More Variations on Fermat Analogue of the Steiner-Lehmus Theorem

Sadi Abu-Saymeh¹, Mowaffaq Hajja²

¹Concord, NC, U.S.A. ssaymeh@yahoo.com

²Irbid, Jordan mowhajja@yahoo.com

Abstract. The celebrated Steiner-Lehmus theorem states that if the internal bisectors of two angles of a triangle are equal, then the corresponding sides have equal lengths. In this paper, we consider the triangle ABC whose all angles are less than 120°, F is its Fermat point, and per(ABC), [ABC] stand for its perimeter and area, respectively. In Theorem 1, we prove the Fermat analogue of Steiner-Lehmus Theorem that states that if the cevians from B and C through the Fermat point F meet AC and AB at B' and C' respectively, then BB' = CC' is equivalent to AB = AC. More stronger forms are also proved such as AB > ACis equivalent to each of BB' > CC' and per(C'BC > per(B'CB)). More variations on Fermat analogue of Steiner-Lehmus Theorem are proved in Theorems 3 and 4. In Theorem 3, the cevians through F from B and C meet the external angle bisectors of C and B at D and E respectively, and it is proved that, for example, AB = AC is equivalent to each of CE = BD, per(EC'B) = per(DB'C), and [EC'B] = [DB'C] and more stronger forms are also proved such as AB > ACis equivalent to each of CE > BD, per(EC'B) > per(DB'C), and [EC'B] >[DB'C]. In Theorem 4, we prove that if the angle A of the triangle ABC is not equal to 60° and the circumcevians BK and CL of the Fermat point F, that meet the circumcircle of $\triangle ABC$ at K and L, are equal, then the triangle $\triangle ABC$ is isosceles with AB = AC.

Key Words: Steiner-Lehmus Theorem, Fermat point, cevian, circumcevian

MSC 2020: 51M04

1 Introduction

The celebrated Steiner-Lehmus theorem states that if the internal bisectors of two angles of a triangle are equal, then the corresponding sides have equal lengths. That is to say if P is

ISSN 1433-8157/© 2025 by the author(s), licensed under CC BY SA 4.0.

the incenter of $\triangle ABC$ and if the ray \overrightarrow{BP} and the ray \overrightarrow{CP} meet the sides AC and AB at B' and C' respectively, then

$$BB' = CC' \implies AB = AC.$$

An elegant proof of this theorem appeared in [4]. In [1] we considered the line AJ through the incenter P of $\triangle ABC$ that meets BC at J and proved that there is a segment XY on AJ inside of which there exists a point Q with BB' and CC' through Q that meet AC and AB or their extensions at B' and C', respectively, and such that BB' = CC' and $AB \neq AC$ and outside of which there are no such points other than the point J.

Several variations of the Steiner-Lehmus theorem have been considered in the literature. For example, in [2], we replaced the incenter by the Nagel and the Gergonne centers and proved in both cases that if the cevians from B and C of $\triangle ABC$ through the Nagel or Gergonne center meet AC and AB at B' and C' and meet the external angle bisectors of C and B at D and E, respectively, then

$$AB = AC$$
 is equivalent to each of $BB' = CC'$ and $BD = CE$.

In what follows, let all angles of $\triangle ABC$ be less than 120° and F be its Fermat point (or duly Fermat-Torricelli point) defined as the unique interior point of $\triangle ABC$ whose distances from the three vertices have the minimum sum (see e.g. [3, p. 22]) and constructed by erecting externally two equilateral triangles ABQ and ACP on AB and AC, respectively, and F be the intersection of BP and CQ, as seen in Figures 1 and Figure 2. Note that if any angle of $\triangle ABC$ is greater or equal to 120°, then the vertex of this angle is the Fermat point of this triangle.

