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Abstract. The celebrated Steiner-Lehmus theorem states that if the internal
bisectors of two angles of a triangle are equal, then the corresponding sides have
equal lengths. In this paper, we consider the triangle ABC whose all angles
are less than 120°, F is its Fermat point, and per(ABC), [ABC] stand for its
perimeter and area, respectively. In Theorem 1, we prove the Fermat analogue of
Steiner-Lehmus Theorem that states that if the cevians from B and C through the
Fermat point F meet AC and AB at B′ and C ′ respectively, then BB′ = CC ′ is
equivalent to AB = AC. More stronger forms are also proved such as AB > AC
is equivalent to each of BB′ > CC ′ and per(C ′BC > per(B′CB). More variations
on Fermat analogue of Steiner-Lehmus Theorem are proved in Theorems 3 and
4. In Theorem 3, the cevians through F from B and C meet the external angle
bisectors of C and B at D and E respectively, and it is proved that, for example,
AB = AC is equivalent to each of CE = BD, per(EC ′B) = per(DB′C), and
[EC ′B] = [DB′C] and more stronger forms are also proved such as AB > AC
is equivalent to each of CE > BD, per(EC ′B) > per(DB′C), and [EC ′B] >
[DB′C]. In Theorem 4, we prove that if the angle A of the triangle ABC is not
equal to 60◦ and the circumcevians BK and CL of the Fermat point F , that meet
the circumcircle of △ABC at K and L, are equal, then the triangle △ABC is
isosceles with AB = AC.
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1 Introduction

The celebrated Steiner-Lehmus theorem states that if the internal bisectors of two angles of
a triangle are equal, then the corresponding sides have equal lengths. That is to say if P is
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the incenter of △ABC and if the ray #    »

BP and the ray #    »

CP meet the sides AC and AB at B′

and C ′ respectively, then
BB′ = CC ′ =⇒ AB = AC.

An elegant proof of this theorem appeared in [4]. In [1] we considered the line AJ through
the incenter P of △ABC that meets BC at J and proved that there is a segment XY on AJ
inside of which there exists a point Q with BB′ and CC ′ through Q that meet AC and AB
or their extensions at B′ and C ′ , respectively, and such that BB′ = CC ′ and AB ̸= AC and
outside of which there are no such points other than the point J .

Several variations of the Steiner-Lehmus theorem have been considered in the literature.
For example, in [2], we replaced the incenter by the Nagel and the Gergonne centers and
proved in both cases that if the cevians from B and C of △ABC through the Nagel or
Gergonne center meet AC and AB at B′ and C ′ and meet the external angle bisectors of C
and B at D and E, respectively, then

AB = AC is equivalent to each of BB′ = CC ′ and BD = CE.

In what follows, let all angles of △ABC be less than 120◦ and F be its Fermat point( or
duly Fermat-Torricelli point) defined as the unique interior point of △ABC whose distances
from the three vertices have the minimum sum (see e.g. [3, p. 22]) and constructed by
erecting externally two equilateral triangles ABQ and ACP on AB and AC, respectively,
and F be the intersection of BP and CQ, as seen in Figures 1 and Figure 2. Note that if any
angle of △ABC is greater or equal to 120◦, then the vertex of this angle is the Fermat point
of this triangle.

In this paper we consider in Theorem 1, the cevians from B and C through the Fermat
point of △ABC that meet AC and AB at B′ and C ′, respectively, and prove that if BB′ =
CC ′, then AB = AC and other stronger forms are proved. In Theorem 3, we consider the
cevians from B and C, through the Fermat point of △ABC, that meet the external angle
bisectors of C and B at D and E, respectively. Then we prove that CE = BD if and only
if AB = AC and also other stronger forms are proved. In Theorem 4, let the angle A of the
triangle ABC be not equal to 60◦ and the circumcevians BK and CL of the Fermat point F
be equal. Then the triangle ABC is isosceles with AB = AC.

Notations: Let, in all figures, F be the Fermat point of a triangle ABC and

∠FBC = ϕ, ∠FCB = θ, ∠ABF = δ, ∠ACF = µ, ∠FAC = ξ, ∠FAB = ω

BC = a, AC = b, AB = c.

