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Abstract. In this paper, we propose a digital system for the Grasshopper
Rhinoceros environment for designing a specific temporary architectural struc-
ture based on shape with a single fold that can be considered a deployable shelter
surface for architectural purposes. We use the system to imitate the One-Fold
Project by Patkau Architects, which applied metal sheets as the original material
in their prototype. In the proposed method, the system creates conic parts of
the original shape part by part in such a way that allows the user to experience
a similar model and control and change the value of parameters related to the
geometric features of the shape.
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1 Introduction

This research explores the intersection of computer science and architecture in creating tem-
porary origami-inspired structures. Origami is the art and science of paper folding and has
been applied in various fields, such as architecture, space structures, and medical sectors. In
architecture, origami techniques can be used to produce fluid, dynamic, interactive, sustain-
able, and environmentally adaptive structures. These structures can be easily modified and
deployed, requiring less material and response to their surroundings [2, 7]. One example of
an origami-inspired architecture is the One-Fold Project by Patkau Architects [8] inspired by
Paul Jackson’s abstract origami artwork [4]. Patkau Architects is a Canadian architectural
group that specializes in innovative design. The One-Fold Project consists of three 10 × 24
feet metal sheets folded along a single diagonal line to create structures with an apex point
in the middle which represent abstract origami elements that can be used for architectural
purposes. The main objective of our research is to define the mathematical properties of a
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One-Fold Project and create digital models in a computer-aided design (CAD) environment.
Python script in the Grasshopper Rhinoceros plugin environment was used to construct the
One-Fold Project’s 3D digital module shape that the user can manipulate and explore. In this
study, we first review the literature related to curved origami. We then define the geometric
features of the shape to examine it through a digital design process. Next, we explain the
methodology used to create the structure. Finally, we present results and data. Figure 1
shows the renderings of shapes generated by the proposed system.

Figure 1: Final 3D renders of the structure designed by our system in various states.

2 Related Works

In this section, we will provide a comprehensive explanation of the One-Fold project, tracing
its development from its initial concept as a paper material experiment to the creation of
the final shape built with metal sheets in a minimalist expression to show the possibilities of
exploration of space and structure designs in the architecture filed that can be triggered by
simple origami folds. Additionally, we will discuss manufacturing and finishing the project,
providing a complete overview of the entire process.

2.1 One-Fold Project
“One-Fold” is the result of inspiration from Paul Jackson’s abstract origami designs, titled
“One-Crease”[5] designed with a single fold-line along a square or rectangular paper with one
apex along the fold line. Patkau architects initiated the initial steps of their project by folding
and experimenting with square papers creating a conventional origami style to understand the
potential of this minimalist approach. Although paper can be folded easily to create stable
three-dimensional shapes, steel does not share this flexibility. Once folded, the steel sheets
become extremely strong and nearly impossible to fold by hand. Their experiment began
with two square sheets of 24 feet of galvanized metal. By creating a small hole and folding
the metal across it, they can replicate the structure seen on paper. However, this technique
proved to be less effective as the size and thickness of steel increased.

Their solution was to invent a machine capable of folding and breaking a structure that
was similar to the original shape. This innovation allowed them to achieve with steel, which
is typically done sequentially with paper. Via iterative testing with larger sheets, they refined
the machine to transform an 18 gauge 5 × 12 feet steel sheet into a stable, self-supporting
structure called a “broken vault”. This structure, with its free surfaces and curves, expresses
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remarkable curves of natural beauty in minimalist architecture. Their final structure was
a combination of straight lines and elegant curves assembled as a set of simple reflective
landscape shelters using three 10 × 24 feet stainless-steel sheets [8].

2.2 Developable Surfaces in Origami-Inspired Architecture
Developable surfaces are smooth surfaces with zero Gaussian curvature, which means they can
be flattened onto a plane without distortion. The Gaussian curvature of a surface determines
its developability as a result of its principal curvatures. Mean curvature, which desc ribes
local curvature, is derived from principal curvatures. Developable surfaces have at least one
principal curvature value of zero, and straight lines on these surfaces, called rulings, which
define the direction along which the surface can be developed. This property makes them
ideal for deployable folding architecture due to their ability to transform complex 3D surfaces
into paper through bending or folding [11].