In this paper we consider in Theorem 1, the cevians from B and C through the Fermat point of $\triangle ABC$ that meet AC and AB at B' and C', respectively, and prove that if BB' = CC', then AB = AC and other stronger forms are proved. In Theorem 3, we consider the cevians from B and C, through the Fermat point of $\triangle ABC$, that meet the external angle bisectors of C and B at D and E, respectively. Then we prove that CE = BD if and only if AB = AC and also other stronger forms are proved. In Theorem 4, let the angle A of the triangle ABC be not equal to 60° and the circumcevians BK and CL of the Fermat point F be equal. Then the triangle ABC is isosceles with AB = AC.

Notations: Let, in all figures, F be the Fermat point of a triangle ABC and

$$\angle FBC = \phi, \quad \angle FCB = \theta, \quad \angle ABF = \delta, \quad \angle ACF = \mu, \quad \angle FAC = \xi, \quad \angle FAB = \omega$$

$$BC = a, \quad AC = b, \quad AB = c.$$

Also, for convenience, we let [ABC], per(ABC) stand for the area and perimeter of $\triangle ABC$.

2 Fermat Analogue of Steiner-Lehmus Theorem

Theorem 1. Let all angles of $\triangle ABC$ be less than 120° and F be its Fermat point. Let $\triangle ABQ$ and $\triangle ACP$ be the equilateral triangles erected externally on AB and AC respectively, and BP and CQ intersect at F as seen in Figures 1 and 2. Let AF produced meet BC at A', BP intersect AC at B', and CQ intersect AB at C'. Then we have the following:

(a) The statement AB = AC is equivalent to each of the statements

(i)
$$BB' = CC'$$
, (ii) $FB = FC$, (iii) $FC' = FB'$, (iv) $BC' = CB'$,
(v) $[C'BC] = [B'CB]$, (vi) $per(C'BC) = per(B'CB)$. (1)

Figure 1: Illustrating the proof of Theorem 1

(b) The statement AB > AC is equivalent to each of the statements

(i)
$$BB' > CC'$$
, (ii) $FB > FC$, (iii) $FC' > FB'$, (iv) $BC' > CB'$,
(v) $[C'BC] > [B'CB]$, (vi) $per(C'BC) > per(B'CB)$. (2)

Proof. As shown in Figures 1 and 2, it is clear that triangles APB and ACQ are congruent by the SAS rule. Therefore

$$PB = QC$$
, $\angle APB = \angle ACQ = \mu$ and $\angle ABP = \angle AQC = \delta$,
and hence the quadrilaterals $AFCP$ and $AFBQ$ are cyclic. Thus
 $\angle AFC = \angle AFB = \angle BFC = 120^{\circ}$, $\mu + \xi = \delta + \omega = \theta + \phi = 60^{\circ}$,
 PB bisects $\angle AFC$, QC bisects $\angle AFB$, and AA' bisects $\angle BFC$. (3)

So if AB = AC, then $\triangle PAB$ is an isosceles triangle and hence $\mu = \delta$ and by (3) we get $\xi = \omega$. Therefore AA' is the perpendicular bisector of BC. Thus we conclude that all statements in (1) hold by symmetry.

So, it is enough to show that AB > AC implies that all inequalities in (2) hold and the rest of (a) and (b) follow by contradiction. To see this, notice that an implication such as

$$AB > AC \implies BB' > CC'$$
 (4)

does indeed yield the converse implication

$$BB' > CC' \implies AB > AC.$$
 (5)

For if BB' > CC', then AB can neither be equal to AC (because this would imply that BB' = CC' by symmetry), nor less than AC (because this would imply that BB' < CC' by (4)). Thus (4) yields (5). Similarly (4) implies that if BB' = CC', then AB = AC.

