A Sequence of Malfatti Circles

Ren Guo
Oregon State University, USA
ren.guo@oregonstate.edu

Abstract

Given a Euclidean triangle, a smaller triangle is formed by joining the centers of the three Malfatti circles of the given triangle. A sequence of triangles is obtained by continuing this process. The limit of the sequence of triangles is a point. The limits of the inner angles of these triangles are $\pi / 3$.

Key Words: Malfatti circles, limit
MSC 2020: 51M04

1 Introduction

Given a Euclidean triangle T_{0}, it generates another triangle T_{1} via some geometric construction. The triangle T_{1} generates a triangle T_{2} via the same construction. Continuing this process, one obtains a sequence of triangles $\left\{T_{n}\right\}_{n=0}^{\infty}$. Studying the limit of the sequence usually is an interesting question [2-6].

In this paper, a sequence of triangles is generated involving Malfatti circles.
Italian mathematician Gian Francesco Malfatti (1731-1807) posted the following problem in 1803 [1, Page 147].

To draw within a given triangle three circles each of which is tangent to the other two and to two sides of the triangle.

These three circles are called the Malfatti circles of the given triangle.
Let $A_{0} B_{0} C_{0}$ denote a Euclidean triangle. It has three Malfatti circles with the centers A_{1}, B_{1}, and C_{1} respectively. The circle $\odot A_{1}$ is tangent to the sides $A_{0} B_{0}$ and $A_{0} C_{0}$; the circle $\odot B_{1}$ is tangent to the sides $A_{0} B_{0}$ and $B_{0} C_{0}$; and the circle $\odot C_{1}$ is tangent to the sides $A_{0} C_{0}$ and $B_{0} C_{0}$.

The triangle $A_{1} B_{1} C_{1}$ has three Malfatti circles with the centers A_{2}, B_{2}, and C_{2} respectively. In general, for $n \geq 0$, the triangle $A_{n} B_{n} C_{n}$ has three Malfatti circles with the centers A_{n+1}, B_{n+1}, and C_{n+1} respectively. The process produces a sequence of triangles $\left\{A_{n} B_{n} C_{n}\right\}$.

Theorem 1. The limit of the sequence of triangles $\left\{A_{n} B_{n} C_{n}\right\}$ is a point.
Theorem 2. The limits of the inner angles of the sequence of triangles $\left\{A_{n} B_{n} C_{n}\right\}$ are $\pi / 3$.

To verify the statements about the sequence of triangles, we will prove the following equivalent ones about the sequence of radii of Malfatti circles. For $n \geq 1$, suppose the radii of the circles $\odot A_{n}, \odot B_{n}$ and $\odot C_{n}$ are p_{n}, q_{n} and r_{n} respectively. Then the sequence $\left\{\left(p_{n}, q_{n}, r_{n}\right)\right\}$ has the following properties.

Theorem 3.

$$
\lim _{n \rightarrow \infty}\left(p_{n}, q_{n}, r_{n}\right)=(0,0,0) .
$$

Theorem 4.

$$
\lim _{n \rightarrow \infty} p_{n}: q_{n}: r_{n}=1: 1: 1 .
$$

2 Properties of Malfatti Circles

To prove the theorems, we need to establish some basic properties of Malfatti circles. Suppose a triangle $A B C$ has three Malfatti circles $\odot A^{\prime}, \odot B^{\prime}$ and $\odot C^{\prime}$. The circle $\odot A^{\prime}$ is tangent to the sides $A B$ and $A C$; the circle $\odot B^{\prime}$ is tangent to the sides $A B$ and $B C$; and the circle $\odot C^{\prime}$ is tangent to the sides $A C$ and $B C$.

The lengths of the sides of the triangle $A B C$ are $|B C|=a,|A C|=b$ and $|A B|=c$. The circles $\odot A^{\prime}, \odot B^{\prime}$, and $\odot C^{\prime}$ have radii p, q, and r. Suppose that the inscribed circle of the triangle $A B C$ is $\odot O$ and its radius is ρ.

Lemma 5. $\max \{p, q, r\}<\rho$.
Proof. Any Malfatti circle is the incircle of a triangle which has sides parallel to the triangle $A B C$ and is strictly contained in the triangle $A B C$.

