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Abstract. A spatial curve can be described by two natural equations: the cur-
vature and the torsion dependencies of its arc length. If such a curve is taken to
be a torse reverse edge, its bending can be controlled by changing the curve’s tor-
sion, since the curvature does not change. However, in practice, such bending is
difficult to perform, since there is no simple transition from the natural equations
of the spatial curve to the parametric ones. This transition requires numerical
methods for solving a system of differential equations. Another way to solve this
question is to replace the dependency of the torsion of the arc length of the curve
with the dependency of the angle of ascent and also of the arc length of the curve.
In this case, the formulas for the transition from natural to parametric equations
become much simpler and, in some cases, do not require numerical integration.
This approach is used in the article for the construction of torses. The parametric
equations of the torse in the general form are presented, for which the reverse edge
is a spatial curve defined by the dependencies of the curvature and the angle of
ascent of the length of its arc. It is shown that by changing the regularity of the
angle of ascent, the process of the torse bending can be controlled. Examples are
given, and the results are visualized.
Key Words: spatial curve, natural and parametric equations, torse, reverse edge,
bending

1 Introduction

A spatial curve is considered to be defined if two natural equations are known: the dependency
of curvature k and torsion σ of the arc length s : k = k(s) and σ = σ(s). To plot this curve
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in the Cartesian coordinate system, it is necessary to transform to parametric equations.
For this, the kinematics of the accompanying Frenet trihedron can be used. During its
movement along the curve, for the current value of the arc length s, there is a vector ω of the
instantaneous axis of rotation of the trihedron. Its projections onto the trihedron’s orthogonal
axes can be determined by means of Euler’s kinematic equations [1]:

ωτ = ψ′ sin θ sinφ+ θ′ cosφ;
ωn = ψ′ sin θ cosφ− θ′ sinφ;
ωb = ψ′ cos θ + φ′,

(1)

where φ, ψ, θ are Euler’s angles. It is known from differential geometry [7] that ωτ = σ;
ωn = 0, and ωb = k. After substituting these values into (1) and solving regarding φ′, ψ′, and
θ′, it is obtained:

dψ
ds = σ

sinφ
sin θ ; dθ

ds = σ cosφ; dφ
ds = k − σ

sinφ
tg θ . (2)

Even for the simplest case, when k and σ are constant (i.e., a given curve is a helical
line), the differential equations (2) are impossible to integrate. Therefore, the dependencies
φ = φ(s), ψ = ψ(s), and θ = θ(s) must be found by numerical integration. The guide curve
itself can be found by further numerical integration of known expressions [3]:

x =
∫

(cosψ cosφ− sinψ sinφ cos θ) ds;

y =
∫

(sinψ cosφ+ cosψ sinφ cos θ) ds;

z =
∫

sinφ sin θ ds.

(3)

There are other approaches to the construction of curves in space [2, 6, 8] and on the
surface [4]. The paper [5] proposes a transition from the equations k = k(s) and β = β(s),
where β is the angle of ascent of the curve, to parametric equations:

x =
∫

cos
(∫ √

k2 − β′2

cos β ds
)

cos β ds;

y =
∫

sin
(∫ √

k2 − β′2

cos β ds
)

cos β ds;

z =
∫

sin β ds.

(4)

For some dependencies k = k(s) and β = β(s), the parametric equations (4) can be
integrated, i.e., obtained in their final form.

2 Construction of the Spatial Curve According to the Given
Dependencies k=k(s) and β=β(s)

At β = const., the parametric equations (4) describe a slope curve with a constant lifting
angle. A slope curve with constant curvature k = const. is a helical line with a constant
pitch. Let’s consider the construction of a curve with a constant curvature and a linear
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Figure 1: Projections of a constant curvature curve with a linear law of increasing the angle of ascent:
a) frontal projection; b) horizontal projection.

dependence of the angle of ascent β = a · s, where a is a constant value. After substituting
these dependencies into (4) and partial integration, the following is obtained:

x =
∫

cos as cos
(√

k2 − a2

a
ln
[
tg
(

π
4 + a

2s
)])

ds;

y =
∫

cos as sin
(√

k2 − a2

a
ln
[
tg
(

π
4 + a

2s
)])

ds;

z = −cos as
a

.

(5)

As a result of the numerical integration of Equations (5), a curve was constructed for
k = 1 and a = 0.04 when the arc s varies within the interval [0, 15] (Fig. 1).

Fig. 1a shows that the angle β of ascent of the curve increases as its height increases.

3 Constructing Torses and Their Bending by Changing the
Regularity of the Angle of Ascent of the Reverse Edge

Let’s take the spatial curve (4) as a reverse edge and compose the parametric equations of
the torse in a general form. The directional cosines of the rectilinear generatrix are found by
differentiating equations (4). The vector obtained in this way is a unit one since the curve is
described as a function of the arc length s. The parametric equations of the torse are:

X =
∫

cos
(∫ √

k2 − β′2

cos β ds
)

cos β ds+ u cos β cos
(∫ √

k2 − β′2

cos β ds
)

;

Y =
∫

sin
(∫ √

k2 − β′2

cos β ds
)

cos β ds+ u cos β sin
(∫ √

k2 − β′2

cos β ds
)

;

Z =
∫

sin β ds+ u sin β,

(6)
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where u is the second surface variable – the length of the rectilinear generatrix, which starts
from a point on the reverse edge.