First, we assume that AB > AC and prove that $\mu > \delta$, $\omega > \xi$, $\theta > \phi$. To achieve this we apply sine law to triangles AFB and AFC. Thus we get

$$\frac{AF}{\sin\delta} = \frac{AB}{\sin 60^{\circ}} = \frac{FB}{\sin \omega}, \frac{AF}{\sin \mu} = \frac{AC}{\sin 60^{\circ}} = \frac{FC}{\sin \xi}$$
 and hence
$$\frac{\sin(\mu)}{\sin(\delta)} = \frac{AB}{AC} > 1 \quad \text{and} \quad \frac{FB}{FC} = \frac{AB\sin \omega}{AC\sin \xi}.$$

But $\mu + \delta < 180^{\circ}$ and $\mu + \xi = \delta + \omega = 60^{\circ}$ by (3). Thus

$$\mu > \delta$$
, $\omega > \xi$, $FB > FC$ and hence $\theta > \phi$ as desired. (6)

Note that $\mu > \delta$ also follows from the fact that AB > AC = AP in $\triangle ABP$.

Next, we prove that all in (b) hold.

(b-i). Since $\mu > \delta$ by (6), there is a point R on FB' such that $\angle FCR = \delta$, and hence the quadrilateral C'BCR is cyclic by the converse of Euclid's proposition III-21. Also, $\angle RCB = \theta + \delta$, $\angle C'BC = \phi + \delta < 90^{\circ}$, and $\theta > \phi$ by (6). Therefore $\angle C'BC < 90^{\circ}$, $\angle RCB + \angle C'BC < 180^{\circ}$, $\angle RCB > \angle C'BC$, but the angles RCB and C'BC are subtended by the chords BR and CC'. Thus BR > CC'. Since BB' > BR, it follows that BB' > CC', as desired.

Second proof. Applying the sine law to triangles C'AC, B'AB, we get

$$\frac{BB'}{\sin(A)} = \frac{AB}{\sin(\angle AB'B)} = \frac{AB}{\sin(\mu + 60^\circ)} \quad \text{and} \quad \frac{CC'}{\sin(A)} = \frac{AC}{\sin(\angle AC'C)} = \frac{AC}{\sin(\delta + 60^\circ)}.$$

But by the sine law applied to $\triangle PAB$ we have $\frac{AB}{AC} = \frac{\sin \mu}{\sin \delta}$. Therefore

$$\frac{BB'}{CC'} = \frac{AB\sin(\delta + 60^\circ)}{AC\sin(\mu + 60^\circ)} = \frac{\sin(\mu)\sin(\delta + 60^\circ)}{\sin(\delta)\sin(\mu + 60^\circ)} = \frac{\sin(\mu)\sin(\delta) + \sqrt{3}\sin(\mu)\cos(\delta)}{\sin(\mu)\sin(\delta) + \sqrt{3}\sin(\delta)\cos(\mu)}.$$

But angles μ , δ are acute and $\mu > \delta$ by (6). So, $\sin \mu > \sin \delta$, $\cos \delta > \cos \mu$ and hence BB' > CC' as required.

(b-ii) FB > FC follows from (6).

(b-iii) Since $2[AFB] = (FA)(FB)\sin 60^{\circ} = FC'(FB + FA)\sin 60^{\circ}$ and $2[AFC] = (FA)(FC)\sin 60^{\circ} = FB'(FC + FA)\sin 60^{\circ}$, we get,

$$\frac{FC'}{FB'} = \frac{FB(FC + FA)}{FC(FB + FA)} = \frac{(FB)(FC) + (FB)(FA)}{(FC)(FB) + (FC)(FA)}.$$

But FB > FC by (b-ii). Thus FC' > FB' as required.

(b-iv) By applying the sine law to triangles C'BF and B'CF, we get

$$\frac{BC'}{\sin 60^{\circ}} = \frac{FC'}{\sin \delta} \quad \text{and} \quad \frac{CB'}{\sin 60^{\circ}} = \frac{FB'}{\sin \mu}.$$

Thus we have

$$\frac{BC'}{CB'} = \frac{FC'\sin\mu}{FB'\sin\delta}.$$

But FC' > FB' by (b-iii) and $\mu > \delta$ by (6). Therefore BC' > CB' as desired.

