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A Sequence of Malfatti Circles
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Abstract. Given a Euclidean triangle, a smaller triangle is formed by joining the
centers of the three Malfatti circles of the given triangle. A sequence of triangles
is obtained by continuing this process. The limit of the sequence of triangles is a
point. The limits of the inner angles of these triangles are π/3.
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1 Introduction

Given a Euclidean triangle T0, it generates another triangle T1 via some geometric construc-
tion. The triangle T1 generates a triangle T2 via the same construction. Continuing this
process, one obtains a sequence of triangles {Tn}∞

n=0. Studying the limit of the sequence
usually is an interesting question [2–6].

In this paper, a sequence of triangles is generated involving Malfatti circles.
Italian mathematician Gian Francesco Malfatti (1731–1807) posted the following problem

in 1803 [1, Page 147].
To draw within a given triangle three circles each of which is tangent to the other two and

to two sides of the triangle.
These three circles are called the Malfatti circles of the given triangle.
Let A0B0C0 denote a Euclidean triangle. It has three Malfatti circles with the centers

A1, B1, and C1 respectively. The circle ⊙A1 is tangent to the sides A0B0 and A0C0; the circle
⊙B1 is tangent to the sides A0B0 and B0C0; and the circle ⊙C1 is tangent to the sides A0C0
and B0C0.

The triangle A1B1C1 has three Malfatti circles with the centers A2, B2, and C2 respec-
tively. In general, for n ≥ 0, the triangle AnBnCn has three Malfatti circles with the centers
An+1, Bn+1, and Cn+1 respectively. The process produces a sequence of triangles {AnBnCn}.

Theorem 1. The limit of the sequence of triangles {AnBnCn} is a point.

Theorem 2. The limits of the inner angles of the sequence of triangles {AnBnCn} are π/3.
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To verify the statements about the sequence of triangles, we will prove the following
equivalent ones about the sequence of radii of Malfatti circles. For n ≥ 1, suppose the radii of
the circles ⊙An, ⊙Bn and ⊙Cn are pn, qn and rn respectively. Then the sequence {(pn, qn, rn)}
has the following properties.

Theorem 3.
lim

n→∞
(pn, qn, rn) = (0, 0, 0).

Theorem 4.
lim

n→∞
pn : qn : rn = 1 : 1 : 1.

2 Properties of Malfatti Circles

To prove the theorems, we need to establish some basic properties of Malfatti circles. Suppose
a triangle ABC has three Malfatti circles ⊙A′, ⊙B′ and ⊙C ′. The circle ⊙A′ is tangent to
the sides AB and AC; the circle ⊙B′ is tangent to the sides AB and BC; and the circle ⊙C ′

is tangent to the sides AC and BC.
The lengths of the sides of the triangle ABC are |BC| = a, |AC| = b and |AB| = c. The

circles ⊙A′, ⊙B′, and ⊙C ′ have radii p, q, and r. Suppose that the inscribed circle of the
triangle ABC is ⊙O and its radius is ρ.

Lemma 5. max{p, q, r} < ρ.

Proof. Any Malfatti circle is the incircle of a triangle which has sides parallel to the triangle
ABC and is strictly contained in the triangle ABC.

Lemma 6. If a > b, then

a + c − b

b + c − a
>

(
q

p

)1+α

> 1, ∀α ∈ (0,
√

2).

Proof. The radii of Malfatti circles can be calculated by [7, Formula (3)])

p =
(1 + tan B

4 )(1 + tan C
4 )

(1 + tan A
4 )

· ρ

2 ,

q =
(1 + tan C

4 )(1 + tan A
4 )

(1 + tan B
4 )

· ρ

2 ,

r =
(1 + tan A

4 )(1 + tan B
4 )

(1 + tan C
4 )

· ρ

2 .

If a > b, then A > B. The above formulas imply p < q.
Since O is on the angle-bisector of the angle A,

ρ = 1
2(b + c − a) tan A

2 .

Since O is on the angle-bisector of the angle B,

ρ = 1
2(a + c − b) tan B

2 .
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The inequality
a + c − b

b + c − a
>

(
q

p

)1+α

is equivalent to
tan A

2
tan B

2
>

(
q

p

)1+α

=
(1 + tan A

4 )2+2α

(1 + tan B
4 )2+2α

,

which is equivalent to

(1 + tan B
4 )2+2α

tan B
2

>
(1 + tan A

4 )2+2α

tan A
2

, for 0 < B < A < π,

which can be derived from the fact that
(1 + tan x)2+2α

tan(2x) = (1 + tan x)3+2α(1 − tan x)
2 tan x

is a decreasing function as x ∈ (0, π/4).
It is enough to show that

f(y) = (1 + y)3+2α(1 − y)
2y

is a decreasing function as y ∈ (0, 1).
Note that f(y) > 0 as y ∈ (0, 1). And

f ′(y)
f(y) = (ln f(y))′ = 3 + 2α

1 + y
− 1

1 − y
− 1

y
= −(3 + 2α)y2 + (2 + 2α)y − 1

(1 + y)(1 − y)y .