Also, for convenience, we let [ABC], per(ABC) stand for the area and perimeter of △ABC.

2 Fermat Analogue of Steiner-Lehmus Theorem

Theorem 1. Let all angles of △ABC be less than 120◦ and F be its Fermat point. Let △ABQ
and △ACP be the equilateral triangles erected externally on AB and AC respectively, and
BP and CQ intersect at F as seen in Figures 1 and 2. Let AF produced meet BC at A′, BP
intersect AC at B′, and CQ intersect AB at C ′. Then we have the following:

(a) The statement AB = AC is equivalent to each of the statements

(i) BB′ = CC ′, (ii) FB = FC, (iii) FC ′ = FB′, (iv) BC ′ = CB′,

(v) [C ′BC] = [B′CB], (vi) per(C ′BC) = per(B′CB).
(1)
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Figure 1: Illustrating the proof of Theorem 1

(b) The statement AB > AC is equivalent to each of the statements

(i) BB′ > CC ′, (ii) FB > FC, (iii) FC ′ > FB′, (iv) BC ′ > CB′,

(v) [C ′BC] > [B′CB], (vi) per(C ′BC) > per(B′CB).
(2)

Proof. As shown in Figures 1 and 2, it is clear that triangles APB and ACQ are congruent
by the SAS rule. Therefore

PB = QC, ∠APB = ∠ACQ = µ and ∠ABP = ∠AQC = δ,
and hence the quadrilaterals AFCP and AFBQ are cyclic. Thus
∠AFC = ∠AFB = ∠BFC = 120◦, µ + ξ = δ + ω = θ + ϕ = 60◦,

PB bisects ∠AFC, QC bisects ∠AFB, and AA′ bisects ∠BFC.

(3)

So if AB = AC, then △PAB is an isosceles triangle and hence µ = δ and by (3) we get ξ = ω.
Therefore AA′ is the perpendicular bisector of BC. Thus we conclude that all statements in
(1) hold by symmetry.

So, it is enough to show that AB > AC implies that all inequalities in (2) hold and the
rest of (a) and (b) follow by contradiction. To see this, notice that an implication such as

AB > AC =⇒ BB′ > CC ′ (4)

does indeed yield the converse implication

BB′ > CC ′ =⇒ AB > AC. (5)

For if BB′ > CC ′, then AB can neither be equal to AC (because this would imply that
BB′ = CC ′ by symmetry), nor less than AC (because this would imply that BB′ < CC ′ by
(4)). Thus (4) yields (5). Similarly (4) implies that if BB′ = CC ′, then AB = AC.

First, we assume that AB > AC and prove that µ > δ, ω > ξ, θ > ϕ. To achieve this we
apply sine law to triangles AFB and AFC. Thus we get

AF

sin δ
= AB

sin 60◦ = FB

sin ω
,

AF

sin µ
= AC

sin 60◦ = FC

sin ξ

and hence sin(µ)
sin(δ) = AB

AC
> 1 and FB

FC
= AB sin ω

AC sin ξ
.
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But µ + δ < 180◦ and µ + ξ = δ + ω = 60◦ by (3). Thus

µ > δ, ω > ξ, FB > FC and hence θ > ϕ as desired. (6)

Note that µ > δ also follows from the fact that AB > AC = AP in △ABP .
Next, we prove that all in (b) hold.
(b-i). Since µ > δ by (6), there is a point R on FB′ such that ∠FCR = δ, and hence the

quadrilateral C ′BCR is cyclic by the converse of Euclid’s proposition III-21. Also, ∠RCB =
θ +δ, ∠C ′BC = ϕ+δ < 90◦, and θ > ϕ by (6). Therefore ∠C ′BC < 90◦, ∠RCB +∠C ′BC <
180◦, ∠RCB > ∠C ′BC, but the angles RCB and C ′BC are subtended by the chords BR
and CC ′. Thus BR > CC ′. Since BB′ > BR, it follows that BB′ > CC ′, as desired.

