The Quadrilateral Coordinated With a Circle that Forms Pascal Points and its Properties

David Fraivert
Shaanan College, Haifa, Israel
davidfraivert@gmail.com

Abstract

In the present paper, the concept of "a quadrilateral coordinated with a circle that forms Pascal points" ("coordinated quadrilateral" for short) is defined as a quadrilateral for which there exists a circle that forms Pascal points on the sides of the quadrilateral, and for which it holds that the following four points are collinear: the point of intersection of the extensions of the two opposite sides of the quadrilateral, the center of the circle, and the two Pascal points formed by it.

We investigate and prove the properties of this quadrilateral. These properties may be divided into two sets: (i) properties of the straight lines, line segments, and angles associated with the coordinated quadrilateral and (ii) properties of the circles associated with the coordinated quadrilateral. In addition, we show a method for constructing the coordinated quadrilateral.

Key Words: coordinated quadrilateral, circle that forms Pascal points, collinearity of points, geometric construction
MSC 2020: 51M04 (primary), 51M05, 51M15, 51N20

1 Introduction

In order to define the quadrilateral coordinated with a circle that forms Pascal points, we shall recall the definition of Pascal points and the circle that forms Pascal points. These concepts are the basis for the theory of the convex quadrilateral and a circle that forms Pascal points on its sides (see [2-7]).

A circle that forms Pascal points (see [2])
For a convex quadrilateral $A B C D$, in which E is the point of intersection of the diagonals and F is the point of intersection of the extensions of sides $B C$ and $A D$, a circle that forms Pascal points is any circle that passes through points E and F and also through interior points of sides $B C$ and $A D$ (see Figure 1).

ISSN 1433-8157/ © 2023 Heldermann Verlag

Figure 1: P and Q are Pascal points formed by circle ω.

Figure 2: Line $P Q$ passes through the center O of circle ω which forms P and Q.

Figure 3: Points P, Q, O and F are collinear, therefore $A B C D$ is a coordinated quadrilateral.

Pascal points on the sides of a quadrilateral (see [2])
Let ω be a circle that forms Pascal points, and $M=\omega \cap B C, N=\omega \cap A D$. Also, let K and L be the points of intersection of ω with the extensions of diagonals $B D$ and $A C$, respectively (see Figure 1). We further denote $P=K N \cap L M$ and $Q=K M \cap L N$.

There holds: $P \in[A B], Q \in[C D]$.
Points P and Q are called Pascal points formed by circle ω on sides $A B$ and $C D$.
If for a given convex quadrilateral, there exists one circle that forms Pascal points on sides $A B$ and $C D$, then there is an infinite number of such circles (see [4, Proof of Theorem 1]). In this set of circles there will be one single circle ω where the Pascal points formed by it are collinear with the center of the circle.

For this circle, several additional properties hold (see [2, Theorems 6-9], [3], [5, Theorems $3,5,6]$). In particular, let us note the following two properties:
Property (i) Chords $K L$ and $M N$ of circle ω are parallel to each other (see [2, Theorem 6]); Property (ii) An inversion with respect to circle ω transforms points P and Q into one another (see [2, Theorems 7-8]). That is to say, points P, Q, F_{1}, and I constitute a harmonic quadruple where F_{1} and I are the points of intersection of circle ω with straight line $P Q$ (see Figure 2).
We shall now define the concept of "a quadrilateral coordinated with the circle that forms Pascal points" (for short, "coordinated quadrilateral").

Definition 1. Let $A B C D$ be a convex quadrilateral in which E is the point of intersection of its diagonals, and F is the point of intersection of the extensions of sides $A D$ and $B C$.

If for this quadrilateral there is a circle ω (whose center is O) which forms Pascal points P and Q, and for which the four points F, O, P, and Q are collinear, then quadrilateral $A B C D$ is coordinated with circle ω (see Figure 3).

Figure 4: $\measuredangle F E G=90^{\circ}$. Ray $F P$ bisects angle $A F B$, and ray $G P_{1}$ bisects angle $B G C$.

Figure 5: $K L N M$ is an isosceles trapezoid and therefore point F is the midpoint of arc $\widehat{K L}$. $K_{1} L_{1} N_{1} M_{1}$ is an isosceles trapezoid and therefore point U is the midpoint of the arc $\widehat{K_{1} L_{1}}$.

This article contains three sections:
In Section 2 we study the collinearity properties of the points, the properties of the angles, and the properties of the ratios of the lengths of segments of sides associated with a given coordinated quadrilateral.

In Section 3 we study the properties of the circles associated with a given coordinated quadrilateral.

In Section 4 we show a way to construct a coordinated quadrilateral and prove the correctness of the construction.

2 Properties of lines and angles associated with a given coordinated quadrilateral

Theorem 1. Let $A B C D$ be a quadrilateral (in which $E=[A C] \cap[B D], F=A D \cap B C$) that is coordinated with circle $\omega(E, F \in \omega)$ forming Pascal points P and Q on sides $A B$ and $C D$, respectively (where $M=\omega \cap[B C], N=\omega \cap[A D], K=\omega \cap B D, L=\omega \cap A C$). Also, let G be the point of intersection of the continuation of sides $A B$ and $C D$, and let ψ be the circle passing through points E and $G . P_{1}$ and Q_{1} are the Pascal points formed by ψ on sides $B C$ and $A D ; P_{1}$ and Q_{1} are collinear with the center O_{1} of ψ (where $M_{1}=\psi \cap[A B]$, $\left.N_{1}=\psi \cap[C D], K_{1}=\psi \cap B D, L_{1}=\psi \cap A C\right)$. Then
(i) Straight line $P_{1} Q_{1}$ passes through point G.
(ii) $\measuredangle F E G=90^{\circ}$ (see Figure 4);
(iii) Ray FP bisects angle $A F B$, and ray $G P_{1}$ bisects angle $B G C$.

Proof. (i)-(ii) According to Property (i) in the introduction, quadrilateral KLNM is a trapezoid inscribed in circle ω, therefore it is an isosceles trapezoid in which the diagonals intersect at point P and the extensions of sides $K M$ and $L N$ intersect at point Q (see Figure 5).

Figure 6: Straight lines $A B$ and $D C$ intersect at a point which belongs to line $R S$.

Therefore, straight line $P Q$ bisects bases $M N$ and $K L$ of the trapezoid and is perpendicular to them. From this, it follows that diameter $I F$ of circle ω is perpendicular to chord $K L$ and bisects arc $\widehat{K L}$ (at point F) and $\widehat{M N}$ (at point I). From the fact that $\widehat{F L}=\widehat{K F}$, it follows that $\measuredangle K E F=\measuredangle F E L$. In other words, $E F$ bisects angle $K E L$.

Similarly, since center O_{1} of circle ψ is collinear with Pascal points P_{1} and Q_{1}, it follows that $K_{1} L_{1} \| N_{1} M_{1}$ and $K_{1} M_{1}=L_{1} N_{1}$. In other words, quadrilateral $K_{1} L_{1} N_{1} M_{1}$ is an isosceles trapezoid.

We denote by J and U the points of intersection of straight line $P_{1} Q_{1}$ with circle ψ (see Figure 5), and we obtain $P_{1} Q_{1} \perp K_{1} L_{1}$. Therefore, point U is the midpoint of arc $\widehat{K_{1} L_{1}}$. Hence, $\measuredangle K_{1} E U=\measuredangle U E L_{1}$, and therefore $E U$ bisects $\measuredangle K_{1} E L_{1}$.

Since angles $K E L$ and $K_{1} E L_{1}$ are supplementary adjacent angles, their angle bisectors are perpendicular to each other. In other words, $\measuredangle F E U=90^{\circ}$. In addition, $\measuredangle F E I=90^{\circ}$ (an inscribed angle that subtends diameter $F I$ of circle ω). Therefore $\measuredangle I E U$ is a straight angle, and points I, E, and U lie on a single straight line.