It is worth mentioning here that a more lengthy proofs for (b-i)-(b-iv) are given in [5, Theorems 2, 4, 6, 9].

(b-v) Since

$$[C'BC] = [C'FB] + [FBC], \quad 2[C'FB] = (FB)(FC')\sin(60^{\circ});$$

 $[B'CB] = [B'FC] + [FBC], \quad 2[B'FC] = (FC)(FB')\sin(60^{\circ}), \quad \text{and}$
 $FB > FC \quad \text{by (b-ii) and} \quad FC' > FB' \quad \text{by (b-iii)},$

we have [C'FB] > [B'FC] and hence [C'BC] > [B'CB] as desired.

Figure 2: Illustrating the proof of Theorem 1(b-vi)

(b-vi) Next, to prove that $\operatorname{per}(C'BC) > \operatorname{per}(B'CB)$, we refer to Figure 2 where F is the Fermat point of $\triangle ABC$ and PAC, QAB are equilateral triangles. It is clear that PB' > B'C and QC' > C'B (because $\xi < 60^\circ$ and $\omega < 60^\circ$ by (3)). So, let M be a point of PB' such that B'M = B'C and N a point of QC' such that C'N = C'B. Then $\operatorname{per}(C'BC) = BC + CN$ and $\operatorname{per}(B'CB) = CB + BM$. Thus

$$\operatorname{per}(C'BC) > \operatorname{per}(B'CB) \iff CN = QC - QN > BM = PB - PM.$$
 But $QC = PB$ by (3). Therefore $\operatorname{per}(C'BC) > \operatorname{per}(B'CB) \iff QN < PM.$ (7)

Since $\angle MB'C = \angle B'FC + \angle FCB' = 60^{\circ} + \mu$, $\angle NC'B = \angle C'FB + \angle FBC' = 60^{\circ} + \delta$. But MB'C, NC'B are isosceles triangles and ACP, ABQ are equilateral triangles. Therefore

$$\angle MCB' = 60^{\circ} - \frac{\mu}{2}, \quad \angle MCP = \frac{\mu}{2} \quad \text{and} \quad \angle NBC' = 60^{\circ} - \frac{\delta}{2}, \quad \angle NBQ = \frac{\delta}{2}.$$
 (8)

So, to complete the proof of (b-vi) we draw the angle bisectors CE of the $\angle ACF$ and BD of the $\angle ABF$ that meet AF at E and D respectively, as seen in Figure 2. But $\angle ACF = \mu$ and $\angle ABF = \delta$. Thus $\angle ACE = \frac{\mu}{2}$ and $\angle ABD = \frac{\delta}{2}$ and hence by ASA rule for congruence of triangles, we have

$$\triangle PCM \cong \triangle ACE$$
 and $\triangle QBN \cong \triangle ABD$. Therefore $PM = AE$ and $QN = AD$.

So, we deduce from (7) and (9) that

$$per(C'BC) > per(B'CB) \iff QN < PM \iff AD < AE$$
 (10)

and to prove that AD < AE, we apply the angle bisector theorem and the sine law to triangles $\triangle ABF$, $\triangle ACF$, and get

$$\frac{FD}{AD} = \frac{FB}{AB} = \frac{\sin \omega}{\sin 60^{\circ}}, \quad \frac{FE}{AE} = \frac{FC}{AC} = \frac{\sin \xi}{\sin 60^{\circ}}.$$

But $\omega > \xi$ by (6). Thus

$$\frac{FD}{AD} > \frac{FE}{AE}.$$

So, we have

$$\frac{FD + AD}{AD} > \frac{FE + AE}{AE}.$$

Therefore

$$\frac{AF}{AD} > \frac{AF}{AE}.$$

Hence AD < AE and we deduce from (10) that per(C'BC) > per(B'CB) as required. \square

Before Theorem 2 and referring to Figure 1 we investigate the relation between the remaining segments AC' and AB' of $\triangle ABC$ when AB > AC and prove the following:

