Equalities and Inequalities in the Excircle Quadrilateral of a Convex Quadrilateral

Ovidiu T. Pop ${ }^{1}$, Mario Dalcín ${ }^{2}$
${ }^{1}$ National College "Mihai Eminescu" Satu Mare, Romania ovidiutiberiu@yahoo.com
2'ARTIGAS'Secondary School Teachers Institute-CFE Montevideo, Uruguay mdalcin00@gmail.com

Abstract

In this paper, we will demonstrate some identities and inequalities that occur in the quadrilateral determined by the centers of the excircles in a convex quadrilateral.

Key Words: bicentric quadrilaterals
MSC 2020: 51M04

1 Introduction

In this section, we recall some known results that occur in quadrilaterals.
In a given convex quadrilateral $A B C D$, we note the lengths of the sides by $a=A B$, $b=B C, c=C D, d=D A, A, B, C, D$ the angle measures, F the area and s to it's semi-perimeter. If the quadrilateral $A B C D$ is cyclic, we note by $\mathcal{C}_{(O, R)}$ the circumscribed circle, where O is the center and R is the radius of this circle. If the quadrilateral $A B C D$ is tangential, we note by $\mathcal{C}_{(I, r)}$ the inscribed circle, where I is the center and r is the radius of this circle. A quadrilateral $A B C D$ is bicentric if and only if it is cyclic and tangential. Its study was started by Nicolas Fuss in 1794, see [2], and continues to the present days as can be seen in [1], Chapter 6 of [5] and [4].

Let $A B C D$ be a convex quadrilateral. The circle tangent to side $A B$ and tangent to the extensions of its two adjacent sides, is called the excircle of the quadrilateral corresponding to the side $A B$. Let $\mathcal{C}_{\left(I_{a}, r_{a}\right)}$ this circle, where I_{a} is the center and r_{a} is the radius. Similarly are defined $\mathcal{C}_{\left(I_{b}, r_{b}\right)}, \mathcal{C}_{\left(I_{c}, r_{c}\right)}, \mathcal{C}_{\left(I_{d}, r_{d}\right)}$ the excircles of $A B C D$ tangents to the sides b, c, d respectively (see Figure 1).

The following equalities and inequalities referring to cyclic and bicentric quadrilaterals are proved in [5].

Figure 1: Bicentric quadrilateral with excircles

Theorem 1.1. In a bicentric quadrilateral $A B C D$, the following equalities hold

$$
\begin{gather*}
O I^{2}=R^{2}+\left(r-\sqrt{4 R^{2}+r^{2}}\right) r \tag{1}\\
O I_{a}^{2}=R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right) r_{a} \tag{2}\\
F=r s=\sqrt{a b c d} \tag{3}
\end{gather*}
$$

Theorem 1.2. Let $A B C D$ be a bicentric quadrilateral. The following inequality holds

$$
\begin{equation*}
2 \sqrt{2 r\left(\sqrt{4 R^{2}+r^{2}}\right)-r} \leq 2 \tag{4}
\end{equation*}
$$

If $R=r \sqrt{2}$, then $A B C D$ is a square, both circles are concentric and (4) holds.
If $R \neq r \sqrt{2}$, then the equality holds in (4) if and only if $A B C D$ is an isosceles trapezoid. Moreover, we have

$$
\begin{equation*}
s \leq \sqrt{4 R^{2}+r^{2}}+r \tag{5}
\end{equation*}
$$

which becomes equality if $A B C D$ is orthodiagonal.
The following inequalities also hold

$$
\begin{equation*}
2 \sqrt{2 r\left(\sqrt{4 R^{2}+r^{2}}-r\right)} \leq s \leq \sqrt{4 R^{2}+r^{2}}+r \tag{6}
\end{equation*}
$$