Since the discriminant of the numerator g(y) = −(3 + 2α)y2 + (2 + 2α)y − 1 is ∆ =
(2 + 2α)2 − 4(3 + 2α) = 4α2 − 8 < 0, ∀α ∈ (0,

√
2), the numerator g(y) < 0, ∀y ∈ R. Hence

f ′(y) < 0 as y ∈ (0, 1). Therefore f(y) is decreasing as y ∈ (0, 1).

3 Proof of Theorems

Proof of Theorem 3. Applying Lemma 5

max{p, q, r} < ρ = 1
2

√
(b + c − a)(a + c − b)(a + b − c)

a + b + c

to the sequence of triangles {AnBnCn}, we have

max{pn, qn, rn} <
1
2

√
2pn−12qn−12rn−1

2(pn−1 + qn−1 + rn−1)

= 1
2

√
4pn−1qn−1rn−1

pn−1 + qn−1 + rn−1

=
√

pn−1qn−1rn−1

pn−1 + qn−1 + rn−1

≤
√

pn−1qn−1rn−1

3(pn−1qn−1rn−1)
1
3

= (pn−1qn−1rn−1)
1
3

√
3

.
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The above inequality is independent of the index. Replacing the index n by n − 1, we get

max{pn−1, qn−1, rn−1} <
(pn−2qn−2rn−2)

1
3

√
3

=⇒ pn−1qn−1rn−1 <
pn−2qn−2rn−2

3
√

3

=⇒ (pn−1qn−1rn−1)
1
3

√
3

<
(pn−2qn−2rn−2)

1
3

(
√

3)2
.

Therefore
max{pn, qn, rn} <

(pn−1qn−1rn−1)
1
3

√
3

<
(pn−2qn−2rn−2)

1
3

(
√

3)2

. . .

<
(p1q1r1)

1
3

(
√

3)n−1
.

So we have limn→∞(pn, qn, rn) = 0.

Proof of Theorem 4. If |B0C0| = |A0C0|, then p1 = q1. Therefore |B1C1| = |A1C1| which
implies p2 = q2. In general, pn = qn for any n ≥ 1. Thus limn→∞ pn : qn = 1 : 1.

If |B0C0| > |A0C0|, Lemma 6 implies that q1 > p1. Then

|B1C1| = q1 + r1 > p1 + r1 = |A1C1|.

Applying Lemma 6 to the triangle A1B1C1, we have q2 > p2 and

q1

p1
= |A1B1| + |B1C1| − |A1C1|

|A1B1| + |A1C1| − |B1C1|
>

(
q2

p2

)1+α

, ∀α ∈ (0,
√

2).

Continuing this argument, we can see that
(

q1

p1

)( 1
1+α

)n−1

>
qn

pn

> 1.

Therefore
1 = lim

n→∞

(
q1

p1

)( 1
1+α

)n−1

≥ lim
n→∞

qn

pn

≥ 1.

Hence
lim

n→∞

qn

pn

= 1.

If |B0C0| < |A0C0|, consider the sequence {pn

qn
}. Same arguments show that its limit for

n → ∞ equals 1.

Acknowledgment

The author would like to thank the referee for careful reading the manuscript and invaluable
comments.



R. Guo: A Sequence of Malfatti Circles 185

References

[1] H. Dörrie: 100 Great Problems of Elementary Mathematics. Dover Publications, INC.,
New York, 1965.

[2] M. Hajja: The sequence of generalized median triangles and new shape function. J.
Geometry 96(1–2), 71–79, 2009. doi: 10.1007/s00022-010-0036-0.

[3] J. G. Kingston and J. L. Synge: The sequence of pedal triangles. Amer. Math.
Monthly 95(7), 609–620, 1988.

[4] Y. Kochetkov: Two dynamical systems in the space of triangles, 2021. arXiv:
2101.03734.

[5] A. Manning: The limit of a pedal sequence of triangles. Bull. Lond. Math. Soc. 42(4),
673–679, 2010. doi: 10.1112/blms/bdq025.

[6] R. Pereira: Limits of sequences of pedal triangles. Bol. Soc. Port. Mat. (79), 21–63,
2021.
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