Two main approaches appear to be related to deployable architecture. In the first ap-
proach, architects and designers imitate foldable origami structures without considering the
geometric constraints related to the developability of the structure and its surface. Examples
of this approach can be seen in Klein Bottle House by McBride Charles Ryan and Festival
Hall in Erl by Delugan Meissl-Associated Architects [6, 10]. In the second approach, ensuring
developability is part of the design process. All geometric constraints related to developable
surfaces, such as surface length preservation and zero Gaussian curvature, should be applied
when architects consider free-form developable surfaces in their design. Examples of the
second approach can be found in the designs of architect Frank Gehry for the Guggenheim
Museum Bilbao and Walt Disney Concert Hall. Another example is the ARUM installation,
which represents a structure with curved folded tessellations on the surface calculated by
Zaha Hadid’s computational design research group [1, 6, 9, 10].

As mentioned before, developable surfaces are composed of linear elements called rulings.
Focusing on the arrangement of these rulings, they can be classified into three types: cylin-
drical surfaces, where the rulings are parallel; conical surfaces, where the rulings intersect at
a point known as the apex; and tangent developable surfaces, where the rulings are tangent
to a spatial curve. The shape we aim to create in this study is a conical surface, characterized
by the sum of angles around the apex being 360 degrees, ensuring that when unfolded into a
plane, no gaps or overlaps occur around the apex.

3 Methodology

To create the structure seen in the One-Fold project with an apex along the fold-line (named
single-vertex crease pattern in section II of [3]), all we need is a list of 3D vectors, named
direction-vectors, that indicate the path of the rulings starting from the apex point (see Fig-
ure 2). The subsequent steps involve adjusting the lengths of vectors based on the boundary
of the target shape.

In this section, we will explain our target surface by providing detailed descriptions and
illustrations on how to fold a square paper to craft this project as a practical prototype. Then,
we will describe the process of creating a conic structure, named direction-surface, which will
be the fundamental structure for indicating the orientation of rulings. This structure will give
us direction-vectors, and a special point, named apex, that will certify the main frame which
defines the shape of the surface. To conclude the process, we use the angles between two
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adjacent direction-vectors to divide the unfolded plane into the parts, then obtain a series
of lengths from that division, and finally adjust the lengths of direction-vectors according
to the obtained values, which will be described in details in Section 3.3. Via these steps,
we achieve the final surface as depicted in Figure 2. Figure 3 expresses two curves and a
surface, where curves determine the shape of a surface, such as the tensile structure frame
used in architecture involving membrane structures. Moreover, Figure 4 could be helpful in
comprehending the impact of the direction-surface on the final surface.

Figure 2: Arrows on the surface represent direction-vectors.

Figure 3: Steps of emerging direction-surface can be seen from left to right. The left shape shows
two curves in an unfolded state, and the middle shape shows the frame that emerges upon folding
that curves and is the frame of the final surface. The right surface appears when the apex is found
and the direction-vectors are the vectors that overlap on the indicated lines.

Figure 4: Final surfaces are according to the orientation of direction vectors. Upper surfaces indicate
the direction-surface and the lower surfaces are the final surfaces.

3.1 A One-Fold Origami with an Apex Along the Fold-Line
Our shape emerges when a quadrilateral planar sheet is folded along one of its diagonals, as
depicted in Figure 5 for a square plane. After folding from one side, the corners are then
opened and brought downwards, with a point along that diagonal serving as the apex. Folding
the sheet in the opposite direction to the initial fold completes the process, resulting in the
final surface. Sample prototypes made with square sheets of paper are shown in Figure 6.
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Figure 5: The unfolded and folded state of the paper, the fold line has been reversed.