(i)
$$AC' = AB' \iff \angle A = 60^{\circ}$$
, (ii) $AC' > AB' \iff \angle A > 60^{\circ}$, (iii) $AC' < AB' \iff \angle A < 60^{\circ}$. (11)

By applying the sine law to $\triangle AFC'$ and $\triangle AFB'$, we get

$$\frac{AC'}{\sin(60^\circ)} = \frac{AF}{\sin(C')} = \frac{AF}{\sin(60^\circ + \delta)}, \frac{AB'}{\sin(60^\circ)} = \frac{AF}{\sin(B')} = \frac{AF}{\sin(60^\circ + \mu)}.$$

Therefore

$$\frac{AC'}{AB'} = \frac{\sin(60^\circ + \mu)}{\sin(60^\circ + \delta)}.$$

Notice that by (6) we have $\mu > \delta$ and hence $60^{\circ} + \mu > 60^{\circ} + \delta$. Therefore $\sin(60^{\circ} + \mu) = \sin(60^{\circ} + \delta) \iff \mu + \delta = 60^{\circ}, \sin(60^{\circ} + \mu) > \sin(60^{\circ} + \delta) \iff \mu + \delta < 60^{\circ}, \text{ and } \sin(60^{\circ} + \mu) < \sin(60^{\circ} + \delta) \iff \mu + \delta > 60^{\circ}.$ Since $\theta + \phi = 60^{\circ}$, we get $\angle B + \angle C = 60^{\circ} + \mu + \delta$. Thus we deduce from the previous note that

(i)
$$AC' = AB' \iff \mu + \delta = 60^{\circ} \iff \angle B + \angle C = 120^{\circ} \iff \angle A = 60^{\circ}$$
,

(ii)
$$AC' > AB' \iff \mu + \delta < 60^{\circ} \iff \angle B + \angle C < 120^{\circ} \iff \angle A > 60^{\circ}$$
,

(iii)
$$AC' < AB' \iff \mu + \delta > 60^{\circ} \iff \angle B + \angle C > 120^{\circ} \iff \angle A < 60^{\circ}$$
,

as required.

3 More Variations

In this section we consider the two variations of the Fermat analogue of Steiner-Lehmus theorem when the cevians through F from B and C meet the external angle bisectors of C and B and when they meet the circumcircle of the triangle ABC. First, we prove in the next Theorem 2 the additional relation $\theta - \phi > \mu - \delta$ to (6) for any triangle ABC with AB > AC that is of interest by itself and is needed to prove Theorem 3.

Theorem 2. Let F be the Fermat point of $\triangle ABC$ whose angles are less than 120° , AB > AC and let $\angle FBC = \phi$, $\angle FCB = \theta$, $\angle ABF = \delta$, and $\angle ACF = \mu$. Then $\theta - \phi > \mu - \delta$.

Proof. Let Ω be the circumcircle of $\triangle ABC$ and let the equilateral $\triangle MBC$ be erected externally on BC with orthocenter O and PK be the diameter of Ω bisecting BC at R and produced to M, as seen in Figures 3(a) and 3(b). Then it is easy to see that

$$\angle BOC = 120^{\circ}, \angle A + \angle BKC = 180^{\circ} \text{ and hence } K = O \iff \angle A = 60^{\circ},$$

 K is between O and $M \iff 60^{\circ} < \angle A < 120^{\circ} \text{ and } 120^{\circ} > \angle BKC > 60^{\circ}, \text{ and}$ (12)
 K is between R and $O \iff \angle A < 60^{\circ} \text{ and } \angle BKC > 120^{\circ}.$

So, we distinguish two cases:

Figure 3: Illustrating the proof of Theorem 2

Case (a): $60^{\circ} \le \angle A < 120^{\circ}$, $120^{\circ} \ge \angle BKC > 60^{\circ}$ and we refer to Figure 3(a).