If $R=r \sqrt{2}$, then both inequalities become equalities and $A B C D$ is a square.
If $R \neq r \sqrt{2}$, then at least one of the inequalities (6) is strict.
The inequality of Fejes-Tóth holds too

$$
\begin{equation*}
R \geq r \sqrt{2} \tag{7}
\end{equation*}
$$

Theorem 1.3. For any bicentric quadrilateral $A B C D$, the following equality hold

$$
\begin{equation*}
r_{a}=\frac{a r}{c} \tag{8}
\end{equation*}
$$

and its analogues.
Moreover r_{a}, r_{b}, r_{c} and r_{d} are the roots of the equation

$$
\begin{gather*}
x^{4}-2\left(\sqrt{4 R^{2}+r^{2}}-r\right) x^{3}+\left(s^{2}+2 r^{2}-4 r \sqrt{4 R^{2}+r^{2}}\right) x^{2}-2 r^{2}\left(\sqrt{4 R^{2}+r^{2}}-r\right) x+r^{4}=0, \tag{9}\\
r_{a}+r_{b}+r_{c}+r_{d}=2\left(\sqrt{4 R^{2}+r^{2}}-r\right) \tag{10}\\
r_{a} r_{b}+r_{a} r_{c}+r_{a} r_{d}+r_{b} r_{c}+r_{b} r_{d}+r_{c} r_{d}=s^{2}+2 r^{2}-4 r \sqrt{4 R^{2}+r^{2}} \tag{11}\\
r_{a} r_{b} r_{c}+r_{a} r_{b} r_{d}+r_{a} r_{c} r_{d}+r_{b} r_{c} r_{d}=2 r^{2}\left(\sqrt{4 R^{2}+r^{2}}-r\right) \tag{12}\\
r_{a} r_{b} r_{c} r_{d}=r^{4} \tag{13}\\
r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+r_{d}^{2}=16 R^{2}-2 s^{2}+4 r^{2} \tag{14}\\
\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}+\frac{1}{r_{d}}=\frac{2\left(\sqrt{4 R^{2}+r^{2}}-r\right)}{r^{2}} \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{1}{r_{a} r_{b}}+\frac{1}{r_{a} r_{c}}+\frac{1}{r_{a} r_{d}}+\frac{1}{r_{b} r_{c}}+\frac{1}{r_{b} r_{d}}+\frac{1}{r_{c} r_{d}}=\frac{s^{2}+2 r^{2}-4 r \sqrt{4 R^{2}+r^{2}}}{r^{4}} \tag{16}
\end{equation*}
$$

Theorem 1.4. In the cyclic quadrilateral $A B C D$, we have the following relations and their analogues

$$
\begin{gather*}
F=\sqrt{(s-a)(s-b)(s-c)(s-d)} \tag{17}\\
\cos \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{a d+b c}}, \tag{18}\\
\tan \frac{A}{2}=\sqrt{\frac{(s-a)(s-d)}{(s-b)(s-c)}} \tag{19}\\
r_{a}=\frac{a}{\tan \frac{A}{2} \tan \frac{B}{2}} . \tag{20}
\end{gather*}
$$

2 Characterizations of the quadrilateral $I_{a} I_{b} I_{c} I_{d}$

In this section, we will demonstrate some properties of the quadrilateral $I_{a} I_{b} I_{c} I_{d}$.
Theorem 2.1. If $A B C D$ is a bicentric quadrilateral, then

$$
\begin{equation*}
O I_{a}^{2}+O I_{b}^{2}+O I_{c}^{2}+O I_{d}^{2}=8 R^{2}+4 O I^{2} \tag{21}
\end{equation*}
$$

where $I_{a}, I_{b}, I_{c}, I_{d}$ are the centers of the excircles corresponding to sides a, b, c, d respectively.
Proof. Taking (2) into account, we have

$$
\begin{aligned}
O I_{a}^{2}+O I_{b}^{2}+O I_{c}^{2}+O I_{d}^{2}=R^{2}+(& \left.\sqrt{4 R^{2}+r^{2}}-r\right) r_{a}+R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right) r_{b} \\
& +R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right) r_{c}+R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right) r_{d}
\end{aligned}
$$

from where

$$
O I_{a}^{2}+O I_{b}^{2}+O I_{c}^{2}+O I_{d}^{2}=4 R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right)\left(r_{a}+r_{b}+r_{c}+r_{d}\right)
$$

and by (10) it results in that

$$
\begin{aligned}
O I_{a}^{2}+O I_{b}^{2} & +O I_{c}^{2}+O I_{d}^{2}=4 R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right)\left[2\left(\sqrt{4 R^{2}+r^{2}}-r\right)\right] \\
& =4 R^{2}+8 R^{2}+2 r^{2}-4 r \sqrt{4 R^{2}+r^{2}}+2 r^{2}=8 R^{2}+4\left(R^{2}+r^{2}-r \sqrt{4 R^{2}+r^{2}}\right)
\end{aligned}
$$