Second proof. Applying the sine law to triangles C ′AC, B′AB, we get

BB′

sin(A) = AB

sin(∠AB′B) = AB

sin(µ + 60◦) and CC ′

sin(A) = AC

sin(∠AC ′C) = AC

sin(δ + 60◦) .

But by the sine law applied to △PAB we have AB
AC

= sin µ
sin δ

. Therefore

BB′

CC ′ = AB sin(δ + 60◦)
AC sin(µ + 60◦) = sin(µ) sin(δ + 60◦)

sin(δ) sin(µ + 60◦) = sin(µ) sin(δ) +
√

3 sin(µ) cos(δ)
sin(µ) sin(δ) +

√
3 sin(δ) cos(µ)

.

But angles µ, δ are acute and µ > δ by (6). So, sin µ > sin δ, cos δ > cos µ and hence
BB′ > CC ′ as required.

(b-ii) FB > FC follows from (6).
(b-iii) Since 2[AFB] = (FA)(FB) sin 60◦ = FC ′(FB + FA) sin 60◦ and 2[AFC] =

(FA)(FC) sin 60◦ = FB′(FC + FA) sin 60◦, we get,

FC ′

FB′ = FB(FC + FA)
FC(FB + FA) = (FB)(FC) + (FB)(FA)

(FC)(FB) + (FC)(FA) .

But FB > FC by (b-ii). Thus FC ′ > FB′ as required.
(b-iv) By applying the sine law to triangles C ′BF and B′CF , we get

BC ′

sin 60◦ = FC ′

sin δ
and CB′

sin 60◦ = FB′

sin µ
.

Thus we have
BC ′

CB′ = FC ′ sin µ

FB′ sin δ
.

But FC ′ > FB′ by (b-iii) and µ > δ by (6). Therefore BC ′ > CB′ as desired.
It is worth mentioning here that a more lengthy proofs for (b-i)–(b-iv) are given in [5,

Theorems 2, 4, 6, 9].
(b-v) Since

[C ′BC] = [C ′FB] + [FBC], 2[C ′FB] = (FB)(FC ′) sin(60◦);
[B′CB] = [B′FC] + [FBC], 2[B′FC] = (FC)(FB′) sin(60◦), and

FB > FC by (b-ii) and FC ′ > FB′ by (b-iii),

we have [C ′FB] > [B′FC] and hence [C ′BC] > [B′CB] as desired.
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Figure 2: Illustrating the proof of Theorem 1(b-vi)

(b-vi) Next, to prove that per(C ′BC) > per(B′CB), we refer to Figure 2 where F is the
Fermat point of △ABC and PAC, QAB are equilateral triangles. It is clear that PB′ > B′C
and QC ′ > C ′B (because ξ < 60◦ and ω < 60◦ by (3)). So, let M be a point of PB′ such that
B′M = B′C and N a point of QC ′ such that C ′N = C ′B. Then per(C ′BC) = BC + CN
and per(B′CB) = CB + BM . Thus

per(C ′BC) > per(B′CB) ⇐⇒ CN = QC − QN > BM = PB − PM. But
QC = PB by (3). Therefore per(C ′BC) > per(B′CB) ⇐⇒ QN < PM.

(7)

Since ∠MB′C = ∠B′FC + ∠FCB′ = 60◦ + µ, ∠NC ′B = ∠C ′FB + ∠FBC ′ = 60◦ + δ. But
MB′C, NC ′B are isosceles triangles and ACP , ABQ are equilateral triangles. Therefore

∠MCB′ = 60◦ − µ

2 , ∠MCP = µ

2 and ∠NBC ′ = 60◦ − δ

2 , ∠NBQ = δ

2 . (8)

So, to complete the proof of (b-vi) we draw the angle bisectors CE of the ∠ACF and BD
of the ∠ABF that meet AF at E and D respectively, as seen in Figure 2. But ∠ACF = µ
and ∠ABF = δ. Thus ∠ACE = µ

2 and ∠ABD = δ
2 and hence by ASA rule for congruence

of triangles, we have

△PCM ∼= △ACE and △QBN ∼= △ABD. Therefore PM = AE and QN = AD.
(9)

So, we deduce from (7) and (9) that

per(C ′BC) > per(B′CB) ⇐⇒ QN < PM ⇐⇒ AD < AE (10)

and to prove that AD < AE, we apply the angle bisector theorem and the sine law to triangles
△ABF , △ACF , and get

FD

AD
= FB

AB
= sin ω

sin 60◦ ,
FE

AE
= FC

AC
= sin ξ

sin 60◦ .