We denote by R and S the points of intersection of straight-line $E U$ with sides $A D$ and $B C$, respectively. In triangle $A E D$ there holds (1) segment $E R$ is an angle bisector of interior angle $A E D$, and (2) segment $E F$ is an angle bisector of exterior angle $A E B$ (see Figure 6). Therefore, points F, A, R, and D form a harmonic quadruple. In other words, there holds: $(D, A ; R, F)=-1$.

Similarly, in triangle $B E C$ there holds (1) segment $E S$ is an angle bisector of interior angle $B E C$, and (2) segment $E F$ is an angle bisector of exterior angle $B E A$. Therefore, points F, B, S, and C form a harmonic quadruple. I.e., $(C, B ; S, F)=-1$.

We have thus obtained that for each of the two straight lines $F D$ and $F C$ there are four points - F, A, R, D and F, B, S, C (point F is common the two quadruples) which satisfy the following equality of cross-ratios: $(D, A ; R, F)=(C, B ; S, F)$.

Therefore straight lines $A B, R S$, and $D C$ intersect at a single point (see [10, Exercise 233]). Since it has been given that straight lines $A B$ and $D C$ intersect at point G, straight line $R S$ also passes through point G. From the definition of points R and S, it follows that straight line $R S$ passes through point U.

Let us assume that U and G are two different points of straight line $R S$. In this case, either G is an interior point of chord $E U$ (i.e., G lies within circle ψ) or G lies on the continuation of chord $E U$ (i.e., G lies outside circle ψ) (see Figure 6).

However, both cases lead to a contradiction to the data that point G belongs to circle ψ. Therefore, points U and G must coincide. It thus follows that the line $P_{1} Q_{1}$ passes through point G (we proved item (i) of Property 1), and it also follows that $\measuredangle F E G=90^{\circ}$ (we proved item (ii)).
(iii) In the proof of (a), we saw that point I is the midpoint of $\widehat{M N}$ of circle ω. Therefore $\measuredangle M F I=\measuredangle N F I$. In other words, $F I$ bisects angle $M F N$, which means that ray $F P$ being the bisector of angle $A F B$ (see Figure 5). Similarly, point J is the midpoint of $\widehat{M_{1} N_{1}}$ of circle ψ, and therefore $\measuredangle M_{1} G J=\measuredangle N_{1} G J$. In other words, ray $G P_{1}$ is the bisector of angle $B G C$ (see Figure 6).

Theorem 2. In addition to the data from Theorem 1, we mark eight points of intersection as follows (see Figure 7): $T=P Q \cap P_{1} Q_{1}, V=N M \cap N_{1} M_{1}, Z=\omega \cap F G, Z_{1}=\psi \cap F G$, $S=N M \cap P Q, W=N M \cap F E, W_{1}=N_{1} M_{1} \cap E G, S_{1}=N_{1} M_{1} \cap P_{1} Q_{1}$. There holds:
(i) Quadrilaterals $T S V S_{1}, S W E I$, and $E W_{1} S_{1} J$ are cyclic.
(ii) Straight line $M N$ passes through point G, and straight line $N_{1} M_{1}$ passes through point F.
(iii) Straight line IW passes through point Z, and straight line $J W_{1}$ passes through point Z_{1}.

Proof. (i) In proving Theorem 1 we have seen that $N M \perp P Q, N_{1} M_{1} \perp P_{1} Q_{1}$, and $\measuredangle F E G=$ 90°. Therefore in each of the quadrilaterals - $T S V S_{1}, S W E I$, and $E W_{1} S_{1} J$ - there are two opposite right angles. Therefore, these quadrilaterals are cyclic.
(ii) From the proof of Theorem 1, it follows that points I, E, and G are collinear. Therefore straight-line $I E$ passes through point G, in other words straight lines $A B$ and $I E$ intersect at point G. Let us prove that straight lines $N M$ and $I E$ also intersect at point G. To do this, let us denote the point of intersection of straight lines $N M$ and $I E$ by X and then prove that points X and G coincide.

Let us use the method of complex numbers in plane geometry. We choose a system of coordinates so that circle ω is the unit circle (center O of circle ω is located at the origin, and the radius is $O E=1$). In this system, the equation of the unit circle is $z \cdot \bar{z}=1$, where z and \bar{z} are the complex coordinate and the complex conjugate of the coordinate of an arbitrary point Z located on circle ω. We denote the complex coordinates of points E, F, I, K, L, M, and N as e, f, i, k, l, m, and n, respectively. These points are located on the unit circle, and therefore there holds:

$$
\begin{equation*}
\bar{e}=\frac{1}{e}, \quad \bar{f}=\frac{1}{f}, \quad \bar{l}=\frac{1}{l}, \quad \bar{k}=\frac{1}{k}, \quad \bar{l}=\frac{1}{l}, \quad \bar{m}=\frac{1}{m} \quad \text { and } \quad \bar{n}=\frac{1}{n} . \tag{1}
\end{equation*}
$$

$F I$ is a diameter of the circle ω, therefore holds that

$$
\begin{equation*}
i=-f \tag{2}
\end{equation*}
$$

In addition, since center O and Pascal points P and Q are collinear, it follows that segments $K L$ and $M N$ are parallel to each other and therefore (see [2, Theorem 6])

$$
\begin{equation*}
m n=k l . \tag{3}
\end{equation*}
$$

Figure 7: Straight lines $N M$ and $N_{1} M_{1}$ pass through points G and F respectively.

The equation of straight-line $P Q$ that passes through center O of unit circle ω is

$$
\begin{equation*}
p \bar{z}=\bar{p} z \tag{4}
\end{equation*}
$$

(where z is the complex coordinate of an arbitrary point Z that belongs to straight line $P Q$).
We use the following property (see [11, p. 181]): Let $T(t), Q(q), R(r)$, and $S(s)$ be four points on the unit circle, and let $U(u)$ be the point of intersection of straight lines $T Q$ and $R S$. Then for coordinate u and its conjugate, \bar{u}, there holds:

$$
\begin{equation*}
\bar{u}=\frac{t+q-r-s}{t q-r s} \quad \text { and } \quad u=\frac{q r s+t r s-t q s-t q r}{r e-t q} . \tag{5}
\end{equation*}
$$

In our case, since $P=K N \cap L M$, we can express the complex coordinate of point P and the conjugate of the coordinate by using the complex coordinates of points K, L, M, and N, as follows:

$$
\bar{p}=\frac{n+k-m-l}{n k-m l} \quad \text { and } \quad p=\frac{m n l+m k l-m n k-n k l}{m l-n k} .
$$

By Equation (3), the expression for p can be simplified to

$$
p=\frac{m n(m+l-n-k)}{m l-n k} .
$$

We substitute expressions for p and \bar{p} in Equation (4) and obtain:

$$
\frac{m n(m+l-n-k)}{m l-n k} \bar{z}=\frac{n+k-m-l}{n k-m l} z .
$$

Hence:

$$
\begin{equation*}
\bar{z}=\frac{1}{m n} z \tag{6}
\end{equation*}
$$

Point F lies on straight line $P Q$. Therefore, $\bar{f}=\frac{1}{m n} f \Longrightarrow m n=\frac{1}{\bar{f}} f$, and finally

$$
\begin{equation*}
m n=k l=f^{2} . \tag{7}
\end{equation*}
$$

Now, let us find the complex coordinate of point X and its conjugate. First we find the equations of straight lines $M N$ and $I E$, which are defined using pairs of points that belong to unit circle ω. For straight line $M N$, we obtain $z+m n \bar{z}=m+n \Longrightarrow \bar{z}=-\frac{1}{m n} z+\frac{m+n}{m n}$, or, according to Equation (7), we thus obtain

$$
\begin{equation*}
\bar{z}=-\frac{1}{f^{2}} z+\frac{m+n}{f^{2}} . \tag{8}
\end{equation*}
$$