From the identity above and (1), we get the identity from (21).
Lemma 2.1. In the cyclic quadrilateral $A B C D$, we have the following relations

$$
\begin{align*}
\tan \frac{A}{2} & =\frac{(s-a)(s-d)}{F} \tag{22}\\
r_{a} & =\frac{a F}{(s-a)(a+c)} \tag{23}
\end{align*}
$$

and analogues.
Proof. From (19) we have

$$
\tan \frac{A}{2}=\sqrt{\frac{(s-a)^{2}(s-d)^{2}}{(s-a)(s-b)(s-c)(s-d)}}
$$

and taking (17) into account, the relation (22) follows. Replacing (22) and analogue in (20) we obtain

$$
r_{a}=\frac{a}{\frac{(s-a)(s-d)}{F}+\frac{(s-b)(s-a)}{F}}
$$

from where (23) results.
Lemma 2.2. In the cyclic quadrilateral $A B C D$, we have the following relation and its analogues

$$
\begin{equation*}
I_{c} I_{d}=\frac{s(a d+b c) \sqrt{a b+c d}}{(a+c)(b+d)} \cdot \frac{1}{\sqrt{(s-c)(s-d)}} \tag{24}
\end{equation*}
$$

Proof. Let $I_{c} E \perp D C, E \in D C$ (see Figure 2). In triangle $I_{c} D E$ we have $\sin \left(\widehat{I_{c} D E}\right)=\frac{I_{c} E}{I_{c} D}$, equivalent with $\sin \left(\frac{\pi}{2}-\frac{D}{2}\right)=\frac{r_{c}}{I_{c} D}$, from where $I_{c} D=\frac{r c}{\cos \frac{D}{2}}$ and analogous $I_{d} D=\frac{r_{d}}{\cos \frac{D}{2}}$. Because the points I_{c}, D and I_{d} are collinear, we have $I_{c} I_{d}=I_{c} D+I_{d} D=\frac{r_{c}+r_{d}}{\cos \frac{D}{2}}$.

Taking (23) into account, we have

$$
\begin{aligned}
I_{c} I_{d} & =\frac{\frac{c F}{(s-c)(c+a)}+\frac{d F}{(s-d)(d+b)}}{\cos \frac{D}{2}} \\
& =\frac{F[c(d+b)(a+b+c-d)+d(c+a)(a+b-c+d)]}{2(c+a)(d+b)(s-c)(s-d) \cos \frac{D}{2}} \\
& =\frac{F\left(a c d+b c d+a b c+a b d+b^{2} c+b c^{2}+a^{2} d+a d^{2}\right)}{2(c+a)(d+b)(s-c)(s-d) \sqrt{\frac{(s-a)(s-b)}{a b+c d}}} \\
& =\frac{\sqrt{(s-a)(s-b)(s-c)(s-d)} \cdot 2 s(a d+b c) \sqrt{a b+c d}}{2(c+a)(d+b)(s-c)(s-d) \sqrt{(s-a)(s-b)}} \\
& =\frac{s(a d+b c) \sqrt{a b+c d}}{(a+c)(b+d) \sqrt{(s-c)(s-d)}},
\end{aligned}
$$

from where the identity (24) follows.