Figure 6: Example of prototypes made by the authors.

3.2 Direction-Surface
One-fold project is made from a square sheet, but here we will explain the more general shape
of the sheets (we will explain the process for non-square cases in the section 3.4). We aim
to develop a method for folding a 2D shape along a fold-line with a hypothetical point on it
serving as the position of the apex on the plane, denoted as H, depicted in Figure 7.

Figure 7: Instance of a planar convex shape with a given fold-line and a position for apex.

The one-fold surface has a kind of concavity along the fold-line (Figure 9), and we start
with taking some steps to apply the concavity to the final surface as well. We are going to
describe how we encounter concavity and determine some variables to control the intensity of
concavity. To accomplish the process, we implement two same curves of a circular arc with
an arbitrary, appropriate radius, where they are going to play the main role in achieving the
orientation and directions of the rulings of the final surface, (Figure 8). We refer to these
curves as “frame-curves” and call the common line between their endpoints the “f -line”.

From now we will try to make a surface using frame-curves, in a way that the sum of the
angles around the apex become 360 degrees in order not to create a tear in the development,
and the sum of the angles around the apex in one sector becomes 180 degrees. We name these
two conditions together the “angle condition around the apex”. As can be seen, our conic
surface would be made by a number of triangles, where the apices of triangles overlap the
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Figure 8: Frame-curves: Two same curves of a circular arc connected together over a line segment
and the position of a point H on the line segment which could be anywhere on it, where the apex
will appear exactly above that.

apex of the surface. We will see that for various positions of H on f -line, the amount of fold
angles of direction-surface will be distributed differently. The readers must be careful that
the direction-surface is a part of the conical surface that is bounded by frame-curves which
hold the angle condition around the apex. This feature of it will guarantee the developability
of the final surface. In other words, the direction-surface is a surface that the final surface
lies on it.

Figure 9: Result of various positions of H on f -line for direction-surface.

Note that we will make the surface on one side of the fold-line, the other side will be made
with the same process. To begin with, consider a curve of a circular arc on a plane where its
central angle is 180◦ + 2α, for some α between 0 and 90◦, as shown in Figure 10.

Figure 10: Left: Frame-curve defined by a circular arc with a central angle larger than 180◦. Right:
Two render results for α = 30◦ and α = 50◦.
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Generally, increasing the central angle from 180◦ to 180◦ + 2α implies decreasing the
length of f -line. We will implement this feature to apply concavity to the surface and we
will see that decreasing the length of f -line, increases the intensity of the concavity along the
fold-line as shown in Figure 10.

The value of α is the most efficient variable in our process to control the concavity of the
fold-line. When α → 0◦ the intensity of concavity decreases and for α → 90◦ the intensity of
concavity increases.

We continue with setting the half of the frame-curves on 3D coordinate system such that
it becomes a subset of {(x, y, z) ∈ R3| y ≥ 0}, f -line locates on x-axis and H be the point
(0, 0, 0). Moreover, for a given angle β we rotate the frame-curves such that the angle between
the plane of frame-curves and y axis becomes β. The angle β is another variable that we use
to control concavity and other features of the surface, specifically, it controls the slope of the
direction-surface (Figure 12), and consequently that of the final surface. Figure 11 depicts
the frame-curves and highlights the angle β. Additionally, in Figure 12, the effects of altering
β on direction-surface are depicted.

Figure 11: Position and orientation of direction-curves on 3D space.

β = 40◦ β = 30◦ β = 15◦

Figure 12: The impact of β on the frame-curves and direction-surface.

Now we search for a point, called apex A(0, 0, h), along z-axis in the 3D space such that
A on the surface satisfies the angle condition around the apex. We utilize the binary search
method to determine the value of h. In this process, we take into account the upper bound
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Figure 13: Finding an appropriate position for the apex that satisfies the angle condition around
the apex.

as well as the lower bound, which are 2R and l = (R+R sin α) sin β, respectively (Figure 11).
Figure 13, represents the various surfaces that can be made via changing the value of h,
where we use the binary search method to find the best position for A according to the angle
condition around the apex.