For straight-line $I E$, we obtain $z+i e \bar{z}=i+e \quad \Longrightarrow \quad \bar{z}=-\frac{1}{i e} z+\frac{i+e}{i e}$, or, according to Equation (2),

$$
\begin{equation*}
\bar{z}=\frac{1}{f e} z+\frac{f-e}{f e} . \tag{9}
\end{equation*}
$$

We then solve the system of Equations (8) and (9): $\frac{1}{f e} z+\frac{f-e}{f e}=-\frac{1}{f^{2}} z+\frac{m+n}{f^{2}}$, and hence $\left(\frac{1}{f e}+\frac{1}{f^{2}}\right) z=\frac{m+n}{f^{2}}-\frac{f-e}{f e}$. Finally, for the coordinate of intersection point X, we obtain:

$$
z_{x}=x=\frac{e m+e n+e f-f^{2}}{f+e} .
$$

Therefore, the complex conjugate of x is:

$$
\bar{x}=\frac{\frac{1}{e m}+\frac{1}{e n}+\frac{1}{e f}-\frac{1}{f^{2}}}{\frac{1}{f}+\frac{1}{e}}=\frac{\frac{f^{2} n+f^{2} m+f m n-e m n}{e f^{2} m n}}{\frac{f+e}{f e}},
$$

and using Equation (7) we obtain

$$
\bar{x}=\frac{m+n+f-e}{f^{2}+f e} .
$$

We now prove that points A, B, and X are collinear. For that, it is sufficient to prove that the following equality holds for these points (see [11, p. 156]):

$$
\begin{equation*}
a(\bar{b}-\bar{x})+b(\bar{x}-\bar{a})+x(\bar{a}-\bar{b})=0 . \tag{10}
\end{equation*}
$$

We use Equations (5) and express the complex coordinates (and their complex conjugates) of points A and B through the coordinates of the points located on unit circle ω.
$\bar{a}=\frac{f+n-e-l}{f n-e l} \quad$ and $\quad a=\frac{e l n+e f l-f l n-e f n}{e l-f n}$ (because $A=F N \cap E L$, see Figure 6);

$$
\bar{b}=\frac{f+m-e-k}{f m-e k} \quad \text { and } \quad b=\frac{e k m+e f k-f k m-e f m}{e k-f m}(\text { because } B=F M \cap E K) .
$$

Consider the left-hand side of Equation (10). If we substitute the expressions for a, \bar{a}, b, \bar{b}, x, and \bar{x}, we obtain

$$
\begin{gathered}
\frac{e l n+e f l-f l n-e f n}{e l-f n} \times\left(\frac{f+m-e-k}{f m-e k}-\frac{m+n+f-e}{f^{2}+f e}\right)+ \\
\frac{e k m+e f k-f k m-e f m}{e k-f m} \times\left(\frac{m+n+f-e}{f^{2}+f e}-\frac{f+n-e-l}{f n-e l}\right)+ \\
\frac{e m+e n+e f-f^{2}}{f+e} \times\left(\frac{f+n-e-l}{f n-e l}-\frac{f+m-e-k}{f m-e k}\right) \stackrel{\text { denote }}{=} \\
A \\
\frac{B}{\left(f^{2}+f e\right)(e l-f n)(f m-e k)}+\frac{C}{\left(f^{2}+f e\right)(f n-e l)(e k-f m)}+\frac{C}{(f+e)(f n-e l)(f m-e k)} .
\end{gathered}
$$

The last three fractions on the left-hand side of Equation (10) are obtained after adding the fractions in the parentheses and denoting the numerators by A, B, and C.

The common denominator of these fractions is $f(f+e)(e l-f n)(f m-e k)$. Hence, the last expression can be brought in the following form:

$$
\frac{A+B-f C}{f(f+e)(e l-f n)(f m-e k)} .
$$

After opening the parenthesis, replacing products $m n$ and $k l$ with f^{2}, and collecting similar terms in each expression, we obtain:

$$
\begin{aligned}
& A=e^{2} f^{2} n^{2}-e^{3} f l n-e f^{4} n-e f^{3} l m+2 e^{2} f^{3} l+e^{2} f^{3} m+2 e^{2} f^{3} n-e^{3} f^{2} l-2 e f^{5}-e f^{2} l m^{2} \\
& -e^{3} f^{3}+2 e^{2} f^{2} l m-e f^{3} n^{2}+e^{2} f^{2} l n+f^{5} n+f^{4} l m-2 e f^{4} l-e^{2} f^{3} k-e^{2} f k n^{2}+e f^{3} k n \\
& +e f^{4} m+e^{3} f k n-e^{2} f^{4}, \\
& B=-2 e^{2} f^{3} k+e^{3} f k m+e f^{3} k n-e^{2} f^{2} m^{2}+e f^{4} m-2 e^{2} f^{2} k n+e^{3} f^{2} k+e f^{2} k n^{2}-2 e^{2} f^{3} m \\
& -e^{2} f^{3} n+e^{3} f^{3}+2 e f^{4} k-e^{2} f^{2} k m-f^{4} k n+e f^{3} m^{2}+2 e f^{5}-f^{5} m+e^{2} f^{4}-e f^{4} n+e^{2} f l m^{2} \\
& +e^{2} f^{3} l-e^{3} f l m-e f^{3} l m, \\
& -f C=-e f^{3} m^{2}+e^{2} f^{2} m^{2}+e f^{2} l m^{2}+e^{2} f^{2} k m-e^{3} f k m-2 e f^{4} k-2 e^{2} f^{2} l m-e^{2} f l m^{2} \\
& +e^{3} f l m+2 e f^{4} l+2 e^{2} f^{2} k n+e^{2} f k n^{2}-e^{3} f k n+e f^{3} n^{2}-e^{2} f^{2} n^{2}-e f^{2} k n^{2}-e^{2} f^{2} l n \\
& +e^{3} f l n-2 e f^{4} m+e^{2} f^{3} m+2 e f^{3} l m+3 e^{2} f^{3} k-e^{3} f^{2} k+2 e f^{4} n-e^{2} f^{3} n-2 e f^{3} k n \\
& -3 e^{2} f^{3} l+e^{3} f^{2} l+f^{5} m-f^{4} l m-f^{5} n+f^{4} k n .
\end{aligned}
$$

It can be ascertained that the sum of these three expressions is 0. Therefore, Equation (10) holds. Therefore straight line $A B$ passes through point X (where $X=N M \cap I E)$.

In summary, we obtained that straight line $I E$ intersects straight line $A B$ at points X and G. Therefore these points coincide. Likewise, it also follows that straight lines $A B, C D$, $I E, P_{1} Q_{1}$, and $M N$ intersect at point G.

Similarly, if we choose ψ as the unit circle, it can be proven that the straight line $N_{1} M_{1}$ passes through point F.
(iii) In triangle $I F G$, segments $F E$ and $G S$ are altitudes to sides $I G$ and $I F$, respectively. These segments intersect at point W (see Figure 8), therefore straight line $I W$ contains the

Figure 8: The intersection points of lines $I W$ and $J W_{1}$ with line $F G$ belong to circles ω and ψ respectively.
altitude to side $F G$ (we denote this altitude by $I Z^{\prime}$), i.e., $I Z^{\prime} \perp F G$. On the other hand, in circle ω, angle $F Z I$ is a right angle (inscribed angle subtending the diameter), therefore there holds also $I Z \perp F G$. Hence points Z and Z^{\prime} coincide and there holds $I W \perp F G$.