Figure 2: Convex quadrilateral with excircles

Theorem 2.2. For any convex quadrilateral $A B C D$, the quadrilateral $I_{a} I_{b} I_{c} I_{d}$ is cyclic.
Proof. In triangle $D I_{c} C$ we have $\widehat{D I_{c} C}=\pi-\widehat{C D I_{c}}-\widehat{D C I_{c}}=\pi-\frac{\pi-D}{2}-\frac{\pi-C}{2}=\frac{C+D}{2}$ and similarly $\widehat{A I_{a} B}=\frac{A+B}{2}$. Because $A+B+C+D=2 \pi$, then $\widehat{D I_{c} C}+\widehat{A I_{a} B}=\frac{A+B+C+D}{2}=\pi$, so the quadrilateral $I_{a} I_{b} I_{c} I_{d}$ is cyclic.

The following theorem is proved in [3, Theorem 6.2]. Here it is demonstrated in an original way.

Theorem 2.3. If the quadrilateral $A B C D$ is cyclic, then the quadrilateral $I_{a} I_{b} I_{c} I_{d}$ is orthodiagonal.

Proof. Taking (24) into account, we have

$$
\begin{gathered}
I_{a} I_{b}{ }^{2}+I_{c} I_{d}{ }^{2}=\frac{s^{2}(a d+b c)^{2}(a b+c d)}{(a+c)^{2}(b+d)^{2}} \cdot \frac{1}{(s-a)(s-b)}+\frac{s^{2}(a d+b c)^{2}(a b+c d)}{(a+c)^{2}(b+d)^{2}} \cdot \frac{1}{(s-c)(s-d)} \\
=\frac{s^{2}(a d+b c)^{2}(a b+c d)[(s-c)(s-d)+(s-a)(s-b)]}{(a+c)^{2}(b+d)^{2} F^{2}} \\
=\frac{s^{2}(a d+b c)^{2}(a b+c d)[(a+b-c+d)(a+b+c-d)+(-a+b+c+d)(a-b+c+d)]}{4(a+c)^{2}(b+d)^{2} F^{2}} \\
=\frac{s^{2}(a d+b c)^{2}(a b+c d)\left[(a+b)^{2}-(c-d)^{2}+(c+d)^{2}-(a-b)^{2}\right]}{4(a+c)^{2}(b+d)^{2} F^{2}} \\
=\frac{s^{2}(a d+b c)^{2}(a b+c d)^{2}}{(a+c)^{2}(b+d)^{2} F^{2}}
\end{gathered}
$$

and similarly $I_{a} I_{d}{ }^{2}+I_{c} I_{b}{ }^{2}$ has the same value.
Then $I_{a} I_{d}{ }^{2}+I_{c} I_{b}{ }^{2}=I_{a} I_{b}{ }^{2}+I_{c} I_{d}{ }^{2}$, so the quadrilateral $I_{a} I_{b} I_{c} I_{d}$ is orthodiagonal.
Corollary 2.1. If the quadrilateral $A B C D$ is bicentric, then the quadrilateral $I_{a} I_{b} I_{c} I_{d}$ is cyclic and O is the center of circumscribed circle if and only if the quadrilateral $A B C D$ is a square.

Proof. O is the center of the circumscribed circle, then $O I_{a}=O I_{b}=O I_{c}=O I_{d}$, and taking (2) into account we have

$$
\begin{aligned}
& \sqrt{R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right) r_{a}}=\sqrt{R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right) r_{b}} \\
&=\sqrt{R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right) r_{c}}=\sqrt{R^{2}+\left(\sqrt{4 R^{2}+r^{2}}-r\right) r_{d}}
\end{aligned}
$$

equivalent to $r_{a}=r_{b}=r_{c}=r_{d}$.
Using the formulas from (8), we have $\frac{a r}{c}=\frac{b r}{d}=\frac{c r}{a}=\frac{d r}{b}$. From $\frac{a r}{c}=\frac{c r}{a}$ we get $a=c$ and from $\frac{b r}{d}=\frac{d r}{b}$ we obtain $b=d$.

Because $A B C D$ is cyclic and $a=c$ and $b=d$, we have equivalent to $A B C D$ is rectangle and because $A B C D$ is tangential we have $a=b$, so $A B C D$ is a square.

Theorem 2.4. Let $A B C D$ be a cyclic quadrilateral. Then $I_{a} I_{b} I_{c} I_{d}$ is tangential quadrilateral if and only if $a=c$ or $b=d$.