Let’s find the first fundamental form of the surface. The partial derivatives of the surface
(6) are:

∂X
∂s

= (cos β − uβ′ sin β) cos
(∫ √

k2 − β′2

cos β ds
)

− u
√
k2 − β′2 sin

(∫ √
k2 − β′2

cos β ds
)

;

∂Y
∂s

=
(

cos β − uβ′ sin β
)

sin
(∫ √

k2 − β′2

cos β ds
)

+ u
√
k2 − β′2 cos

(∫ √
k2 − β′2

cos β ds
)

;
∂Z
∂s

= sin β + uβ′ cos β;

(7)

∂X
∂u

= cos β cos
(∫ √

k2 − β′2

cos β ds
)
;

∂Y
∂u

= cos β sin
(∫ √

k2 − β′2

cos β ds
)
;

∂Z
∂u

= sin β.

(8)

Let’s find the coefficients of the first fundamental form:

E =
(

∂X
∂u

)2
+
(

∂Y
∂u

)2
+
(

∂Z
∂u

)2
= 1;

F = ∂X
∂u

· ∂X
∂s

+ ∂Y
∂u

· ∂Y
∂s

+ ∂Z
∂u

· ∂Z
∂s

= 1;

G =
(

∂X
∂s

)2
+
(

∂Y
∂s

)2
+
(

∂Z
∂s

)2
= 1 + u2k2.

(9)

The first fundamental form will be written:

dS2 = E du2 + 2F du ds+G ds2 = du2 + 2 du ds+ (1 + u2k2) ds2. (10)

The quadratic form (10) does not include the dependence β = β(s). It means that at any
dependence β = β(s), Equations (6) describe the bending of the same torse. At the same
time, the dependence k = k(s) remains unchanged, i.e., the curvature of the reverse edge
remains unchanged depending on the arc length.

4 Examples

The parametric equations (6) make it possible to construct torses – bending of the same
surface with different dependencies β = β(s) and the constant dependence k = k(s).

Example 1
First, let us consider the simplest case – k = const. and β = const.. According to Equa-
tions (6), after integration, parametric equations of the torse-helicoid can be obtained:

X = cos β
k

sin ks

cos β + u cos ks

cos β ;

Y = −cos β
k

cos ks

cos β + u sin ks

cos β ;

Z = s sin β + u sin β.

(11)
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Figure 2: Frontal projections of the torses of helicoids bending on each other by changing the angle
of ascent of the reverse edge: a) angle of ascent β = 17◦; b) angle of ascent β = 34◦.

Since the curvature of the helical line is constant, as well as of the curve in Fig. 1, these
curves can be the reverse edges of two torses that bend on each other, provided that the curva-
tures are equal. In Fig. 2 the torses of the helicoid are plotted according to Equations (11) for
different angles of the back edge when its length is 15 linear units. At β = 0, Equations (11)
describe the sweep.

Example 2

Let’s construct a torse for which the reverse edge is a curve with constant curvature and
a linear law of increasing the angle of ascent (Fig. 1). To construct it, it is necessary to
use numerical methods, by means of which the reverse edge can be constructed according to
Equations (5). The intensity of the change in the angle β = a · s depends on the value of the
constant a. Fig. 3 shows the torses for different values of the constant a.

With a reverse edge length of 15 linear units, the angle of ascent β at the top point is
0.3 rad (Fig. 3a) and 0.6 rad (Fig. 3b), i.e. 17◦ and 34◦. All the shown torses can be bent on
each other since the curvatures of their reverse edges are constant and equal. The process of
bending in the first case (Fig. 2) and in the second (Fig. 3) has a different nature. In the first
case, the torse bends simultaneously over the entire surface with the same intensity, while in
the second case, it bends gradually. The torse shown in Fig. 2a, can be a continuation of the
torse shown in Fig. 3a. The angle of ascent, which increases from zero to 17◦ (Fig. 3a), will
remain constant thereafter (Fig. 3a). The same applies to the torses in Fig. 2b and 3b.

Example 3

Let us consider an example where the curvature and the angle of ascent of the reverse edge are
variables. They are chosen so that Equation (6) can be fully integrated. The dependencies
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Figure 3: Frontal projections of torses bending on each other with a linear increase in the angle of
ascent of the reverse edge: a) β = 0.02s; b) β = 0.04s

k = k(s) and β = β(s) are the following:

k =
√

1 + a2

1 + a2s2 ; β = arctg(as). (12)

The curve given by the natural Equations (12) is located on a cylinder of the unit radius.
Substitution of these equations, keeping in mind the derivative of the angle β expression in
Equation (6), leads to the following result:

In Fig. 4, according to Equations (13), the torses at different values of the constant a are
plotted.

X = sin
(arcsinh as

a

)
+ u√

1 + a2s2
cos
(arcsinh as

a

)
;

Y = cos
(arcsinh as

a

)
− u√

1 + a2s2
sin
(arcsinh as

a

)
;

Z =
√

1 + a2s2

a
+ uas√

1 + a2s2
.

(13)

During the bending of the torse, the reverse edge of which is given by the natural Equa-
tions (12), it deforms while staying on the surface of the cylinder. If a different pattern of
change in the angle of ascent is specified, it will deform differently.

5 Conclusion

The bending of a torse can be controlled by changing the torsion of its reverse edge, while
the curvature pattern as a function of arc length remains unchanged. However, the transition
from the natural equations of curvature and torsion of the reverse edge to the parametric
equations is associated with integration difficulties and cannot be practically carried out to
the final form. Replacing the natural equation of the dependence of the torsion of the arc
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Figure 4: Frontal projections of the torses with a reverse edge on a cylinder, constructed according
to parametric Equations (13): a) a = 0.3; b) a = 0.6; c) a = 0.9

length with the dependence of the angle of ascent on the same parameter greatly facilitates
this transition. In some cases, the parametric equations of the torses can be obtained in
the final form. This makes it possible to construct its intermediate positions during bending
without the use of numerical methods.
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