Similarly, in triangle $J F G$, segments $G E$ and $F S_{1}$ are altitudes to sides $J F$ and $J G$, respectively. These segments intersect at point W_{1}, and therefore straight line $J W_{1}$ contains the altitude to the third side (denoted by $I Z_{1}^{\prime}$). On the other hand, in circle ψ, angle $J Z_{1} G$ is a right angle. Therefore points Z_{1} and Z_{1}^{\prime} coincide, that is, $J W_{1} \perp F G$.

Other properties resulting from Theorems 1 and 2 (see Figure 7).
Property (1) The angle between angle bisectors $F P$ and $G P_{1}$ is equal to the angle between straight lines $M N$ and $M_{1} N_{1}$.
Property (2) The angle between straight lines $F P$ and $M_{1} N_{1}$ is equal to the angle between straight lines $G P_{1}$ and $M N$.
Proof of Property (1): Since quadrilateral $T S V S_{1}$ is cyclic, it follows that $\measuredangle P T P_{1}=$ $\measuredangle S V F$.

Proof of Property (2): We denote $\measuredangle T F S_{1}=\gamma$. In right-angled triangle $T F S_{1}$, there holds: $\measuredangle F T S_{1}=90^{\circ}-\gamma$. Therefore, in right-angled triangle $G S T$ there holds $\measuredangle S T G=90^{\circ}-\gamma$. It result $\measuredangle T G S=\gamma$, and $\measuredangle T F S_{1}=\measuredangle T G S$.

The following property describes the ratios of segments and the lengths of segments associated with Pascal points.

136 D. Fraivert: The Quadrilateral Coordinated With a Circle that Forms Pascal Points...
Theorem 3. In addition to the data of Theorem 2, we denote the following angles (see Figure 9): $\measuredangle A F P=\measuredangle P F B=\phi, \measuredangle S_{1} F P_{1}=\alpha, \measuredangle T F S_{1}=\gamma, \measuredangle D F Q=\beta, \measuredangle B G P_{1}=$ $\measuredangle P_{1} G C=\varphi, \measuredangle P G S=\delta, \measuredangle T G S=\gamma, \measuredangle M G C=\theta$. Therefore:
(a) (i) $\frac{A P}{P B}=\frac{\cos (\phi+\delta)}{\cos (\phi-\delta)}$,
(ii) $\frac{P_{1} T}{T Q_{1}}=\frac{\cos (\phi+\gamma)}{\cos (\phi-\gamma)}$,
(iii) $\frac{C Q}{Q D}=\frac{\cos (\phi+\theta)}{\cos (\phi-\theta)}$,
(iv) $\frac{C P_{1}}{P_{1} B}=\frac{\cos (\varphi+\alpha)}{\cos (\varphi-\alpha)}$,
(v) $\frac{P T}{T Q}=\frac{\cos (\varphi+\gamma)}{\cos (\varphi-\gamma)}$,
(vi) $\frac{A Q_{1}}{Q_{1} D}=\frac{\cos (\varphi+\beta)}{\cos (\varphi-\beta)}$.
(b)
b) (i) $A B=F P \sin \phi\left(\frac{1}{\cos (\phi-\delta)}+\frac{1}{\cos (\phi+\delta)}\right)$,
(ii) $P Q=F T \sin \phi\left(\frac{1}{\cos (\phi-\gamma)}+\frac{1}{\cos (\phi+\gamma)}\right)$,
(iii) $C D=F Q \sin \phi\left(\frac{1}{\cos (\phi-\theta)}+\frac{1}{\cos (\phi+\theta)}\right)$,
(iv) $B C=G P_{1} \sin \varphi\left(\frac{1}{\cos (\varphi-\alpha)}+\frac{1}{\cos (\varphi+\alpha)}\right)$,
(v) $P_{1} Q_{1}=G T \sin \varphi\left(\frac{1}{\cos (\varphi-\gamma)}+\frac{1}{\cos (\varphi+\gamma)}\right)$,
(vi) $A C=G Q_{1} \sin \varphi\left(\frac{1}{\cos (\varphi-\beta)}+\frac{1}{\cos (\varphi+\beta)}\right)$.
(c) Pascal-point pairs P, Q and P^{\prime}, Q^{\prime} divide the pairs of opposite sides in a quadrilateral by ratios satisfying the following equality:

$$
\frac{A P}{P B} \cdot \frac{C Q}{Q D}=\frac{C P_{1}}{P_{1} B} \cdot \frac{A Q_{1}}{Q_{1} D}
$$

Proof. (a) Proof of formula a(i). From the data of Theorem 3, there holds that for the angles of triangles $P G S$ and $F A P$:
$\measuredangle F P A=\measuredangle G P S=90^{\circ}-\delta$ and $\measuredangle F A P=180^{\circ}-\phi-\left(90^{\circ}-\delta\right)=90^{\circ}+\delta-\phi$.
Therefore, in $\triangle A F P$, there holds

$$
\begin{equation*}
\frac{A P}{\sin \phi}=\frac{F P}{\sin \left(90^{\circ}+\delta-\phi\right)} \quad \Longrightarrow \quad A P=\frac{F P \sin \phi}{\cos (\phi-\delta)} \tag{11}
\end{equation*}
$$

For the angles of triangle $F A B$, we obtain $\measuredangle F B A=180^{\circ}-2 \phi-\left(90^{\circ}+\delta-\phi\right)=90^{\circ}-(\phi+\delta)$. Hence, in $\triangle F P B$, there holds

$$
\begin{equation*}
\frac{P B}{\sin \phi}=\frac{F P}{\sin \left(90^{\circ}-(\delta+\phi)\right)} \Longrightarrow P B=\frac{F P \sin \phi}{\cos (\phi+\delta)} \tag{12}
\end{equation*}
$$

From Equations (11) and (12), it follows that

$$
\frac{A P}{P B}=\frac{\cos (\phi+\delta)}{\cos (\phi-\delta)}
$$

Proof of formula a(ii). For the angles of triangles $F T S_{1}$ and $F T Q_{1}$, we obtain:
$\measuredangle F T S_{1}=90^{\circ}-\gamma$, and therefore $\measuredangle F Q_{1} T=90^{\circ}-\gamma-\phi=90^{\circ}-(\gamma+\phi)$.
Hence, in $\triangle F T Q_{1}$ there holds

$$
\begin{equation*}
\frac{T Q_{1}}{\sin \phi}=\frac{F T}{\left.\sin \left(90^{\circ}+\gamma-\phi\right)\right)} \quad \Longrightarrow \quad T Q_{1}=\frac{F T \sin \phi}{\cos (\phi-\gamma))} \tag{13}
\end{equation*}
$$

Figure 9: $\measuredangle T F S_{1}=\measuredangle T G S=\gamma \quad \Longrightarrow \quad \beta-\alpha=\theta-\delta=\gamma$

For the angles of triangle $F Q_{1} P_{1}$, there holds:
$\measuredangle F P_{1} Q_{1}=180^{\circ}-2 \phi-\left(90^{\circ}+\gamma-\phi\right)=90^{\circ}-(\phi+\gamma)$. Therefore, in $\triangle F T P$, there holds

$$
\begin{equation*}
\frac{P_{1} T}{\sin \phi}=\frac{F T}{\sin \left(90^{\circ}-(\phi+\gamma)\right)} \Longrightarrow P_{1} T=\frac{F T \sin \phi}{\cos (\phi+\gamma)} \tag{14}
\end{equation*}
$$

From Equations (13) and (14) it follows that

$$
\frac{P_{1} T}{T Q_{1}}=\frac{\cos (\phi-\delta)}{\cos (\phi+\delta)}
$$

Proof of formula a (iii). For the angles of triangles $G S Q, F D Q$, and $F D C$, we obtain: $\measuredangle S Q G=90^{\circ}-\theta, \measuredangle F D Q=90^{\circ}-\theta-\phi$, and $\measuredangle F C D=180^{\circ}-2 \phi-\left(90^{\circ}-\theta-\phi\right)=90^{\circ}+\theta-\phi$. Hence, in $\triangle F D Q$:

$$
\begin{equation*}
\frac{Q D}{\sin \phi}=\frac{F Q}{\sin \left(90^{\circ}-(\theta+\phi)\right)} \Longrightarrow Q D=\frac{F Q \sin \phi}{\cos (\phi+\theta)} \tag{15}
\end{equation*}
$$

and in $\triangle F C Q$:

$$
\begin{equation*}
\frac{C Q}{\sin \phi}=\frac{F Q}{\sin \left(90^{\circ}+(\theta-\phi)\right)} \Longrightarrow C Q=\frac{F Q \sin \phi}{\cos (\phi-\theta)} \tag{16}
\end{equation*}
$$

From Equations (15) and (16) it follows that

$$
\frac{C Q}{Q D}=\frac{\cos (\phi+\theta)}{\cos (\phi-\theta)} .
$$

Since the proofs of formulas $a(i v)-a(v i)$ are similar to each other, we shall only give the proof for formula $a(v i)$.