Proof. According to Theorem 2.3 we have $I_{a} I_{b}{ }^{2}+I_{c} I_{d}{ }^{2}=I_{a} I_{d}{ }^{2}+I_{c} I_{b}{ }^{2}$ and because $I_{a} I_{b} I_{c} I_{d}$ is tangential quadrilateral it results $I_{a} I_{b}+I_{c} I_{d}=I_{a} I_{d}+I_{c} I_{b}$.

From here it follows that $I_{a} I_{b} \cdot I_{c} I_{d}=I_{a} I_{d} \cdot I_{c} I_{b}$. Taking (24) into account we have

$$
\frac{s^{2}(a d+b c)^{2}(a b+c d)}{(a+c)^{2}(b+d)^{2} F}=\frac{s^{2}(a b+c d)^{2}(a d+b c)}{(a+c)^{2}(b+d)^{2} F}
$$

equivalent with $a b+c d=a d+b c$, equivalent with $(a-c)(d-b)=0$ and the theorem is proved.

Remark 2.1. The condition $a=c$ means that $B=C$ and $A=D$, so the inscribed quadrilateral $A B C D$ is an isosceles trapezium and similarly if $b=d$.

If $a=c$ the quadrilateral $I_{a} I_{b} I_{c} I_{d}$ is a right kite with $\widehat{I_{d} I_{a} I_{b}}=\widehat{I_{b} I_{c} I_{d}}=\frac{\pi}{2}$.
As $B=C$ and $A=D$, then $A+B=C+D=\pi$. In triangle $A I_{a} B$ we have $\widehat{A I_{a} B}=$ $\pi-\frac{\pi-A}{2}-\frac{\pi-B}{2}=\frac{\pi}{2}$. The triangles $A I_{a} B$ and $D I_{c} C$ are congruent and the triangles $B I_{b} C$ and $D I_{d} A$ are isosceles.

Remark 2.2. From Theorem 2.4 it does not follow that for $I_{a} I_{b} I_{c} I_{d}$ to be tangential, the quadrilateral $A B C D$ must be tangential.

3 Inequalities in the quadrilateral $I_{a} I_{b} I_{c} I_{d}$

In this section, we will give some old and new inequalities which take place in the quadrilateral $I_{a} I_{b} I_{c} I_{d}$. We get some known inequalities from [5, p. 172]. These inequalities are immediately obtained from (10) to (16) using the inequalities (6) and (7).

Theorem 3.1. In any bicentric quadrilateral $A B C D$, the following inequalities hold

$$
\begin{gather*}
4 r \leq r_{a}+r_{b}+r_{c}+r_{d} \leq 3 R \sqrt{2}-2 r \tag{25}\\
6 r^{2} \leq 2 r\left(2 \sqrt{4 R^{2}+r^{2}}-3 r\right) \leq \sum r_{a} r_{b} \\
\leq 2\left(2 R^{2}+2 r^{2}-r \sqrt{4 R^{2}+r^{2}}\right) \leq 2\left(3 R^{2}-r \sqrt{4 R^{2}+r^{2}}\right) \tag{26}\\
4 r^{3} \leq \sum r_{a} r_{b} r_{c} \leq R^{2}\left(\frac{3 R \sqrt{2}}{2}-r\right) \tag{27}\\
r_{a} r_{b} r_{c} r_{d} \leq \frac{R^{4}}{4} \tag{28}\\
4\left(2 R^{2}-r \sqrt{4 R^{2}+r^{2}}\right) \leq \sum r_{a}^{2} \leq 4\left(4 R^{2}+5 r^{2}-4 r \sqrt{4 R^{2}+r^{2}}\right) \tag{29}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{6}{r^{2}} \leq \frac{2\left(2 \sqrt{4 R^{2}+r^{2}}-3 r\right)}{r^{3}} \leq \sum \frac{1}{r_{a} r_{b}} \leq \frac{2\left(2 R^{2}+2 r^{2}-r \sqrt{4 R^{2}+r^{2}}\right)}{r^{4}} \tag{30}
\end{equation*}
$$