Case (b): $\angle A < 60^{\circ}$ and we refer to Figure 3(b).

Let TC be the tangent to Ω at the point C. Then $\angle TCB = \angle A$ (in either case) by alternate segment theorem, $\angle TCB \geq 60^{\circ}$ in Case (a), and $\angle TCB < 60^{\circ}$ in Case (b). So, the ray \overrightarrow{MC} intersects Ω in Case (a) at a point Q of the minor arc KC between K and C when $\angle A > 60^{\circ}$, Q = C when $\angle A = 60^{\circ}$, and at a point Q of the minor arc CA between C and A in Case (b) because $\angle ACB < 120^{\circ}$, as seen in Figures 3(a) and 3(b).

To complete the proof put (in either case)

$$\angle AMK = \alpha$$
, $\angle MAK = \sigma$, $\angle BAM = \omega$, $\angle CAM = \xi$.

Since (in either case) KB = KC and the quadrilateral FBMC is cyclic, it follows that $\angle CFM = \angle CBM = 60^{\circ}$. But $\angle AFC = 120^{\circ}$. So, AM passes through F, AK bisects $\angle A$, and

$$\mu + \xi = 60^{\circ} = \delta + \omega = \phi + \theta$$
, $\omega = \xi + 2\sigma$, $\angle FMC = \angle FBC = \phi$, $\phi + \alpha = 30^{\circ}$,

Thus

$$\theta = 30^{\circ} + \alpha, \quad \phi = 30^{\circ} - \alpha, \quad \theta - \phi = 2\alpha, \quad \mu - \delta = \omega - \xi = 2\sigma.$$

Therefore (in either case)

$$\theta - \phi > \mu - \delta \iff \alpha > \sigma \iff KA > KM.$$
 (13)

To prove that KA > KM we need the Euclid's proposition III-7 that states if PK is a diameter of a circle Ω with center J and V is a point of the radius JK which is not the center J, VA and VD both fall upon the semicircle KDAP of Ω from V and $\angle PVA < \angle PVD$,

then VA > VD. This proposition follows from the open mouth theorem applied to triangles AJV and DJV where AJ = DJ, JV = JV and $\angle AJV > \angle DJV$.

First, if $\angle A=60^\circ$, then K=O by (12), PO=PK is a diameter of Ω and KC=KM. Also, $\triangle PBC$ is equilateral and its orthocenter is the center J of Ω and it follows from Euclid's proposition III-7 that KA>KC=KM.

Next, we prove (in either case) that if $\angle A \neq 60^{\circ}$), then KA > KM.

Since (in Case (a)) KP is a diameter of Ω , $K \neq O$, KA > KC by Euclid's proposition III-7, and KC > OC = OM > KM. because $\angle COK = 120^{\circ}$, it follows that KA > KM.

Also, in Case (b), we have $\angle A < 60^\circ$ and KP is a diameter of Ω . Thus we get by Euclid's proposition III-7 that KA > KQ. Since $\angle KQM = \angle KQC = \angle KAC = \frac{1}{2}\angle A < 30^\circ$ and $\angle KMQ = 30^\circ$, we deduce that KQ > KM in $\triangle KQM$. So, we conclude from KA > KQ and KQ > KM that in Case (b) we have also that KA > KM.

Therefore (in either case) KA > KM and from (13) we deduce that $\theta - \phi > \mu - \delta$ as wanted.

Theorem 3. Let all angles of $\triangle ABC$ be less than 120° , the cevians from B and C through the Fermat point F meet the external angle bisectors of B and C at D and E and meet AC and AB at B' and C' respectively, as shown in Figure 4 below.