Proof of formula a(vi). For the angles of triangles $G S_{1} M_{1}, F B M_{1}$, and $B C G$, we obtain $\measuredangle G M_{1} S_{1}=90^{\circ}-\varphi, \measuredangle G B C=\measuredangle F B M_{1}=\left(90^{\circ}-\varphi\right)-\alpha$, and $\measuredangle G C B=180^{\circ}-2 \varphi-\left(90^{\circ}-\right.$ $\varphi-\alpha)=90^{\circ}+\alpha-\varphi$. Therefore, in $\triangle G B P_{1}$ there holds that

$$
\begin{equation*}
\frac{P_{1} B}{\sin \varphi}=\frac{G P_{1}}{\sin \left(90^{\circ}-(\varphi+\alpha)\right)} \quad \Longrightarrow \quad P_{1} B=\frac{G P_{1} \sin \varphi}{\cos (\varphi+\alpha)} \tag{17}
\end{equation*}
$$

and in $\triangle G C P_{1}$,

$$
\begin{equation*}
\frac{C P_{1}}{\sin \varphi}=\frac{G P_{1}}{\sin \left(90^{\circ}+\alpha-\varphi\right)} \quad \Longrightarrow \quad C P_{1}=\frac{G P_{1} \sin \varphi}{\cos (\varphi-\alpha)} \tag{18}
\end{equation*}
$$

From Equations (17) and (18) it follows that

$$
\frac{C P_{1}}{P_{1} B}=\frac{\cos (\varphi+\theta)}{\cos (\varphi-\theta)}
$$

(b) The formulas of this section are obtained by summing the appropriate pairs of formulas from Section (a): formula $b(i)$ is obtained by adding formulas (11) and (12), formula $b(i i)$ is obtained by adding formulas (13) and (14), and so forth.
(c) Let us consider the products of the ratios by which points P and Q divide sides $A B$ and $C D$. From formulas $a(i)$ and $a(i i i)$ we obtain:

$$
\begin{aligned}
\frac{A P}{P B} \cdot \frac{C Q}{Q D} & =\frac{\cos (\phi+\delta)}{\cos (\phi-\delta)} \cdot \frac{\cos (\phi+\theta)}{\cos (\phi-\theta)}=\frac{\frac{1}{2}[\cos (\delta-\theta)+\cos (2 \phi+\delta+\theta)]}{\frac{1}{2}[\cos (\theta-\delta)+\cos (2 \phi-\delta-\theta)]} \underbrace{=}_{\delta+\theta=2 \varphi} \\
& =\frac{[\cos (\theta-\delta)+\cos (2 \phi+2 \varphi)]}{[\cos (\theta-\delta)+\cos (2 \phi-2 \varphi)]}
\end{aligned}
$$

Similarly, from formulas $a(i v)$ and $a(v i)$ for the product of the ratios by which points P_{1} and Q_{1} divide sites $B C$ and $A D$, there holds:

$$
\begin{aligned}
\frac{C P_{1}}{P_{1} B} \cdot \frac{A Q_{1}}{Q_{1} D} & =\frac{\cos (\varphi+\alpha)}{\cos (\varphi-\alpha)} \cdot \frac{\cos (\varphi+\beta)}{\cos (\varphi-\beta)}=\frac{\frac{1}{2}[\cos (\alpha-\beta)+\cos (2 \varphi+\alpha+\beta)]}{\frac{1}{2}[\cos (\beta-\alpha)+\cos (2 \varphi-\alpha-\beta)]} \underbrace{=}_{\alpha+\beta=2 \phi} \\
& =\frac{[\cos (\beta-\alpha)+\cos (2 \varphi+2 \phi)]}{[\cos (\beta-\alpha)+\cos (2 \varphi-2 \phi)]} .
\end{aligned}
$$

Let us prove that the following equality holds: $\beta-\alpha=\theta-\delta$. For angle β there holds: $\beta=\phi+\gamma=\alpha+\gamma+\gamma=\alpha+2 \gamma$ (see Figure 9), therefore $\beta-\alpha=2 \gamma$.

For angle θ there holds: $\theta=\varphi+\gamma=\delta+\gamma+\gamma=\delta+2 \gamma$, therefore $\theta-\delta=2 \gamma$. Therefore the above equality holds, and therefore

$$
\frac{[\cos (\theta-\delta)+\cos (2 \phi+2 \varphi)]}{[\cos (\theta-\delta)+\cos (2 \phi-2 \varphi)]}=\frac{[\cos (\beta-\alpha)+\cos (2 \varphi+2 \phi)]}{[\cos (\beta-\alpha)+\cos (2 \varphi-2 \phi)]}
$$

it thus follows that

$$
\frac{A P}{P B} \cdot \frac{C Q}{Q D}=\frac{C P_{1}}{P_{1} B} \cdot \frac{A Q_{1}}{Q_{1} D}
$$

Figure 10: The circles Σ_{1}, Σ_{2} and Σ_{3} are tangent to each other in pairs. The circle Σ_{4} is perpendicular to the circles Σ_{1}, Σ_{2}, and Σ_{3}. The circle Σ_{5} is perpendicular to the circles Σ_{2}, Σ_{3}.

3 The properties of circles associated with a coordinated quadrilateral

Theorem 4. In addition to the data of Theorem 2, let (see Figure 10):
Σ_{1} be a circle inscribing quadrilateral TSV S_{1};
Σ_{2} be a circle inscribing quadrilateral SWEI;
Σ_{3} be a circle inscribing quadrilateral $E W_{1} S_{1} J$;
Σ_{4} be a circle whose center X is the midpoint of segment $F G$ and whose radius is segment $X E$;
Σ_{5} be a circle whose center Y is the midpoint of segment $X E$ and whose radius is segment YE. Then:
(a) Circles Σ_{1}, Σ_{2}, and Σ_{3} are tangent to each other in pairs.
(b) Circle Σ_{4} is perpendicular to circles Σ_{1}, Σ_{2}, and Σ_{3}.
(c) Circle Σ_{5} is perpendicular to circles Σ_{2} and Σ_{3}.
(d) Circles Σ_{4} and Σ_{5} are tangent to each other.

Figure 11: The tangents to circle Σ at points K and M intersect at the midpoint of segment $P Q$.

Figure 12: Triangles $X_{1} K Q$ and $X_{1} K P$ are isosceles, therefore point X_{1} is midpoint of segment $P Q$.

Proof. First we prove the following lemma (see Figure 11):
Lemma. Let KLMN be a quadrilateral in which $\measuredangle K=\measuredangle M=90^{\circ} ; K L M N$ inscribed in circle $\Sigma ; P$ is the point of intersection of the continuations of sides $K N$ and $L M, Q$ is the point of intersection of the continuations of sides $K L$ and $M N ; X$ is the midpoint of segment $P Q$;

Then: straight lines $X K$ and $X M$ are tangents to circle Σ at points K and M, respectively.

