and
denote by F1 the point of its intersection with circle Σ7 (see Figure 15).

In the geometric state obtained in Figure 15, the following properties hold (see [8, Prop-
erty 4]):

(i) Points G, H1, and F1 are collinear.
(ii) Points H1, J , and U are collinear.

Segment F1U is a diameter in circle Σ7 (because ∡F1FU = 90◦). Therefore, angle F1H1U
subtending the diameter is equal to 90◦. Therefore we obtain ∡F1H1J = 90◦.

For ∡JH1G, which is supplementary to angle ∡F1H1J , there holds that ∡JH1G = 90◦.
This means that point H1 lies on the circle whose diameter is segment JG, i.e., H1 ∈ ψ.

From the fact that circles ω, ψ, and Σ7 intersect at point H1, and circles ω and ψ intersect
at point H (in addition to E), it follows that circles ω, ψ, and Σ7 intersect at point H.

We can similarly prove that circles ω, ψ, and Σ8 intersect at point H.
(b) Segments JG and F1U are diameters of circles ψ and Σ7, respectively (see Figure 16).

We shall prove that radii O1H and O2H of circles ψ and Σ7, which have the common endpoint
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Figure 16: ∡O2HO1 is an angle between radii O2H and O1H
of circles Σ7 and ψ. ∡O2HO1 = (90◦ − α) + α = 90◦. Circles
Σ7 and ψ are perpendicular.

Figure 17: Straight lines O2H,
O3H, O1H, and OH are tan-
gent to circles ψ, ω, Σ7 and Σ8.
∡OHO2 = ∡O1HO3.

H, are perpendicular to each other.
In isosceles triangle O1JH, there holds: ∡O1JH = ∡O1HJ := α.
Then ∡Q1JU = α (because points J , H, and U are collinear).
In circle Σ7, point U is the midpoint of arc P1Q1. Therefore diameter F1U is perpendicular

to chord P1Q1. It thus follows that in right-angled triangle Y JU , ∡JUY = 90◦−α. Therefore,
in isosceles triangle O2UH, there holds that ∡O2HU = ∡O2UH = 90◦ − α.

Finally, we obtain ∡O2HO1 = ∡O2HU + ∡UHO1 = 90◦ − α + α = 90◦. In other words,
radii O1H and O2H of circles ψ and Σ7 are perpendicular to each other and therefore circles
ψ and Σ7 are perpendicular to each other (see [9]).

We can similarly prove that circles ω and Σ8 are perpendicular to each other.
(c) From Section (b) above, straight lines O2H, O3H, O1H, and OH are tangent to circles

ψ, ω, Σ7 and Σ8, respectively (see Figure 17). Therefore, angles ∡O1HO3 and ∡O1HO2 are
the angles between circles ω and Σ7 and between circles ψ and Σ8, respectively.

For these angles there holds: ∡O1HO3 = ∡O1HO2 − ∡O2HO3 = 90◦ − ∡O2HO3,
∡OHO2 = ∡OHO3 − ∡O2HO3 = 90◦ − ∡O2HO3.

Therefore, ∡OHO2 = ∡O1HO3. In other words, the angle between circles ω and Σ7 is
equal to the angle between circles ψ and Σ8.

(d) In the geometric state in (see Figure 18) the following are shown:
(i) the three circles, ψ, ω, and Σ6;
(ii) OE and OH are radii of circle ω and O1E and O1H are radii of circle ψ;
(iii) straight lines EX and EY are tangents to circles ω and ψ at E (the common point of

these circles).
In cyclic quadrilateral TOHO1, there holds that ∡OTO1 + ∡OHO1 = 180◦. Based on the
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Figure 18: ∡OHO1 = ∡OEO1 and ∡OTO1 + ∡OEO1 = 180◦.
γ + α+ β + α = 180◦ and α+ β = 90◦. Therefore β = γ.

equalities OE = OH and O1E = O1H, it follows that quadrilateral EOHO1 is a kite in which
∡OHO1 = ∡OEO1. Therefore there holds that

∡OTO1 + ∡OEO1 = 180◦. (21)

∡OEX and ∡O1EY are right angles (an angle between a tangent and a radius to the point
of tangency). It thus follows that ∡OEY = ∡O1EX =: α.

We denote ∡Y EX = β and ∡OTO1 = γ. According to this notation, from Equation (21)
it follows that

γ + 2α + β = 180◦ (22)

On the other hand, from the equality ∡OEX = ∡OEY + ∡Y EX = α + β = 90◦, it
follows that

2α + 2β = 180◦ (23)

Comparing equalities 22 and 23, it follows that β = γ, where β is the angle between the
tangents to circles ω and ψ at their point of intersection, E, and that γ is the angle between
lines PQ and P1Q1.
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Figure 19: Steps 1–5 of construction. Figure 20: Steps 6–8 of construction.