Consider the surface that we attain via points of divisions of the half of frame-curves
and point A. We obtain the second half of the direction-surface through reflection on the
xz-plane.

According to previous explanations, direction-surface refers to a surface that the final
surface coincides with and it dictates the orientation of the rulings on the final surface. Once
the apex is correctly positioned and we are certain about the sum of angles at the apices
of triangles, we obtain the direction-vectors that dictate direction to the rulings of the final
surface.

3.3 Final Surface
The final surface is the result of the resized and adjusted version of the direction-surface. To
get the final surface we need to resize the length of direction-vectors to the desired size which
would be achieved from the 2D plane that would be folded along its specified fold-line. In
order to maintain the angles of triangles, only the length needs to be changed while keeping
the direction of the vector. We refer to the angles of the triangles incident to the apex as γi’s
(Figure 14).

Figure 14: Total sum of γi’s is 180◦ degrees due to the angle condition around the apex.
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The obtained γi’s are used for dividing the unfolded plane in any side of the fold-line.
We set the unfolded convex shape over xy-plane in such a way that the fold-line overlaps on
x-axis and divide it using γi’s, starting from the positive direction of x-axis.

Figure 15: Dividing the flat unfolded plane to attain lengths of final rulings.

Although the shape of the final surface is limited to one that is a rectangle when flattened
in the One-Fold project, our method can handle more general shapes. Under the condition
that rulings are not fragmented, we can deal with sheets of convex or star-shaped polygons.
In Figure 15, a more general shape is used to illustrate this concept.

3.4 One-Fold Surface of Quadrilaterals
We describe the process that works for quadrilateral planes with specific conditions. If r, s
be two non-zero values then the equation x

r
+ y

s
= 1 indicates a line in 2D space that passes

through r of x-axis and s of y-axis. Using the polar coordinate system we would able to
specify the coordinates of the points on the line by the corresponding angle with respect to
the positive side of x-axis. Setting f(γ) = rs

s cos γ+r sin γ
we get the equation of the line with

variable γ, where γ indicates the angle between the x-axis and the vectors from origin to
a point on the line. Every quadrilateral is bounded with four lines and we choose a list of
quadrilaterals with the condition that their vertices overlap coordinate axes and we will make
the One-Fold surface for them.

Having found γi’s according to the appropriate direction-surface (Section 3.3), we divide
the upper half of the quadrilateral into a number of triangles, see Figure 16.

Figure 16: Dividing by γi’s.
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This division gives us the length of the legs of triangles, where they will be the value of the
length that we want to apply for the direction-vectors and get the final surface. In Figure 17
we share the result of rendering for various direction-surfaces and various quadrilaterals.

Figure 17: From Left: (a): Unfolded state, (b): Direction-surface, (c),(d): Final surfaces. In the
first two rows, quadrilaterals are the same, but direction-surface are not. In the 2nd and 3rd rows
direction surfaces are the same, but quadrilaterals are not.

Now we have lengths and direction vectors and we will resize them according to the
corresponding angles, lengths, and positions. This process will accomplish one side of the
fold line. The same process will make the other side of the surface and the final surface will
be accomplished.

Defining new boundaries for planes instead of quadrilaterals and using γi’s to divide them,
we could make various surfaces such as star-shaped polygons. Two examples can be seen in
the Figure 18.

4 Numerical Results

We defined several variables in the software to express various models of the surface which we
describe here. There are two main scopes of codings in the software, the first one produces
the coordinates of direction-vectors, and the second one uses direction-vectors to create the
final surface for quadrilaterals. Important input values of the first one are as below:

• α (degree): discussed in Section 3.2 (Figure 10).
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Figure 18: From Left: (a): Unfolded state, (b),(c),(d): Final surfaces. The First column is planes
and the rest of them are their (with and without indicated direction-surfaces) final surfaces from
different perspectives.