Proof of the lemma. Let us prove that the tangent k to circle Σ at point K passes through point X.

We denote by X_{1} the point of intersection of k with segment $P Q$ (see Figure 12). In triangle $N P Q$, segments $Q K$ and $P M$ are altitudes to sides $N P$ and $N Q$, respectively, which intersect at point L. Therefore, straight line $N L$ contains the third altitude, $N H$, to side $P Q$ of the triangle. We denote $\measuredangle H N P=\alpha$. Hence we obtain:
(i) $\measuredangle L K X_{1}=\measuredangle Q K X_{1}=\measuredangle L N K=\alpha$ (The angle formed by a tangent and a chord ending at the point of contact is equal to one half the arc it intercepts on the circle);
(ii) $\measuredangle N P H=90^{\circ}-\alpha$;
(iii) $\measuredangle K Q P=90^{\circ}-\measuredangle K P Q=90^{\circ}-\left(90^{\circ}-\alpha\right)=\alpha$.

Therefore $\measuredangle Q K X_{1}=\measuredangle K Q X_{1}$. In other words $\triangle Q K X_{1}$ is an isosceles triangle in which

$$
\begin{equation*}
K X_{1}=Q X_{1} . \tag{19}
\end{equation*}
$$

Angles $P K X_{1}, X_{1} K Q$, and $Q K N$ are complementary to 180°.
Therefore, $\measuredangle P K X_{1}=180^{\circ}-\alpha-90^{\circ}=90^{\circ}-\alpha$. It follows that $\triangle P K X_{1}$ is an isosceles triangle in which

$$
\begin{equation*}
K X_{1}=P X_{1} . \tag{20}
\end{equation*}
$$

From Equations (19) and (20), we obtain that $P X_{1}=Q X_{1}$. In other words, X_{1} is the midpoint of segment $P Q$ and therefore points X and X_{1} coincide.

In a similar manner we prove that the tangent at point M to the circle inscribing quadrilateral $K L M N$ also passes through the midpoint of segment $P Q$ (i.e., through point X).

We return to the proof of the theorem.
(a) For quadrilateral $T S V S_{1}$ (see Figure 10), the data of the lemma holds, namely: angles $T S V$ and $T S_{1} V$ are right angles, the continuations of sides $T S$ and $S_{1} V$ intersect at point F, the continuations of sides $S V$ and $T S_{1}$ intersect at point G, and X is the midpoint of segment $F G$. Therefore, straight lines $X S$ and $X S_{1}$ are tangent to circle Σ_{1} at points S and S_{1}, respectively.

Similarly, in quadrilateral $S W E I$ there holds the following: angles $I S W$ and $I E W$ are right angles, the continuations of sides $I S$ and $E W$ intersect at point F, the continuations of sides $S W$ and $I E$ intersect at point G, and X is the midpoint of segment $F G$. Therefore straight lines $X S$ and $X E$ are tangents to circle Σ_{2} at points S and E, respectively.

For quadrilateral $E W_{1} S_{1} J$ there holds: angles $J E W_{1}$ and $J S_{1} W_{1}$ are right angles, the continuations of sides $J E$ and $S_{1} W_{1}$ intersect at point F, the continuations of sides $E W_{1}$ and $J S_{1}$ intersect at point G, and X is the midpoint of segment $F G$. Therefore straight lines $X S_{1}$ and $X E$ are tangent to circle Σ_{3} at points S_{1} and E, respectively.

We have thus obtained that (i) straight line $X S$ is a common tangent to circles Σ_{1} and Σ_{2} at point S, and therefore these circles are internally tangent to each other (circle Σ_{2} lies inside circle Σ_{1}); (ii) straight line $X S_{1}$ is a common tangent to circles Σ_{1} and Σ_{3} at point S_{1}, and therefore these circles are internally tangent to each other (circle Σ_{3} lies inside circle Σ_{1}); and (iii) straight line $X E$ is a common tangent to circles Σ_{2} and Σ_{3} at point E, and therefore these circles are externally tangent to each other.
(b) From the proofs of the lemma and of Section (a), it follows that

$$
X E=X S=X S_{1}=X F=X G
$$

Therefore points E, S, S_{1}, F, and G lie on circle Σ_{4}. Since the tangents to circles Σ_{1}, Σ_{2}, and Σ_{3} pass through the center X of the circle Σ_{4}, it follows that Σ_{4} is perpendicular to each of the circles Σ_{1}, Σ_{2}, and Σ_{3} (see [1, Theorem 5.51]).
(c) The center Y of the circle Σ_{5} lies on the common tangent $X E$ of the circles Σ_{2} and Σ_{3}. Therefore circle Σ_{5} is perpendicular to circles Σ_{2} and Σ_{3}.
(d) Segment $E X$ is both a diameter of circle Σ_{4} and a radius of circle Σ_{5}. Therefore, the perpendicular to $E X$ that passes through the point E (which is common to Σ_{4} and Σ_{5}) is a common tangent of these circles. Therefore circles Σ_{4} and Σ_{5} are tangent to each other.

Theorem 5. In addition to the data of Theorem 2, let (see Figure 13): Σ_{6} be a circle that passes through points T, O, and $O_{1} ; \Sigma_{7}$ be a circle that passes through points F, P_{1}, and Q_{1}; Σ_{8} be a circle that passes through points G, P, and Q.

Then:
(a) Circles $\omega, \psi, \Sigma_{6}, \Sigma_{7}$, and Σ_{8} intersect at a single point (point H in Figure 13).
(b) The circles ψ and Σ_{7}, ω and Σ_{8} are perpendicular to each other in pairs.
(c) The angle between circles ω and Σ_{7} is equal to the angle between circles ψ and Σ_{8}.
(d) The angle between circles ω and ψ is equal to angle FTG (the angle between straight lines $P Q$ and $P_{1} Q_{1}$).

Proof. (a) Let H denote the point of intersection of circles ω and ψ. Let us prove that quadrilateral TOHO_{1} is cyclic. In circle ω there holds $O I=O H$. Therefore triangle $O I H$ is an isosceles triangle. We denote $\measuredangle O I H=\measuredangle O H I=\alpha$, and hence $\measuredangle H O F=2 \alpha$ (see Figure 14).

Quadrilateral $E H G J$ is inscribed in circle ψ, therefore $\measuredangle H G J=\measuredangle H E F=: \beta$.

Figure 13: Circles $\psi, \omega, \Sigma_{6}, \Sigma_{7}$ and Σ_{8} intersect at a single point (at point H).

Figure 14: $\omega \cap \psi=H ; \mathrm{TOHO}_{1}$ is cyclic quadrilateral, therefore also circle Σ_{6} passes through point H.

In addition, there holds that $O_{1} G=O_{1} H$, meaning that triangle $O_{1} G H$ is an isosceles triangle and therefore $\measuredangle H O_{1} J=2 \beta$.

Figure 15: Points G, H_{1}, and F_{1} are collinear. Points H_{1}, J, and U are collinear.

In circle ω, angles $F I H$ and $F E H$ are inscribed angles subtending the same arc $F H$. Therefore they are equal, i.e., $\alpha=\beta \Rightarrow 2 \alpha=2 \beta$. Result from here $\measuredangle H O F=\measuredangle H O_{1} T$. It thus follows that quadrilateral $T O H O_{1}$ is cyclic. Therefore, circle Σ_{6}, which passes through the three vertices T, O, and O_{1} of the quadrilateral, must also pass through the fourth vertex, H.

We shall now prove that circles ω, ψ, and Σ_{7} intersect at point H.
Let H_{1} denote the point of intersection (in addition to F) of circles ω and Σ_{7}, and let U denote the point of intersection (in addition to F) of straight line $F I$ and circle Σ_{7}. We perform the following auxiliary construction: we draw a tangent to circle ω at point F, and denote by F_{1} the point of its intersection with circle Σ_{7} (see Figure 15).

