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Abstract. In this paper, we will demonstrate some identities and inequalities that
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1 Introduction

In this section, we recall some known results that occur in quadrilaterals.
In a given convex quadrilateral ABCD, we note the lengths of the sides by a = AB,

b = BC, c = CD, d = DA, A, B, C, D the angle measures, F the area and s to it’s
semi-perimeter. If the quadrilateral ABCD is cyclic, we note by C(O,R) the circumscribed
circle, where O is the center and R is the radius of this circle. If the quadrilateral ABCD is
tangential, we note by C(I,r) the inscribed circle, where I is the center and r is the radius of
this circle. A quadrilateral ABCD is bicentric if and only if it is cyclic and tangential. Its
study was started by Nicolas Fuss in 1794, see [2], and continues to the present days as can be
seen in [1], Chapter 6 of [5] and [4].

Let ABCD be a convex quadrilateral. The circle tangent to side AB and tangent to the
extensions of its two adjacent sides, is called the excircle of the quadrilateral corresponding to
the side AB. Let C(Ia,ra) this circle, where Ia is the center and ra is the radius. Similarly are
defined C(Ib,rb), C(Ic,rc), C(Id,rd) the excircles of ABCD tangents to the sides b, c, d respectively
(see Figure 1).

The following equalities and inequalities referring to cyclic and bicentric quadrilaterals are
proved in [5].
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Figure 1: Bicentric quadrilateral with excircles

Theorem 1.1. In a bicentric quadrilateral ABCD, the following equalities hold

OI2 = R2 +
(
r −

√
4R2 + r2

)
r, (1)

OI2
a = R2 +

(√
4R2 + r2 − r

)
ra, (2)

F = rs =
√

abcd. (3)

Theorem 1.2. Let ABCD be a bicentric quadrilateral. The following inequality holds

2
√

2r
(√

4R2 + r2
)

− r ≤ 2. (4)

If R = r
√

2, then ABCD is a square, both circles are concentric and (4) holds.
If R ̸= r

√
2, then the equality holds in (4) if and only if ABCD is an isosceles trapezoid.

Moreover, we have
s ≤

√
4R2 + r2 + r (5)

which becomes equality if ABCD is orthodiagonal.
The following inequalities also hold

2
√

2r
(√

4R2 + r2 − r
)

≤ s ≤
√

4R2 + r2 + r. (6)

If R = r
√

2, then both inequalities become equalities and ABCD is a square.
If R ̸= r

√
2, then at least one of the inequalities (6) is strict.

The inequality of Fejes-Tóth holds too

R ≥ r
√

2. (7)

Theorem 1.3. For any bicentric quadrilateral ABCD, the following equality hold

ra = ar

c
(8)
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and its analogues.
Moreover ra, rb, rc and rd are the roots of the equation

x4 − 2
(√

4R2 + r2 − r
)
x3 +

(
s2 + 2r2 − 4r

√
4R2 + r2

)
x2 − 2r2

(√
4R2 + r2 − r

)
x + r4 = 0,

(9)
ra + rb + rc + rd = 2

(√
4R2 + r2 − r

)
, (10)

rarb + rarc + rard + rbrc + rbrd + rcrd = s2 + 2r2 − 4r
√

4R2 + r2, (11)
rarbrc + rarbrd + rarcrd + rbrcrd = 2r2

(√
4R2 + r2 − r

)
, (12)

rarbrcrd = r4, (13)
r2

a + r2
b + r2

c + r2
d = 16R2 − 2s2 + 4r2, (14)

1
ra

+ 1
rb

+ 1
rc

+ 1
rd

=
2
(√

4R2 + r2 − r
)

r2 , (15)

and
1

rarb

+ 1
rarc

+ 1
rard

+ 1
rbrc

+ 1
rbrd

+ 1
rcrd

= s2 + 2r2 − 4r
√

4R2 + r2

r4 . (16)

Theorem 1.4. In the cyclic quadrilateral ABCD, we have the following relations and their
analogues

F =
√

(s − a)(s − b)(s − c)(s − d), (17)

cos A

2 =
√

(s − b)(s − c)
ad + bc

, (18)

tan A

2 =

√√√√(s − a)(s − d)
(s − b)(s − c) , (19)

ra = a

tan A
2 tan B

2
. (20)

2 Characterizations of the quadrilateral IaIbIcId

In this section, we will demonstrate some properties of the quadrilateral IaIbIcId.