Lemma 6. If $a>b$, then

$$
\frac{a+c-b}{b+c-a}>\left(\frac{q}{p}\right)^{1+\alpha}>1, \quad \forall \alpha \in(0, \sqrt{2})
$$

Proof. The radii of Malfatti circles can be calculated by [7, Formula (3)])

$$
\begin{aligned}
& p=\frac{\left(1+\tan \frac{B}{4}\right)\left(1+\tan \frac{C}{4}\right)}{\left(1+\tan \frac{A}{4}\right)} \cdot \frac{\rho}{2}, \\
& q=\frac{\left(1+\tan \frac{C}{4}\right)\left(1+\tan \frac{A}{4}\right)}{\left(1+\tan \frac{B}{4}\right)} \cdot \frac{\rho}{2}, \\
& r=\frac{\left(1+\tan \frac{A}{4}\right)\left(1+\tan \frac{B}{4}\right)}{\left(1+\tan \frac{C}{4}\right)} \cdot \frac{\rho}{2} .
\end{aligned}
$$

If $a>b$, then $A>B$. The above formulas imply $p<q$.
Since O is on the angle-bisector of the angle A,

$$
\rho=\frac{1}{2}(b+c-a) \tan \frac{A}{2} .
$$

Since O is on the angle-bisector of the angle B,

$$
\rho=\frac{1}{2}(a+c-b) \tan \frac{B}{2} .
$$

The inequality

$$
\frac{a+c-b}{b+c-a}>\left(\frac{q}{p}\right)^{1+\alpha}
$$

is equivalent to

$$
\frac{\tan \frac{A}{2}}{\tan \frac{B}{2}}>\left(\frac{q}{p}\right)^{1+\alpha}=\frac{\left(1+\tan \frac{A}{4}\right)^{2+2 \alpha}}{\left(1+\tan \frac{B}{4}\right)^{2+2 \alpha}}
$$

which is equivalent to

$$
\frac{\left(1+\tan \frac{B}{4}\right)^{2+2 \alpha}}{\tan \frac{B}{2}}>\frac{\left(1+\tan \frac{A}{4}\right)^{2+2 \alpha}}{\tan \frac{A}{2}}, \quad \text { for } 0<B<A<\pi,
$$

which can be derived from the fact that

$$
\frac{(1+\tan x)^{2+2 \alpha}}{\tan (2 x)}=\frac{(1+\tan x)^{3+2 \alpha}(1-\tan x)}{2 \tan x}
$$

is a decreasing function as $x \in(0, \pi / 4)$.
It is enough to show that

$$
f(y)=\frac{(1+y)^{3+2 \alpha}(1-y)}{2 y}
$$

is a decreasing function as $y \in(0,1)$.
Note that $f(y)>0$ as $y \in(0,1)$. And

$$
\frac{f^{\prime}(y)}{f(y)}=(\ln f(y))^{\prime}=\frac{3+2 \alpha}{1+y}-\frac{1}{1-y}-\frac{1}{y}=\frac{-(3+2 \alpha) y^{2}+(2+2 \alpha) y-1}{(1+y)(1-y) y}
$$

Since the discriminant of the numerator $g(y)=-(3+2 \alpha) y^{2}+(2+2 \alpha) y-1$ is $\Delta=$ $(2+2 \alpha)^{2}-4(3+2 \alpha)=4 \alpha^{2}-8<0, \forall \alpha \in(0, \sqrt{2})$, the numerator $g(y)<0, \forall y \in \mathbb{R}$. Hence $f^{\prime}(y)<0$ as $y \in(0,1)$. Therefore $f(y)$ is decreasing as $y \in(0,1)$.

3 Proof of Theorems

Proof of Theorem 3. Applying Lemma 5

$$
\max \{p, q, r\}<\rho=\frac{1}{2} \sqrt{\frac{(b+c-a)(a+c-b)(a+b-c)}{a+b+c}}
$$

to the sequence of triangles $\left\{A_{n} B_{n} C_{n}\right\}$, we have

$$
\begin{aligned}
\max \left\{p_{n}, q_{n}, r_{n}\right\} & <\frac{1}{2} \sqrt{\frac{2 p_{n-1} 2 q_{n-1} 2 r_{n-1}}{2\left(p_{n-1}+q_{n-1}+r_{n-1}\right)}} \\
& =\frac{1}{2} \sqrt{\frac{4 p_{n-1} q_{n-1} r_{n-1}}{p_{n-1}+q_{n-1}+r_{n-1}}} \\
& =\sqrt{\frac{p_{n-1} q_{n-1} r_{n-1}}{p_{n-1}+q_{n-1}+r_{n-1}}} \\
& \leq \sqrt{\frac{p_{n-1} q_{n-1} r_{n-1}}{3\left(p_{n-1} q_{n-1} r_{n-1}\right)^{\frac{1}{3}}}} \\
& =\frac{\left(p_{n-1} q_{n-1} r_{n-1}\right)^{\frac{1}{3}}}{\sqrt{3}} .
\end{aligned}
$$