Then we have the following:

(a) The statement AB = AC is equivalent to each of the statements

(i)
$$CE = BD$$
, (ii) $BE = CD$, (iii) $[EC'B] = [DB'C]$,
(iv) $per(EC'B) = per(DB'C)$. (14)

(b) The statement AB > AC is equivalent to each of the statements

(i)
$$CE > BD$$
, (ii) $BE > CD$, (iii) $[EC'B] > [DB'C]$,
(iv) $per(EC'B) > per(DB'C)$. (15)

Proof. Let $\angle B = 2\beta$, $180^{\circ} - \angle B = 2\beta'$ and $\angle C = 2\gamma$, $180^{\circ} - \angle C = 2\gamma'$ as shown in Figure 4. Since $60^{\circ} = \mu + \xi = \omega + \delta = \phi + \theta > \theta > \phi$ by (3) and (6) and $2\beta' = \angle A + \angle C = \omega + \theta + 60^{\circ}$, it follows that $\beta' > \theta$. Therefore the cevian from C through F meets the external angle bisector of B at E. Similarly we have $2\gamma' = \angle A + \angle B = \xi + \phi + 60^{\circ}$ and $60^{\circ} > \phi$. Thus $\gamma' > \phi$ and the cevian from B through F meets the external angle bisector of C at D.

Note that if AB = AC, then by (1) we have $\theta = \phi$, $\mu = \delta$, FB = FC and it is clear that $\gamma' = \beta'$ and hence $\triangle DBC \cong \triangle ECB$. Thus we conclude that CE = BD, BE = CD, and all equalities in (14) hold. So, in view of this note and as shown in Theorem 1, it is enough to prove that if AB > AC, then all the inequalities in (15) hold and the rest of (a) and (b) will follow by contradiction. Note also that $\gamma > \beta$ and $\beta' > \gamma'$.

(b-i) Applying the sine law to triangles ECB and DBC we get

$$\frac{CE}{\sin(\beta')} = \frac{BC}{\sin(\beta' - \theta)} = \frac{BE}{\sin(\theta)},\tag{16}$$

$$\frac{BD}{\sin(\gamma')} = \frac{BC}{\sin(\gamma' - \phi)} = \frac{CD}{\sin(\phi)}.$$
 (17)

Figure 4: Illustrating the proof of Theorem 3

Since we have

$$\beta' = \frac{A + \mu + \theta}{2} > \gamma' = \frac{A + \delta + \phi}{2}, \quad \beta' + \gamma' = \frac{A}{2} + 90^{\circ} < 180^{\circ},$$

$$0 < \gamma' - \phi = \frac{A + \delta - \phi}{2} < 90^{\circ}, \quad 0 < \beta' - \theta = \frac{A + \mu - \theta}{2} < 90^{\circ} \quad \text{and},$$

$$\theta - \phi > \mu - \delta \text{ by Theorem 2, it follows that } \delta - \phi > \mu - \theta \text{ and hence}$$

$$90^{\circ} > \gamma' - \phi = \frac{A + \delta - \phi}{2} > \frac{A + \mu - \theta}{2} = \beta' - \theta > 0.$$

$$(18)$$

Thus by (16), (17), and (18) we have

$$\frac{CE}{BD} = \frac{\sin(\beta')\sin(\gamma' - \phi)}{\sin(\gamma')\sin(\beta' - \theta)} > 1.$$

Therefore CE > BD as required in (b-i).

(b-ii) From (16), (17), (18), and $\theta > \phi$ by (6), we get

$$\frac{BE}{CD} = \frac{\sin(\theta)\sin(\gamma' - \phi)}{\sin(\phi)\sin(\beta' - \theta)} > 1.$$

Thus BE > CD as required in (b-ii).

(b-iii) Since $[EC'B] = \frac{1}{2}(BE)(BC')\sin(\beta'), [DB'C] = \frac{1}{2}(CD)(CB')\sin(\gamma'), BE > CD$ by (b-ii), BC' > CB' by $(2), \beta' > \gamma'$ and $\beta' + \gamma' < 180^{\circ}$ by (18), it follows that $\sin(\beta') > \sin(\gamma')$ and hence [EC'B] > [DB'C].