Theorem 2.1. If ABCD is a bicentric quadrilateral, then

OI2
a + OI2

b + OI2
c + OI2

d = 8R2 + 4OI2, (21)

where Ia, Ib, Ic, Id are the centers of the excircles corresponding to sides a, b, c, d respectively.

Proof. Taking (2) into account, we have

OI2
a + OI2

b + OI2
c + OI2

d = R2 + (
√

4R2 + r2 − r)ra + R2 + (
√

4R2 + r2 − r)rb

+ R2 + (
√

4R2 + r2 − r)rc + R2 + (
√

4R2 + r2 − r)rd,

from where

OI2
a + OI2

b + OI2
c + OI2

d = 4R2 +
(√

4R2 + r2 − r
)

(ra + rb + rc + rd)
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and by (10) it results in that

OI2
a + OI2

b + OI2
c + OI2

d = 4R2 +
(√

4R2 + r2 − r
)[

2
(√

4R2 + r2 − r
)]

= 4R2 + 8R2 + 2r2 − 4r
√

4R2 + r2 + 2r2 = 8R2 + 4
(
R2 + r2 − r

√
4R2 + r2

)
.

From the identity above and (1), we get the identity from (21).
Lemma 2.1. In the cyclic quadrilateral ABCD, we have the following relations

tan A

2 = (s − a)(s − d)
F

, (22)

ra = aF

(s − a)(a + c) (23)

and analogues.
Proof. From (19) we have

tan A

2 =

√√√√ (s − a)2(s − d)2

(s − a)(s − b)(s − c)(s − d)

and taking (17) into account, the relation (22) follows. Replacing (22) and analogue in (20)
we obtain

ra = a
(s−a)(s−d)

F
+ (s−b)(s−a)

F

from where (23) results.
Lemma 2.2. In the cyclic quadrilateral ABCD, we have the following relation and its
analogues

IcId = s(ad + bc)
√

ab + cd

(a + c)(b + d) · 1√
(s − c)(s − d)

. (24)

Proof. Let IcE ⊥ DC, E ∈ DC (see Figure 2). In triangle IcDE we have sin(ÎcDE) = IcE
IcD

,
equivalent with sin(π

2 − D
2 ) = rc

IcD
, from where IcD = rc

cos D
2

and analogous IdD = rd

cos D
2

. Because
the points Ic, D and Id are collinear, we have IcId = IcD + IdD = rc+rd

cos D
2

.
Taking (23) into account, we have

IcId =
cF

(s−c)(c+a) + dF
(s−d)(d+b)

cos D
2

= F
[
c(d + b)(a + b + c − d) + d(c + a)(a + b − c + d)

]
2(c + a)(d + b)(s − c)(s − d) cos D

2

= F (acd + bcd + abc + abd + b2c + bc2 + a2d + ad2)
2(c + a)(d + b)(s − c)(s − d)

√
(s−a)(s−b)

ab+cd

=

√
(s − a)(s − b)(s − c)(s − d) · 2s(ad + bc)

√
ab + cd

2(c + a)(d + b)(s − c)(s − d)
√

(s − a)(s − b)

= s(ad + bc)
√

ab + cd

(a + c)(b + d)
√

(s − c)(s − d)
,

from where the identity (24) follows.
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Figure 2: Convex quadrilateral with excircles

Theorem 2.2. For any convex quadrilateral ABCD, the quadrilateral IaIbIcId is cyclic.

Proof. In triangle DIcC we have D̂IcC = π − ĈDIc − D̂CIc = π − π−D
2 − π−C

2 = C+D
2 and

similarly ÂIaB = A+B
2 . Because A + B + C + D = 2π, then D̂IcC + ÂIaB = A+B+C+D

2 = π,
so the quadrilateral IaIbIcId is cyclic.

The following theorem is proved in [3, Theorem 6.2]. Here it is demonstrated in an original
way.

Theorem 2.3. If the quadrilateral ABCD is cyclic, then the quadrilateral IaIbIcId is orthodi-
agonal.