The above inequality is independent of the index. Replacing the index n by $n-1$, we get

$$
\begin{aligned}
\max \left\{p_{n-1}, q_{n-1}, r_{n-1}\right\} & <\frac{\left(p_{n-2} q_{n-2} r_{n-2}\right)^{\frac{1}{3}}}{\sqrt{3}} \\
\Longrightarrow \quad p_{n-1} q_{n-1} r_{n-1} & <\frac{p_{n-2} q_{n-2} r_{n-2}}{3 \sqrt{3}} \\
\Longrightarrow \quad \frac{\left(p_{n-1} q_{n-1} r_{n-1}\right)^{\frac{1}{3}}}{\sqrt{3}} & <\frac{\left(p_{n-2} q_{n-2} r_{n-2}\right)^{\frac{1}{3}}}{(\sqrt{3})^{2}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\max \left\{p_{n}, q_{n}, r_{n}\right\} & <\frac{\left(p_{n-1} q_{n-1} r_{n-1}\right)^{\frac{1}{3}}}{\sqrt{3}} \\
& <\frac{\left(p_{n-2} q_{n-2} r_{n-2}\right)^{\frac{1}{3}}}{(\sqrt{3})^{2}} \\
& \cdots \\
& <\frac{\left(p_{1} q_{1} r_{1}\right)^{\frac{1}{3}}}{(\sqrt{3})^{n-1}}
\end{aligned}
$$

So we have $\lim _{n \rightarrow \infty}\left(p_{n}, q_{n}, r_{n}\right)=0$.
Proof of Theorem 4. If $\left|B_{0} C_{0}\right|=\left|A_{0} C_{0}\right|$, then $p_{1}=q_{1}$. Therefore $\left|B_{1} C_{1}\right|=\left|A_{1} C_{1}\right|$ which implies $p_{2}=q_{2}$. In general, $p_{n}=q_{n}$ for any $n \geq 1$. Thus $\lim _{n \rightarrow \infty} p_{n}: q_{n}=1: 1$.

If $\left|B_{0} C_{0}\right|>\left|A_{0} C_{0}\right|$, Lemma 6 implies that $q_{1}>p_{1}$. Then

$$
\left|B_{1} C_{1}\right|=q_{1}+r_{1}>p_{1}+r_{1}=\left|A_{1} C_{1}\right| .
$$

Applying Lemma 6 to the triangle $A_{1} B_{1} C_{1}$, we have $q_{2}>p_{2}$ and

$$
\frac{q_{1}}{p_{1}}=\frac{\left|A_{1} B_{1}\right|+\left|B_{1} C_{1}\right|-\left|A_{1} C_{1}\right|}{\left|A_{1} B_{1}\right|+\left|A_{1} C_{1}\right|-\left|B_{1} C_{1}\right|}>\left(\frac{q_{2}}{p_{2}}\right)^{1+\alpha}, \quad \forall \alpha \in(0, \sqrt{2})
$$

Continuing this argument, we can see that

$$
\left(\frac{q_{1}}{p_{1}}\right)^{\left(\frac{1}{1+\alpha}\right)^{n-1}}>\frac{q_{n}}{p_{n}}>1 .
$$

Therefore

$$
1=\lim _{n \rightarrow \infty}\left(\frac{q_{1}}{p_{1}}\right)^{\left(\frac{1}{1+\alpha}\right)^{n-1}} \geq \lim _{n \rightarrow \infty} \frac{q_{n}}{p_{n}} \geq 1
$$

Hence

$$
\lim _{n \rightarrow \infty} \frac{q_{n}}{p_{n}}=1
$$

If $\left|B_{0} C_{0}\right|<\left|A_{0} C_{0}\right|$, consider the sequence $\left\{\frac{p_{n}}{q_{n}}\right\}$. Same arguments show that its limit for $n \rightarrow \infty$ equals 1 .

Acknowledgment

The author would like to thank the referee for careful reading the manuscript and invaluable comments.

References

[1] H. DöRrie: 100 Great Problems of Elementary Mathematics. Dover Publications, INC., New York, 1965.
[2] M. HajJa: The sequence of generalized median triangles and new shape function. J. Geometry 96(1-2), 71-79, 2009. doi: 10.1007/s00022-010-0036-0.
[3] J. G. Kingston and J. L. Synge: The sequence of pedal triangles. Amer. Math. Monthly 95(7), 609-620, 1988.
[4] Y. Kochetkov: Two dynamical systems in the space of triangles, 2021. arXiv: 2101.03734.
[5] A. Manning: The limit of a pedal sequence of triangles. Bull. Lond. Math. Soc. 42(4), 673-679, 2010. doi: $10.1112 / \mathrm{blms} / \mathrm{bdq} 025$.
[6] R. Pereira: Limits of sequences of pedal triangles. Bol. Soc. Port. Mat. (79), 21-63, 2021.
[7] M. R. Stevanović: Triangle Centers Associated with the Malfatti Circles. Forum Geometricorum 3, 83-93, 2003.

Received December 13, 2023; final form December 28, 2023.