In the geometric state obtained in Figure 15, the following properties hold (see [8, Property 4]):
(i) Points G, H_{1}, and F_{1} are collinear.
(ii) Points H_{1}, J, and U are collinear.

Segment $F_{1} U$ is a diameter in circle Σ_{7} (because $\measuredangle F_{1} F U=90^{\circ}$). Therefore, angle $F_{1} H_{1} U$ subtending the diameter is equal to 90°. Therefore we obtain $\measuredangle F_{1} H_{1} J=90^{\circ}$.

For $\measuredangle J H_{1} G$, which is supplementary to angle $\measuredangle F_{1} H_{1} J$, there holds that $\measuredangle J H_{1} G=90^{\circ}$.
This means that point H_{1} lies on the circle whose diameter is segment $J G$, i.e., $H_{1} \in \psi$. From the fact that circles ω, ψ, and Σ_{7} intersect at point H_{1}, and circles ω and ψ intersect at point H (in addition to E), it follows that circles ω, ψ, and Σ_{7} intersect at point H.

We can similarly prove that circles ω, ψ, and Σ_{8} intersect at point H.
(b) Segments $J G$ and $F_{1} U$ are diameters of circles ψ and Σ_{7}, respectively (see Figure 16). We shall prove that radii $O_{1} H$ and $O_{2} H$ of circles ψ and Σ_{7}, which have the common endpoint

Figure 16: $\measuredangle O_{2} H O_{1}$ is an angle between radii $O_{2} H$ and $O_{1} H$ of circles Σ_{7} and $\psi . \measuredangle O_{2} H O_{1}=\left(90^{\circ}-\alpha\right)+\alpha=90^{\circ}$. Circles Σ_{7} and ψ are perpendicular.

Figure 17: Straight lines $\mathrm{O}_{2} \mathrm{H}$, $O_{3} H, O_{1} H$, and $O H$ are tangent to circles ψ, ω, Σ_{7} and Σ_{8}. $\measuredangle O H O_{2}=\measuredangle O_{1} H O_{3}$.
H, are perpendicular to each other.
In isosceles triangle $O_{1} J H$, there holds: $\measuredangle O_{1} J H=\measuredangle O_{1} H J:=\alpha$.
Then $\measuredangle Q_{1} J U=\alpha$ (because points J, H, and U are collinear).
In circle Σ_{7}, point U is the midpoint of arc $P_{1} Q_{1}$. Therefore diameter $F_{1} U$ is perpendicular to chord $P_{1} Q_{1}$. It thus follows that in right-angled triangle $Y J U, \measuredangle J U Y=90^{\circ}-\alpha$. Therefore, in isosceles triangle $O_{2} U H$, there holds that $\measuredangle O_{2} H U=\measuredangle O_{2} U H=90^{\circ}-\alpha$.

Finally, we obtain $\measuredangle O_{2} H O_{1}=\measuredangle O_{2} H U+\measuredangle U H O_{1}=90^{\circ}-\alpha+\alpha=90^{\circ}$. In other words, radii $O_{1} H$ and $O_{2} H$ of circles ψ and Σ_{7} are perpendicular to each other and therefore circles ψ and Σ_{7} are perpendicular to each other (see [9]).

We can similarly prove that circles ω and Σ_{8} are perpendicular to each other.
(c) From Section (b) above, straight lines $O_{2} H, O_{3} H, O_{1} H$, and $O H$ are tangent to circles ψ, ω, Σ_{7} and Σ_{8}, respectively (see Figure 17). Therefore, angles $\measuredangle O_{1} H O_{3}$ and $\measuredangle O_{1} H O_{2}$ are the angles between circles ω and Σ_{7} and between circles ψ and Σ_{8}, respectively.

For these angles there holds: $\measuredangle O_{1} H O_{3}=\measuredangle O_{1} H O_{2}-\measuredangle O_{2} H O_{3}=90^{\circ}-\measuredangle O_{2} H O_{3}$, $\measuredangle O H O_{2}=\measuredangle O H O_{3}-\measuredangle O_{2} H O_{3}=90^{\circ}-\measuredangle O_{2} H O_{3}$.

Therefore, $\measuredangle O H O_{2}=\measuredangle O_{1} \mathrm{HO}_{3}$. In other words, the angle between circles ω and Σ_{7} is equal to the angle between circles ψ and Σ_{8}.
(d) In the geometric state in (see Figure 18) the following are shown:
(i) the three circles, ψ, ω, and Σ_{6};
(ii) $O E$ and $O H$ are radii of circle ω and $O_{1} E$ and $O_{1} H$ are radii of circle ψ;
(iii) straight lines $E X$ and $E Y$ are tangents to circles ω and ψ at E (the common point of these circles).
In cyclic quadrilateral $T O H O_{1}$, there holds that $\measuredangle O T O_{1}+\measuredangle O H O_{1}=180^{\circ}$. Based on the

Figure 18: $\measuredangle O H O_{1}=\measuredangle O E O_{1}$ and $\measuredangle O T O_{1}+\measuredangle O E O_{1}=180^{\circ}$. $\gamma+\alpha+\beta+\alpha=180^{\circ}$ and $\alpha+\beta=90^{\circ}$. Therefore $\beta=\gamma$.
equalities $O E=O H$ and $O_{1} E=O_{1} H$, it follows that quadrilateral $E O H O_{1}$ is a kite in which $\measuredangle O H O_{1}=\measuredangle O E O_{1}$. Therefore there holds that

$$
\begin{equation*}
\measuredangle O T O_{1}+\measuredangle O E O_{1}=180^{\circ} . \tag{21}
\end{equation*}
$$

$\measuredangle O E X$ and $\measuredangle O_{1} E Y$ are right angles (an angle between a tangent and a radius to the point of tangency). It thus follows that $\measuredangle O E Y=\measuredangle O_{1} E X=: \alpha$.

We denote $\measuredangle Y E X=\beta$ and $\measuredangle O T O_{1}=\gamma$. According to this notation, from Equation (21) it follows that

$$
\begin{equation*}
\gamma+2 \alpha+\beta=180^{\circ} \tag{22}
\end{equation*}
$$

On the other hand, from the equality $\measuredangle O E X=\measuredangle O E Y+\measuredangle Y E X=\alpha+\beta=90^{\circ}$, it follows that

$$
\begin{equation*}
2 \alpha+2 \beta=180^{\circ} \tag{23}
\end{equation*}
$$

Comparing equalities 22 and 23, it follows that $\beta=\gamma$, where β is the angle between the tangents to circles ω and ψ at their point of intersection, E, and that γ is the angle between lines $P Q$ and $P_{1} Q_{1}$.

Figure 19: Steps 1-5 of construction.

Figure 20: Steps 6-8 of construction.

4 Method for Constructing the Coordinated Quadrilateral

Stages of construction

1. Let σ be an arbitrary circle in which $F H$ is a diameter and $F E$ is a chord.
2. Draw straight lines $F H, F E$, and $H E$ (see Figure 19).
3. Through point E draw straight lines $E X$ and $E Y$, so that the following condition holds $\measuredangle F E X=\measuredangle F E Y$.
4. Let G be a point on straight line $H E$ that lies outside circle σ, and let Z be a point on ray $F H$ that lies outside circle σ.
5. Draw a point, Z^{\prime}, that corresponds to point Z by inversion relative to circle σ.
6. Draw straight lines $G Z$ and $G Z^{\prime}$ through point G (see Figure 20).
7. Label the points of intersection of straight line $G Z$ with straight lines $E X$ and $E Y$ with C and D, respectively. Similarly, label the points of intersection of straight line $G Z^{\prime}$ with straight lines $E X$ and $E Y$ with A and B, respectively.
8. Connect the following pairs of points using segments: A and B, B and C, C and D, D and A.
Quadrilateral $A B C D$ is a coordinated quadrilateral.