Proof. Taking (24) into account, we have

IaIb
2 + IcId

2 = s2(ad + bc)2(ab + cd)
(a + c)2(b + d)2 · 1

(s − a)(s − b) + s2(ad + bc)2(ab + cd)
(a + c)2(b + d)2 · 1

(s − c)(s − d)

= s2(ad + bc)2(ab + cd)[(s − c)(s − d) + (s − a)(s − b)]
(a + c)2(b + d)2F 2

= s2(ad + bc)2(ab + cd)[(a + b − c + d)(a + b + c − d) + (−a + b + c + d)(a − b + c + d)]
4(a + c)2(b + d)2F 2

= s2(ad + bc)2(ab + cd)[(a + b)2 − (c − d)2 + (c + d)2 − (a − b)2]
4(a + c)2(b + d)2F 2

= s2(ad + bc)2(ab + cd)2

(a + c)2(b + d)2F 2

and similarly IaId
2 + IcIb

2 has the same value.
Then IaId

2 + IcIb
2 = IaIb

2 + IcId
2, so the quadrilateral IaIbIcId is orthodiagonal.

Corollary 2.1. If the quadrilateral ABCD is bicentric, then the quadrilateral IaIbIcId is
cyclic and O is the center of circumscribed circle if and only if the quadrilateral ABCD is a
square.
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Proof. O is the center of the circumscribed circle, then OIa = OIb = OIc = OId, and taking
(2) into account we have

√
R2 + (

√
4R2 + r2 − r)ra =

√
R2 + (

√
4R2 + r2 − r)rb

=
√

R2 + (
√

4R2 + r2 − r)rc =
√

R2 + (
√

4R2 + r2 − r)rd,

equivalent to ra = rb = rc = rd.
Using the formulas from (8), we have ar

c
= br

d
= cr

a
= dr

b
. From ar

c
= cr

a
we get a = c and

from br
d

= dr
b

we obtain b = d.
Because ABCD is cyclic and a = c and b = d, we have equivalent to ABCD is rectangle

and because ABCD is tangential we have a = b, so ABCD is a square.

Theorem 2.4. Let ABCD be a cyclic quadrilateral. Then IaIbIcId is tangential quadrilateral
if and only if a = c or b = d.

Proof. According to Theorem 2.3 we have IaIb
2 + IcId

2 = IaId
2 + IcIb

2 and because IaIbIcId is
tangential quadrilateral it results IaIb + IcId = IaId + IcIb.

From here it follows that IaIb · IcId = IaId · IcIb. Taking (24) into account we have

s2(ad + bc)2(ab + cd)
(a + c)2(b + d)2F

= s2(ab + cd)2(ad + bc)
(a + c)2(b + d)2F

,

equivalent with ab + cd = ad + bc, equivalent with (a − c)(d − b) = 0 and the theorem is
proved.

Remark 2.1. The condition a = c means that B = C and A = D, so the inscribed quadrilateral
ABCD is an isosceles trapezium and similarly if b = d.

If a = c the quadrilateral IaIbIcId is a right kite with ÎdIaIb = ÎbIcId = π
2 .

As B = C and A = D, then A + B = C + D = π. In triangle AIaB we have ÂIaB =
π − π−A

2 − π−B
2 = π

2 . The triangles AIaB and DIcC are congruent and the triangles BIbC and
DIdA are isosceles.

Remark 2.2. From Theorem 2.4 it does not follow that for IaIbIcId to be tangential, the
quadrilateral ABCD must be tangential.

3 Inequalities in the quadrilateral IaIbIcId

In this section, we will give some old and new inequalities which take place in the quadrilateral
IaIbIcId. We get some known inequalities from [5, p. 172]. These inequalities are immediately
obtained from (10) to (16) using the inequalities (6) and (7).
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Theorem 3.1. In any bicentric quadrilateral ABCD, the following inequalities hold

4r ≤ ra + rb + rc + rd ≤ 3R
√

2 − 2r, (25)
6r2 ≤ 2r(2

√
4R2 + r2 − 3r) ≤

∑
rarb

≤ 2(2R2 + 2r2 − r
√

4R2 + r2) ≤ 2(3R2 − r
√

4R2 + r2),
(26)