• β (degree): discussed in Section 3.2 (Figure 11).
• Hc: represents the position of point H on the f -line (Figure 9).
• number of division: represents the number of triangles we assumed for precision.

Besides, input values of the second scope of code are as follows where they indicate the
position of vertices of the quadrilateral (Figure 16):

• X+: any point on the positive side of x-axis
• X−: any point on the negative side of x-axis
• Y +: any point on the positive side of y-axis
• Y −: any point on the negative side of y-axis

We evaluate the time of response of the software to get the results for various amount of
variables. The PC used for the experiments is a standard laptop PC with the following
specifications, Processor: AMD Ryzen 5 5500U, 4 GHz, With Radeon™ Graphics Memory:
8 GB DDR4 RAM, Operating System: Windows 11. The results of the computation time
measurements and amount of error for the angle condition around the apex are presented in
Table 1 and corresponding Figure 19. In this table, the column of “error” indicates how far
the angle condition around the apex is from 360◦.

Table 1: Performance based on various settings of values α, β, number of division and dimensions
of quadrilateral plane.
input values error(deg) time(s) time(s)
(Hc, α, β, # of division, Y +, Y −, X+, X−) 360◦ condition direction-vectors final surface

(0, 50, 45, 90, 300, 300, 300, 300) 1.5 × 10−5 1.1 × 10−2 1.4 × 10−2

(0, 50, 45, 20, 300, 300, 300, 300) 1.5 × 10−5 1.0 × 10−2 1.2 × 10−2

(0, 32, 34, 90, 300, 300, 300, 300) 7.0 × 10−5 4.3 × 10−2 4.6 × 10−2

(68, 32, 34, 90, 300, 96, 103, 201) 1.2 × 10−4 4.2 × 10−2 4.6 × 10−2
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Row 1 Row 2 Row 3 Row 4

Figure 19: Performance of software about 4 of quadrilaterals as depicted in Table 1.

5 Discussion and Conclusion

A digital module for the creation of a specific temporary and sustainable architectural struc-
ture based on origami science is presented in our study. The structure is based on Patkau
Architects’ One-Fold project, which uses steel sheets as the basic material. Our module uses
the Rhino-Grasshopper environment to create a shape with a single fold that can be consid-
ered a deployable shelter surface for architectural use. The module allows the user to control
and change the value of the angle of the fold line and the apex point and visualize the 3D
form of the structure. The angle of the fold line and the apex point, which are our module’s
primary parameters, can be used to assess the similarity and variance between shapes. The
curvature of the shape is determined by the angle of the fold line, while the height and sym-
metry of the shape are determined by the apex point. The user can view the design area and
create new forms and expressions based on that structure by adjusting those parameters.

The results of our study show that it is possible to create a 3D developable origami
structure using a single fold and Rhino-Grasshopper system. By incorporating a mathemat-
ical model into the CAD environment, we were able to generate a variety of shapes while
retaining the origami characteristics of the structure; this method can even be applied to
non-symmetrical configurations. The ability to create a 3D developable origami structure us-
ing a simple mathematical model and a Rhino-Grasshopper system has exciting implications
for the field of architecture. This approach could lead to the development of temporary and
sustainable structures easily adapted to various environments. Our research has demonstrated
the effectiveness of incorporating origami science into a conceptual architectural design and
highlights the potential for future applications in sustainable design practices. Our proposed
system has the potential to inspire further exploration into the use of origami science in archi-
tecture and encourage innovative thinking in sustainable design. The proposed 3D modular
design has some limitations regarding the feasibility and realism of the shape generation. One
of the limitations is that the design needs to consider the method of constructing the shape
that can be supported by two main bases, which are essential for the stability and balance of
the structure. Ano To solve this problem, it is possible to obtain a shape close to the actual
model by optimizing the generated model to find a shape that minimizes bending energy, or
by applying physical simulation. In addition, we will actually create a physical model and
compare it with the digital model obtained using this method.
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