Proof that the quadrilateral constructed in accordance with Steps $1-8$ above is a coordinated quadrilateral First, we must prove that the continuations of the sides $A D$ and $B C$ intersect at point F.

Step 3 of the construction assures that segment $E F$ bisects angle $A E B$ in $\triangle A E B$. In addition, given that $\measuredangle F E H=90^{\circ}$ (an inscribed angle subtending the diameter), it follows that $E V \perp E G$ (see Figure 21). Therefore, segment $E G$ bisects angle $B E C$, which is exterior to $\triangle A E B$. Therefore, points A, V, B, and G constitute a harmonic quadruple.

In a similar manner, we prove that points D, W, C, and G also constitute a harmonic quadruple.

We obtained, that on each of the straight lines $G A$ and $G D$ (which intersect at point $G)$ there are three additional points: A, V, B and D, W, C respectively, and the following

Figure 21: By the assumption, straight lines $A D$ and $B C$ intersect at the point belonging to the straight line $F E$ (at point U, where $U \neq F$).

Figure 22: Te bisector f of angle $A F B$ intersects straight lines $H E, A B$, and $C D$ at I, P, and Q respectively. P and Q are Pascal points formed by the circle ω whose diameter is segment $F I$.
equality holds:

$$
(A, B ; V, G)=(D, C ; W, G)(=-1)
$$

Therefore straight lines $D A, W V$, and $C B$ intersect at a single point (see [10, Exercise 233]), which is equivalent to the fact that straight lines $A D$ and $B C$ intersect at the point belonging to the straight line $F E$.

We denote the point of intersection of $A D$ and $B C$ by U. Let us assume that U is not the same as F. Without restricting the generality, let us assume that U lies in the continuation of chord $F E$ (see Figure 21).

From Step 5 above, points Z and Z^{\prime} belong to the straight line passing through diameter $F H$ of circle σ, and they transform one into the other by inversion relative to this circle. Therefore, points Z, H, Z^{\prime}, and F constitute a harmonic quadruple. Therefore the four straight lines $G Z, G H, G Z^{\prime}$, and $G F$ constitute a harmonic quadruple of straight lines passing through point G (see [10, Exercise 200]).

We denote by T and S the points of intersection of straight line $B C$ with straight lines $G H$ and $G F$. From the assumption, it is clear that $S \neq U$ (see Figure 21). Since points C, T, B, and S are the four points of intersection of straight line $B C$ with the above harmonic quadruple of straight lines passing through point G, these points constitute a harmonic quadruple.

On the other hand, in triangle $C E B$, segment $E T$ bisects angle $C E B$ and segment $E U$ bisects angle $B E A$, which is exterior to this triangle. Therefore points C, T, B, and U also constitute a harmonic quadruple.

To summarize: on straight line $B C$ there are two harmonic quadruples S, B, T, C and U, B, T, C, which coincide at three points, and therefore must also coincide at the fourth point, in other words $S=U$. This contradicts with $S \neq U$, thereby showing that assumption $F \neq U$ is false. From this, it follows that straight lines $A D$ and $B C$ intersect at point F.

Let f denote the bisector of angle $A F B$ (see Figure 22).
Now we prove that f passes through Pascal points P and Q (formed using the circle ω on sides $A B$ and $C D$) and through O, the center of circle ω.

Let I, P, and Q denote the points of intersection of f with straight lines $H E, A B$, and $C D$, respectively (see Figure 22). Consider circle ω passing through points F, I, and E (in this circle $F I$ is a diameter and $F E$ is a chord). We denote by M and N the points of intersection of circle ω with sides $B C$ and $A D$, respectively, and by K and L the points of intersection of circle ω with the continuations of diagonals $B D$ and $A C$, respectively. Since $\widehat{N I}=\widehat{I M}$ (because $F I$ bisects angle $N F M$), and since $\widehat{L F}=\widehat{F K}$ (because $E F$ bisects angle $L E K$), it follows that $F I$ is a mid-perpendicular of segments $M N$ and $K L$. Therefore quadrilateral $K L M N$ is an isosceles trapezoid, and therefore the point of intersection of diagonals $K N$ and $L M$ and the continuations of legs $K M$ and $L N$ belongs to straight line $F I$ (that is, to f).

On the other hand, based on the fundamental theorem of the Pascal point theory on the sides of the quadrilateral (see [2]), straight lines $K N$ and $L M$ intersect on side $A B$, and straight lines $K M$ and $L N$ intersect on side $C D$ of quadrilateral $A B C D$. These points of intersection are the Pascal points formed by circle ω.

We have thus obtained that P and Q, the points of intersection of straight line $F I$ with sides $A B$ and $C D$, respectively, are also the points of intersection of straight lines $K N$ and $L M$, and $K M$ and $L N$, respectively. Therefore, points P and Q are the Pascal points formed using circle ω.

To summarize, for quadrilateral $A B C D$, in which the continuations of sides $B C$ and $A D$ intersect at point F, the diagonals intersect at point E, and circle ω (passing through points F, E, and I) forms Pascal points P and Q on sides $A B$ and $C D$, there holds: The center O of ω and points F, P, and Q belong to straight line $F I$.

Therefore, by definition, $A B C D$ is a coordinated quadrilateral Q.E.D.

References

[1] H. S. M. Coxeter and S. L. Greitzer: Geometry revisited, vol. 19. Mathematical Association of America, 1967.
[2] D. Fraivert: The theory of a convex quadrilateral and a circle that forms "Pascal points"-the properties of "Pascal points" on the sides of a convex quadrilateral. Journal of Mathematical Sciences: Advances and Applications 40, 1-34, 2016. http://dx.doi .org/10.18642/jmsaa_7100121666.
[3] D. Fraivert: The theory of an inscribable quadrilateral and a circle that forms Pascal points. Journal of Mathematical Sciences: Advances and Applications 42, 81-107, 2016. http://dx.doi.org/10.18642/jmsaa_7100121742.
[4] D. Fraivert: Properties of a Pascal points circle in a quadrilateral with perpendicular diagonals. Forum Geometricorum 17, 509-526, 2017. https://forumgeom.fau.edu/FG 2017volume17/FG201748.pdf.
[5] D. Fraivert: Properties of the Tangents to a Circle that Forms Pascal Points on the Sides of a Convex quadrilateral. Forum Geometricorum 17, 223-243, 2017. https: //forumgeom.fau.edu/FG2017volume17/FG201726.pdf.
[6] D. Fraivert: Pascal-points quadrilaterals inscribed in a cyclic quadrilateral. The Mathematical Gazette 103(557), 233-239, 2019. doi: 10.1017/mag.2019.54.
[7] D. Fraivert: A Set of Rectangles Inscribed in an Orthodiagonal Quadrilateral and Defined by Pascal-Points Circles. Journal for Geometry and Graphics 23, 5-27, 2019. https://www.heldermann.de/JGG/JGG23/JGG231/jgg23002.htm.
[8] D. Fraivert: Properties of Harmonic Quadruples That Transform One Into the Other by Perspective Projection Whose Center Lies at a Point on a Circle. Global Journal of Advanced Research on Classical and Modern Geometries 12(2), 304-315, 2023.
[9] D. Fraivert and M. Stupel: Necessary and sufficient conditions for orthogonal circles. International Journal of Mathematical Education in Science and Technology 53(10), 2837-2848, 2022. doi: 10.1080/0020739X.2021.1945153.
[10] J. Hadamard: Lessons in geometry: plane geometry, vol. 1. American Mathematical Society Providence, 2008.
[11] Z. Skopets: Geometric miniatures. Moscow, Russia: Prosveschenie, 1990.
Received August 16, 2023; final form September 10, 2023.