4r3 ≤
∑

rarbrc ≤ R2
(

3R
√

2
2 − r

)
, (27)

rarbrcrd ≤ R4

4 , (28)

4(2R2 − r
√

4R2 + r2) ≤
∑

r2
a ≤ 4(4R2 + 5r2 − 4r

√
4R2 + r2) (29)

and
6
r2 ≤ 2(2

√
4R2 + r2 − 3r)

r3 ≤
∑ 1

rarb

≤ 2(2R2 + 2r2 − r
√

4R2 + r2)
r4 . (30)

Theorem 3.2. In any bicentric quadrilateral ABCD, for β ≤ 8
√

2
3 and δ ≥ 4 the following

inequality hold

4r + β
(
R − r

√
2
)

≤ 4r + 8
√

2
3
(
R − r

√
2
)

≤ ra + rb + rc + rd

≤ 4r + 4
(
R − r

√
2
)

≤ 4r + δ
(
R − r

√
2
)
. (31)

Proof. According to (10) it is true that ∑ ra = 2(
√

4R2 + r2 − r). We find α, β, γ and δ such
that

αr + βR ≤ 2
(√

4R2 + r2 − r
)

≤ γr + δR. (32)

Inequalities (32) hold if and only if 0 ≤ 2
√

4R2 + r2 − 2r − αr − βR and 0 ≥ 2
√

4R2 + r2 −
2r − γr − δR, equivalent to

0 ≤ 2

√√√√4
(

R

r

)2

+ 1 − 2 − α − β
R

r

and 0 ≥ 2
√

4
(

R
r

)2
+ 1 − 2 − γ − δ R

r
. According to (7) we have r

√
2 ≤ R, equivalent to

√
2 ≤ R

r
. Equality holds if and only if ABCD is square. We note x = R

r
and then x ≥

√
2.

The inequalities above become

0 ≤ 2
√

4x2 + 1 − 2 − α − βx (33)

and
0 ≥ 2

√
4x2 + 1 − 2 − γ − δx. (34)

Let f, g : [
√

2, +∞) → R be functions defined by f(x) = 2
√

4x2 + 1 − 2 − α − βx and
g(x) = 2

√
4x2 + 1 − 2 − γ − δx. We put the condition that in (33) and (34) equality occurs

for x =
√

2, equivalent to f(
√

2) = 0 and g(
√

2) = 0, equivalent to

α = 4 − β
√

2 (35)
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and
γ = 4 − δ

√
2. (36)

We have f ′(x) = 8x√
4x2+1 − β, g′(x) = 8x√

4x2+1 − δ and f ′′(x) = g′′(x) = 8
(4x2+1)

√
4x2+1 > 0, for

any x ∈ [
√

2, +∞), so f ′ and g′ are an increasing functions. We put the conditions that
f ′(

√
2) ≥ 0, equivalent to

β ≤ 8
√

2
3 . (37)

On the other hand, for the function g′ we put the condition limx→+∞ g′(x) ≤ 0, equivalent to
limx→+∞

(
8x√

4x2+1 − δ
)

≤ 0, equivalent to 4 − δ ≤ 0, so

δ ≥ 4. (38)

Because f ′ is an increasing function, it result that f ′(x) ≥ f ′(
√

2) ≥ 0 for any x ∈ [
√

2, +∞),
so f ′(x) ≥ 0 for any x ∈ [

√
2, +∞).

x
√

2 +∞
f ′(x) +
f(x) ↗

From the function variation table, it follows that f(x) ≥ 0, for any x ∈ [
√

2, +∞). So,
from (32), (33), (35) and (37) results that (4 − β

√
2)r + βR ≤ 2(

√
4R2 + r2 − r) for any

β ≤ 8
√

2
3 , equivalent to 4R + β(R − r

√
2) ≤ 2(

√
4R2 + r2 − r). Because R − r

√
2 ≥ 0, from

the inequality above we obtain 4r + β(R − r
√

2) ≤ 4r + 8
√

2
3 (R − r

√
2) ≤ 2(

√
4R2 + r2 − r), if

β ≤ 8
√

2
3 . With this, the left member of the inequality (31) is proved.