Theorem 3.2. In any bicentric quadrilateral $A B C D$, for $\beta \leq \frac{8 \sqrt{2}}{3}$ and $\delta \geq 4$ the following inequality hold

$$
\begin{align*}
4 r+\beta(R-r \sqrt{2}) \leq 4 r+\frac{8 \sqrt{2}}{3}(R-r \sqrt{2}) \leq & r_{a}+r_{b}+r_{c}+r_{d} \\
& \leq 4 r+4(R-r \sqrt{2}) \leq 4 r+\delta(R-r \sqrt{2}) \tag{31}
\end{align*}
$$

Proof. According to (10) it is true that $\sum r_{a}=2\left(\sqrt{4 R^{2}+r^{2}}-r\right)$. We find α, β, γ and δ such that

$$
\begin{equation*}
\alpha r+\beta R \leq 2\left(\sqrt{4 R^{2}+r^{2}}-r\right) \leq \gamma r+\delta R . \tag{32}
\end{equation*}
$$

Inequalities (32) hold if and only if $0 \leq 2 \sqrt{4 R^{2}+r^{2}}-2 r-\alpha r-\beta R$ and $0 \geq 2 \sqrt{4 R^{2}+r^{2}}-$ $2 r-\gamma r-\delta R$, equivalent to

$$
0 \leq 2 \sqrt{4\left(\frac{R}{r}\right)^{2}+1}-2-\alpha-\beta \frac{R}{r}
$$

and $0 \geq 2 \sqrt{4\left(\frac{R}{r}\right)^{2}+1}-2-\gamma-\delta \frac{R}{r}$. According to (7) we have $r \sqrt{2} \leq R$, equivalent to $\sqrt{2} \leq \frac{R}{r}$. Equality holds if and only if $A B C D$ is square. We note $x=\frac{R}{r}$ and then $x \geq \sqrt{2}$. The inequalities above become

$$
\begin{equation*}
0 \leq 2 \sqrt{4 x^{2}+1}-2-\alpha-\beta x \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \geq 2 \sqrt{4 x^{2}+1}-2-\gamma-\delta x \tag{34}
\end{equation*}
$$

Let $f, g:[\sqrt{2},+\infty) \rightarrow \mathbb{R}$ be functions defined by $f(x)=2 \sqrt{4 x^{2}+1}-2-\alpha-\beta x$ and $g(x)=2 \sqrt{4 x^{2}+1}-2-\gamma-\delta x$. We put the condition that in (33) and (34) equality occurs for $x=\sqrt{2}$, equivalent to $f(\sqrt{2})=0$ and $g(\sqrt{2})=0$, equivalent to

$$
\begin{equation*}
\alpha=4-\beta \sqrt{2} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=4-\delta \sqrt{2} \tag{36}
\end{equation*}
$$

We have $f^{\prime}(x)=\frac{8 x}{\sqrt{4 x^{2}+1}}-\beta, g^{\prime}(x)=\frac{8 x}{\sqrt{4 x^{2}+1}}-\delta$ and $f^{\prime \prime}(x)=g^{\prime \prime}(x)=\frac{8}{\left(4 x^{2}+1\right) \sqrt{4 x^{2}+1}}>0$, for any $x \in[\sqrt{2},+\infty)$, so f^{\prime} and g^{\prime} are an increasing functions. We put the conditions that $f^{\prime}(\sqrt{2}) \geq 0$, equivalent to

$$
\begin{equation*}
\beta \leq \frac{8 \sqrt{2}}{3} \tag{37}
\end{equation*}
$$

On the other hand, for the function g^{\prime} we put the condition $\lim _{x \rightarrow+\infty} g^{\prime}(x) \leq 0$, equivalent to $\lim _{x \rightarrow+\infty}\left(\frac{8 x}{\sqrt{4 x^{2}+1}}-\delta\right) \leq 0$, equivalent to $4-\delta \leq 0$, so

$$
\begin{equation*}
\delta \geq 4 \tag{38}
\end{equation*}
$$

Because f^{\prime} is an increasing function, it result that $f^{\prime}(x) \geq f^{\prime}(\sqrt{2}) \geq 0$ for any $x \in[\sqrt{2},+\infty)$, so $f^{\prime}(x) \geq 0$ for any $x \in[\sqrt{2},+\infty)$.