But ω > ξ by (6). Thus
FD

AD
>

FE

AE
.

So, we have
FD + AD

AD
>

FE + AE

AE
.
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Therefore
AF

AD
>

AF

AE
.

Hence AD < AE and we deduce from (10) that per(C ′BC) > per(B′CB) as required.

Before Theorem 2 and referring to Figure 1 we investigate the relation between the re-
maining segments AC ′ and AB′ of △ABC when AB > AC and prove the following:

(i) AC ′ = AB′ ⇐⇒ ∠A = 60◦, (ii) AC ′ > AB′ ⇐⇒ ∠A > 60◦,

(iii) AC ′ < AB′ ⇐⇒ ∠A < 60◦.
(11)

By applying the sine law to △AFC ′ and △AFB′, we get

AC ′

sin(60◦) = AF

sin(C ′) = AF

sin(60◦ + δ) ,
AB′

sin(60◦) = AF

sin(B′) = AF

sin(60◦ + µ) .

Therefore
AC ′

AB′ = sin(60◦ + µ)
sin(60◦ + δ) .

Notice that by (6) we have µ > δ and hence 60◦ + µ > 60◦ + δ. Therefore sin(60◦ + µ) =
sin(60◦ + δ) ⇐⇒ µ + δ = 60◦, sin(60◦ + µ) > sin(60◦ + δ) ⇐⇒ µ + δ < 60◦, and
sin(60◦ +µ) < sin(60◦ +δ) ⇐⇒ µ+δ > 60◦. Since θ+ϕ = 60◦, we get ∠B+∠C = 60◦ +µ+δ.

Thus we deduce from the previous note that

(i) AC ′ = AB′ ⇐⇒ µ + δ = 60◦ ⇐⇒ ∠B + ∠C = 120◦ ⇐⇒ ∠A = 60◦,

(ii) AC ′ > AB′ ⇐⇒ µ + δ < 60◦ ⇐⇒ ∠B + ∠C < 120◦ ⇐⇒ ∠A > 60◦,

(iii) AC ′ < AB′ ⇐⇒ µ + δ > 60◦ ⇐⇒ ∠B + ∠C > 120◦ ⇐⇒ ∠A < 60◦,

as required.

3 More Variations

In this section we consider the two variations of the Fermat analogue of Steiner-Lehmus
theorem when the cevians through F from B and C meet the external angle bisectors of C
and B and when they meet the circumcircle of the triangle ABC. First, we prove in the next
Theorem 2 the additional relation θ − ϕ > µ − δ to (6) for any triangle ABC with AB > AC
that is of interest by itself and is needed to prove Theorem 3.

Theorem 2. Let F be the Fermat point of △ABC whose angles are less than 120◦, AB > AC
and let ∠FBC = ϕ, ∠FCB = θ, ∠ABF = δ, and ∠ACF = µ. Then θ − ϕ > µ − δ.

Proof. Let Ω be the circumcircle of △ABC and let the equilateral △MBC be erected ex-
ternally on BC with orthocenter O and PK be the diameter of Ω bisecting BC at R and
produced to M , as seen in Figures 3(a) and 3(b). Then it is easy to see that

∠BOC = 120◦, ∠A + ∠BKC = 180◦ and hence K = O ⇐⇒ ∠A = 60◦,
K is between O and M ⇐⇒ 60◦ < ∠A < 120◦ and 120◦ > ∠BKC > 60◦, and

K is between R and O ⇐⇒ ∠A < 60◦ and ∠BKC > 120◦.