Because g′ is an increasing function, it results that g′(x) ≤ limx→+∞ g′(x) ≤ 0 for any
x ∈ [

√
2, +∞), so g′(x) ≤ 0, for any x ∈ [

√
2, +∞)

x
√

2 +∞
g′(x) −
g(x) ↘

From the function variation table, it follows that g(x) ≤ 0 for any x ∈ [
√

2, +∞). So,
from (32), (34), (36) and (38) results that 2(

√
4R2 + r2 − r) ≤ (4 − δ

√
2)r + δR for any δ ≥ 4,

equivalent to 2(
√

4R2 + r2 − r) ≤ 4r + δ(R − r
√

2). Because R − r
√

2 ≥ 0, from the inequality
above we obtain 2(

√
4R2 + r2 − r) ≤ 4r + 4(R − r

√
2) ≤ 4r + δ(R − r

√
2). With this, the

right member of the inequality (31) is proved.

Corollary 3.1. In any bicentric quadrilateral ABCD, the following inequalities hold

4r ≤ 4r + 8
√

2
3 (R − r

√
2) ≤ ra + rb + rc + rd ≤ 4r + 4(R − r

√
2) ≤ 3R

√
2 − 2r. (39)

Proof. The inequalities 4r + 8
√

2
3 (R − r

√
2) ≤ ra + rb + rc + rd ≤ 4r + 4(R − r

√
2) follows from

(31). The inequality 4r ≤ 4r + 8
√

2
3 (R − r

√
2) is evident because R ≥ r

√
2. The inequality

4r + 4(R − r
√

2) ≤ 3R
√

2 − 2r is equivalent to 0 ≤ (R − r
√

2)(3
√

2 − 4), which is a true
inequality. From the inequalities above, inequalities from (39) are obtained.

Remark 3.1. The inequalities in (39) are stronger than those in (25).
Using the idea from Theorem 3.2 we prove a new inequality in Theorem 3.3.
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Theorem 3.3. In any bicentric quadrilateral ABCD, the following inequalities hold

8
√

2
27 · 1

R
+ 100

27 · 1
r

≤ 1
ra

+ 1
rb

+ 1
rc

+ 1
rd

≤ −28
27 · 1

r
+ 64

√
2

27 · R

r2 + 4
27 · R2

r3 . (40)

Proof. Taking (15) into account, the first inequality from (40) is equivalent to

8
√

2
27 · 1

R
+ 100

27 · 1
r

≤ 2(
√

4R2 + r2 − r)
r2 .

Multiplying by r, noting x = R
r
, where x ≥

√
2, we have equivalent that

8
√

2
27 · 1

x
+ 100

27 ≤ 2(
√

4x2 + 1 − 1)

equivalent to

2
√

4x2 + 1 − 2 − 8
√

2
27 · 1

x
− 100

27 ≥ 0, x ∈ [
√

2, +∞).

Let f : [
√

2, +∞) → R be a function defined by f(x) = 2
√

4x2 + 1 − 2 − 8
√

2
27 · 1

x
− 100

27 .
We have that f ′(x) = 8x√

4x2+1 + 8
√

2
27 · 1

x2 ≥ 0, for any x ∈ [
√

2, +∞), so f is increasing
function, from where it follows that f(x) ≥ f(

√
2) = 0, what we had to prove.

The second inequality, similarly is equivalent to

2
√

4x2 + 1 − 2 + 28
27 − 64

√
2

27 x − 4
27x2 ≤ 0, x ∈ [

√
2, +∞).

Let g : [
√

2, +∞) → R be a function defined by g(x) = 2
√

4x2 + 1 − 2 + 28
27 − 64

√
2

27 x − 4
27x2.

We have g′(x) = 8x√
4x2+1 − 64

√
2

27 − 8
27x, and g′′(x) = 8

(4x2+1)
√

4x2+1 − 8
27 ≤ 0, because x ≥

√
2.

Then g′ is decreasing function and we have g′(x) ≤ g′(
√

2) = 0, x ∈ [
√

2, +∞), so g is
decreasing function. In the end we have that g(x) ≤ g(

√
2) = 0, x ∈ [

√
2, +∞), what had to

be demonstrated.
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[1] M. Drăgan: Inequalities in bicentric quadrilateral. Editura Paralela 45, Piteşti, Romania,
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