x	$\sqrt{2}$		$+\infty$
$f^{\prime}(x)$		+	
$f(x)$			

From the function variation table, it follows that $f(x) \geq 0$, for any $x \in[\sqrt{2},+\infty)$. So, from (32), (33), (35) and (37) results that $(4-\beta \sqrt{2}) r+\beta R \leq 2\left(\sqrt{4 R^{2}+r^{2}}-r\right)$ for any $\beta \leq \frac{8 \sqrt{2}}{3}$, equivalent to $4 R+\beta(R-r \sqrt{2}) \leq 2\left(\sqrt{4 R^{2}+r^{2}}-r\right)$. Because $R-r \sqrt{2} \geq 0$, from the inequality above we obtain $4 r+\beta(R-r \sqrt{2}) \leq 4 r+\frac{8 \sqrt{2}}{3}(R-r \sqrt{2}) \leq 2\left(\sqrt{4 R^{2}+r^{2}}-r\right)$, if $\beta \leq \frac{8 \sqrt{2}}{3}$. With this, the left member of the inequality (31) is proved.

Because g^{\prime} is an increasing function, it results that $g^{\prime}(x) \leq \lim _{x \rightarrow+\infty} g^{\prime}(x) \leq 0$ for any $x \in[\sqrt{2},+\infty)$, so $g^{\prime}(x) \leq 0$, for any $x \in[\sqrt{2},+\infty)$

x	$\sqrt{2}$		$+\infty$
$g^{\prime}(x)$		-	
$g(x)$		\searrow	

From the function variation table, it follows that $g(x) \leq 0$ for any $x \in[\sqrt{2},+\infty)$. So, from (32), (34), (36) and (38) results that $2\left(\sqrt{4 R^{2}+r^{2}}-r\right) \leq(4-\delta \sqrt{2}) r+\delta R$ for any $\delta \geq 4$, equivalent to $2\left(\sqrt{4 R^{2}+r^{2}}-r\right) \leq 4 r+\delta(R-r \sqrt{2})$. Because $R-r \sqrt{2} \geq 0$, from the inequality above we obtain $2\left(\sqrt{4 R^{2}+r^{2}}-r\right) \leq 4 r+4(R-r \sqrt{2}) \leq 4 r+\delta(R-r \sqrt{2})$. With this, the right member of the inequality (31) is proved.

Corollary 3.1. In any bicentric quadrilateral $A B C D$, the following inequalities hold

$$
\begin{equation*}
4 r \leq 4 r+\frac{8 \sqrt{2}}{3}(R-r \sqrt{2}) \leq r_{a}+r_{b}+r_{c}+r_{d} \leq 4 r+4(R-r \sqrt{2}) \leq 3 R \sqrt{2}-2 r \tag{39}
\end{equation*}
$$

Proof. The inequalities $4 r+\frac{8 \sqrt{2}}{3}(R-r \sqrt{2}) \leq r_{a}+r_{b}+r_{c}+r_{d} \leq 4 r+4(R-r \sqrt{2})$ follows from (31). The inequality $4 r \leq 4 r+\frac{8 \sqrt{2}}{3}(R-r \sqrt{2})$ is evident because $R \geq r \sqrt{2}$. The inequality $4 r+4(R-r \sqrt{2}) \leq 3 R \sqrt{2}-2 r$ is equivalent to $0 \leq(R-r \sqrt{2})(3 \sqrt{2}-4)$, which is a true inequality. From the inequalities above, inequalities from (39) are obtained.

Remark 3.1. The inequalities in (39) are stronger than those in (25).
Using the idea from Theorem 3.2 we prove a new inequality in Theorem 3.3.