4 Method for Constructing the Coordinated Quadrilateral

Stages of construction
1. Let σ be an arbitrary circle in which FH is a diameter and FE is a chord.
2. Draw straight lines FH, FE, and HE (see Figure 19).
3. Through point E draw straight lines EX and EY , so that the following condition holds

∡FEX = ∡FEY .
4. Let G be a point on straight line HE that lies outside circle σ, and let Z be a point on

ray FH that lies outside circle σ.
5. Draw a point, Z ′, that corresponds to point Z by inversion relative to circle σ.
6. Draw straight lines GZ and GZ ′ through point G (see Figure 20).
7. Label the points of intersection of straight line GZ with straight lines EX and EY with
C and D, respectively. Similarly, label the points of intersection of straight line GZ ′

with straight lines EX and EY with A and B, respectively.
8. Connect the following pairs of points using segments: A and B, B and C, C and D, D

and A.
Quadrilateral ABCD is a coordinated quadrilateral.

Proof that the quadrilateral constructed in accordance with Steps 1–8 above is a
coordinated quadrilateral First, we must prove that the continuations of the sides AD
and BC intersect at point F .

Step 3 of the construction assures that segment EF bisects angle AEB in △AEB. In
addition, given that ∡FEH = 90◦ (an inscribed angle subtending the diameter), it follows
that EV⊥EG (see Figure 21). Therefore, segment EG bisects angle BEC, which is exterior
to △AEB. Therefore, points A, V , B, and G constitute a harmonic quadruple.

In a similar manner, we prove that points D, W , C, and G also constitute a harmonic
quadruple.

We obtained, that on each of the straight lines GA and GD (which intersect at point
G) there are three additional points: A, V , B and D, W , C respectively, and the following
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Figure 21: By the assumption, straight
lines AD and BC intersect at the point
belonging to the straight line FE (at
point U , where U ̸= F ).

Figure 22: Te bisector f of angle AFB intersects
straight lines HE, AB, and CD at I, P , and Q
respectively. P and Q are Pascal points formed
by the circle ω whose diameter is segment FI.

equality holds:
(A,B;V,G) = (D,C;W,G)(= −1).

Therefore straight lines DA, WV , and CB intersect at a single point (see [10, Exercise
233]), which is equivalent to the fact that straight lines AD and BC intersect at the point
belonging to the straight line FE.

We denote the point of intersection of AD and BC by U . Let us assume that U is not the
same as F . Without restricting the generality, let us assume that U lies in the continuation
of chord FE (see Figure 21).

From Step 5 above, points Z and Z ′ belong to the straight line passing through diameter
FH of circle σ, and they transform one into the other by inversion relative to this circle.
Therefore, points Z, H, Z ′, and F constitute a harmonic quadruple. Therefore the four
straight lines GZ, GH, GZ ′, and GF constitute a harmonic quadruple of straight lines
passing through point G (see [10, Exercise 200]).

We denote by T and S the points of intersection of straight line BC with straight lines
GH and GF . From the assumption, it is clear that S ̸= U (see Figure 21). Since points
C, T , B, and S are the four points of intersection of straight line BC with the above har-
monic quadruple of straight lines passing through point G, these points constitute a harmonic
quadruple.

On the other hand, in triangle CEB, segment ET bisects angle CEB and segment EU
bisects angle BEA, which is exterior to this triangle. Therefore points C, T , B, and U also
constitute a harmonic quadruple.

To summarize: on straight line BC there are two harmonic quadruples S, B, T , C and
U , B, T , C, which coincide at three points, and therefore must also coincide at the fourth
point, in other words S = U . This contradicts with S ̸= U , thereby showing that assumption
F ̸= U is false. From this, it follows that straight lines AD and BC intersect at point F .
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Let f denote the bisector of angle AFB (see Figure 22).
Now we prove that f passes through Pascal points P and Q (formed using the circle ω

on sides AB and CD) and through O, the center of circle ω.
Let I, P , and Q denote the points of intersection of f with straight lines HE, AB, and

CD, respectively (see Figure 22). Consider circle ω passing through points F , I, and E (in this
circle FI is a diameter and FE is a chord). We denote by M and N the points of intersection
of circle ω with sides BC and AD, respectively, and by K and L the points of intersection
of circle ω with the continuations of diagonals BD and AC, respectively. Since N̂I = ÎM
(because FI bisects angle NFM), and since L̂F = F̂K (because EF bisects angle LEK),
it follows that FI is a mid-perpendicular of segments MN and KL. Therefore quadrilateral
KLMN is an isosceles trapezoid, and therefore the point of intersection of diagonals KN and
LM and the continuations of legs KM and LN belongs to straight line FI (that is, to f).

On the other hand, based on the fundamental theorem of the Pascal point theory on
the sides of the quadrilateral (see [2]), straight lines KN and LM intersect on side AB, and
straight lines KM and LN intersect on side CD of quadrilateral ABCD. These points of
intersection are the Pascal points formed by circle ω.

We have thus obtained that P and Q, the points of intersection of straight line FI with
sides AB and CD, respectively, are also the points of intersection of straight lines KN and
LM , and KM and LN , respectively. Therefore, points P and Q are the Pascal points formed
using circle ω.

To summarize, for quadrilateral ABCD, in which the continuations of sides BC and AD
intersect at point F , the diagonals intersect at point E, and circle ω (passing through points
F , E, and I) forms Pascal points P and Q on sides AB and CD, there holds: The center O
of ω and points F , P , and Q belong to straight line FI.

Therefore, by definition, ABCD is a coordinated quadrilateral Q.E.D.
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