(b-iv) Since we have by (b-ii) that CE = CC' + C'E > BD = BB' + B'D and by (2) that BB' > CC', it follows that C'E > B'D, we have BE > CD by (b-ii), and BC' > CB' by (2). Thus per(EC'B) = C'E + BE + BC' > B'D + CD + CB' = per(DB'C) and the proof is complete.

In the next theorem we consider the case where the circumcevians of the Fermat point F from B and C meet the circumcircle of triangle ABC at K and L respectively.

Theorem 4. Let Ω be the circumcircle of $\triangle ABC$ with all angles less than 120° and the $\angle A \neq 60^{\circ}$ and let the circumcevians BK and CL of the Fermat point F be equal, as shown in Figure 5. Then the triangle ABC is isosceles with AB = AC.

Figure 5: Illustrating the proof of Theorem 4

Proof. Since, in the circle Ω , the angles CAK and CBK subtend the chord CK and $\angle CBK = \phi$, it follows that $\angle CAK = \angle CBK = \phi$ and similarly the angles BCL and BAL subtend the chord LB and $\angle BCL = \theta$, and hence $\angle BAL = \angle BCL = \theta$.

So to complete the proof of the theorem we apply the sine law to $\triangle ABK$ and $\triangle ACL$ and get

$$\frac{BK}{\sin(A+\phi)} = \frac{AB}{\sin(K)} = \frac{AB}{\sin(C)} \text{ and } \frac{CL}{\sin(A+\theta)} = \frac{AC}{\sin(L)} = \frac{AC}{\sin(B)}.$$

Therefore

$$\frac{BK}{CL} = \frac{AB\sin(B)\sin(A+\phi)}{AC\sin(C)\sin(A+\theta)}.$$

But by the sine law applied to $\triangle ABC$ we get $AB\sin(B) = AC\sin(C)$. Thus

$$\frac{BK}{CL} = \frac{\sin(A + \phi)}{\sin(A + \theta)}.$$

But BK = CL. Therefore $\sin(A + \phi) = \sin(A + \theta)$. Since $\sin(A + \phi) = \sin(A + \theta)$ only if $A + \phi = A + \theta$ or $2A + \phi + \theta = 180^{\circ}$ and $\phi + \theta = 60^{\circ}$ by (3), it follows that $\sin(A + \phi) = \sin(A + \theta)$ only if $\phi = \theta$ or $\angle A = 60^{\circ}$. But by assumption $\angle A \neq 60^{\circ}$. Thus $\phi = \theta$ and hence FB = FC and by (1) the triangle ABC is isosceles with AB = AC as required

Note that if AB > AC, then BC' > CB' by (2) and if also $\angle A = 60^{\circ}$ then we have AC' = AB' by (11) and it is clear that $\angle BKC = \angle BLC = \angle A = 60^{\circ}$ for they are subtended by the chord BC and hence the triangles BLF and CKF are equilateral triangles. Therefore BK = BF + FK = LF + FC = CL.

Acknowledgement

The authors would like to thank the anonymous referee for the valuable suggestions that improved the paper considerably.

References

[1] S. Abu-Saymeh and M. Hajja: *More on the Steiner-Lehmus Theorem*. Journal for Geometry and Graphics 14, 127–133, 2010.

- [2] S. ABU-SAYMEH and M. HAJJA: More variations on Nagel and Gergonne analogues of the Steiner-Lehmus theorem. The Mathematical Gazette 108(572), 292–302, 2024. doi: 10.1017/mag.2024.70.
- [3] H. S. M. COXETER: Introduction to Geometry. Wiley, New York, NY, 2nd ed., 1980.
- [4] G. GILBERT and D. MACDONNEL: *The Steiner-Lehmus Theorem*. American Mathematical Monthly **70**, 79–80, 1963.
- [5] T. Mansour and M. Shattuck: Some monotonicity results related to the Fermat point of a triangle. Forum Geometricorum 16, 355–366, 2016.

Received April 1, 2025; final form June 30, 2025.