Theorem 3.3. In any bicentric quadrilateral $A B C D$, the following inequalities hold

$$
\begin{equation*}
\frac{8 \sqrt{2}}{27} \cdot \frac{1}{R}+\frac{100}{27} \cdot \frac{1}{r} \leq \frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}}+\frac{1}{r_{d}} \leq-\frac{28}{27} \cdot \frac{1}{r}+\frac{64 \sqrt{2}}{27} \cdot \frac{R}{r^{2}}+\frac{4}{27} \cdot \frac{R^{2}}{r^{3}} . \tag{40}
\end{equation*}
$$

Proof. Taking (15) into account, the first inequality from (40) is equivalent to

$$
\frac{8 \sqrt{2}}{27} \cdot \frac{1}{R}+\frac{100}{27} \cdot \frac{1}{r} \leq \frac{2\left(\sqrt{4 R^{2}+r^{2}}-r\right)}{r^{2}}
$$

Multiplying by r, noting $x=\frac{R}{r}$, where $x \geq \sqrt{2}$, we have equivalent that

$$
\frac{8 \sqrt{2}}{27} \cdot \frac{1}{x}+\frac{100}{27} \leq 2\left(\sqrt{4 x^{2}+1}-1\right)
$$

equivalent to

$$
2 \sqrt{4 x^{2}+1}-2-\frac{8 \sqrt{2}}{27} \cdot \frac{1}{x}-\frac{100}{27} \geq 0, \quad x \in[\sqrt{2},+\infty)
$$

Let $f:[\sqrt{2},+\infty) \rightarrow \mathbb{R}$ be a function defined by $f(x)=2 \sqrt{4 x^{2}+1}-2-\frac{8 \sqrt{2}}{27} \cdot \frac{1}{x}-\frac{100}{27}$.
We have that $f^{\prime}(x)=\frac{8 x}{\sqrt{4 x^{2}+1}}+\frac{8 \sqrt{2}}{27} \cdot \frac{1}{x^{2}} \geq 0$, for any $x \in[\sqrt{2},+\infty)$, so f is increasing function, from where it follows that $f(x) \geq f(\sqrt{2})=0$, what we had to prove.

The second inequality, similarly is equivalent to

$$
2 \sqrt{4 x^{2}+1}-2+\frac{28}{27}-\frac{64 \sqrt{2}}{27} x-\frac{4}{27} x^{2} \leq 0, \quad x \in[\sqrt{2},+\infty)
$$

Let $g:[\sqrt{2},+\infty) \rightarrow \mathbb{R}$ be a function defined by $g(x)=2 \sqrt{4 x^{2}+1}-2+\frac{28}{27}-\frac{64 \sqrt{2}}{27} x-\frac{4}{27} x^{2}$.
We have $g^{\prime}(x)=\frac{8 x}{\sqrt{4 x^{2}+1}}-\frac{64 \sqrt{2}}{27}-\frac{8}{27} x$, and $g^{\prime \prime}(x)=\frac{8}{\left(4 x^{2}+1\right) \sqrt{4 x^{2}+1}}-\frac{8}{27} \leq 0$, because $x \geq \sqrt{2}$.
Then g^{\prime} is decreasing function and we have $g^{\prime}(x) \leq g^{\prime}(\sqrt{2})=0, x \in[\sqrt{2},+\infty)$, so g is decreasing function. In the end we have that $g(x) \leq g(\sqrt{2})=0, x \in[\sqrt{2},+\infty)$, what had to be demonstrated.

References

[1] M. Drăgan: Inequalities in bicentric quadrilateral. Editura Paralela 45, Piteşti, Romania, 2019.
[2] N. Fuss: De quadrilateris quibus circulum tam inscribere quam circumscribere licet. Nova Acta Academiae Scientiarum imperialis petropolitanae X, 103-125, 1797.
[3] M. Josefsson: Characterizations of cyclic quadrilaterals. International Journal of Geometry 8(1), 5-21, 2019.
[4] M. Josefsson: New characterizations of bicentric quadrilaterals. The Mathematical Gazette 106(567), 414-426, 2022. doi: $10.1017 / \mathrm{mag} .2022 .114$.
[5] O. Pop, N. Minculete, and M. Bencze: An introduction to quadrilateral geometry. Editura Didactică şi Pedagogică, Bucharest, Romania, 2013.

Received August 15, 2023; final form September 29, 2023.