(12)

So, we distinguish two cases:



S. Abu-Saymeh, M. Hajja: More Variations on Fermat Analogue of the . . . 49

α

θϕ

µ

δ

ϕ

ξ
σ

ξ
+

σ

Ω

B C

M

R

O

A
P

K

F

T
Q

θϕ

µδ

ξσ

ξ
+

σ

ϕα

Ω

ξ
+

σ

B C

M

R

O

A
P

K

F

Q

T

(a) (b)

Figure 3: Illustrating the proof of Theorem 2

Case (a): 60◦ ≤ ∠A < 120◦, 120◦ ≥ ∠BKC > 60◦ and we refer to Figure 3(a).
Case (b): ∠A < 60◦ and we refer to Figure 3(b).
Let TC be the tangent to Ω at the point C. Then ∠TCB = ∠A (in either case) by

alternate segment theorem, ∠TCB ≥ 60◦ in Case (a), and ∠TCB < 60◦ in Case (b). So, the
ray #     »

MC intersects Ω in Case (a) at a point Q of the minor arc KC between K and C when
∠A > 60◦, Q = C when ∠A = 60◦, and at a point Q of the minor arc CA between C and A
in Case (b) because ∠ACB < 120◦, as seen in Figures 3(a) and 3(b).

To complete the proof put (in either case)

∠AMK = α, ∠MAK = σ, ∠BAM = ω, ∠CAM = ξ.

Since (in either case) KB = KC and the quadrilateral FBMC is cyclic, it follows that
∠CFM = ∠CBM = 60◦. But ∠AFC = 120◦. So, AM passes through F , AK bisects ∠A,
and

µ + ξ = 60◦ = δ + ω = ϕ + θ, ω = ξ + 2σ, ∠FMC = ∠FBC = ϕ, ϕ + α = 30◦,

Thus
θ = 30◦ + α, ϕ = 30◦ − α, θ − ϕ = 2α, µ − δ = ω − ξ = 2σ.

Therefore (in either case)

θ − ϕ > µ − δ ⇐⇒ α > σ ⇐⇒ KA > KM. (13)

To prove that KA > KM we need the Euclid’s proposition III-7 that states if PK is a
diameter of a circle Ω with center J and V is a point of the radius JK which is not the center
J , V A and V D both fall upon the semicircle KDAP of Ω from V and ∠PV A < ∠PV D,
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then V A > V D. This proposition follows from the open mouth theorem applied to triangles
AJV and DJV where AJ = DJ , JV = JV and ∠AJV > ∠DJV .

First, if ∠A = 60◦, then K = O by (12), PO = PK is a diameter of Ω and KC = KM .
Also, △PBC is equilateral and its orthocenter is the center J of Ω and it follows from Euclid’s
proposition III-7 that KA > KC = KM .

Next, we prove (in either case) that if ∠A ̸= 60◦), then KA > KM .
Since (in Case (a)) KP is a diameter of Ω, K ̸= O, KA > KC by Euclid’s proposition

III-7, and KC > OC = OM > KM . because ∠COK = 120◦, it follows that KA > KM .
Also, in Case (b), we have ∠A < 60◦ and KP is a diameter of Ω. Thus we get by Euclid’s

proposition III-7 that KA > KQ . Since ∠KQM = ∠KQC = ∠KAC = 1
2∠A < 30◦ and

∠KMQ = 30◦, we deduce that KQ > KM in △KQM . So, we conclude from KA > KQ
and KQ > KM that in Case (b) we have also that KA > KM .

Therefore (in either case) KA > KM and from (13) we deduce that θ − ϕ > µ − δ as
wanted.

Theorem 3. Let all angles of △ABC be less than 120◦, the cevians from B and C through
the Fermat point F meet the external angle bisectors of B and C at D and E and meet AC
and AB at B′ and C ′ respectively, as shown in Figure 4 below.

Then we have the following:
(a) The statement AB = AC is equivalent to each of the statements

(i) CE = BD, (ii) BE = CD, (iii) [EC ′B] = [DB′C],
(iv) per(EC ′B) = per(DB′C).

(14)

(b) The statement AB > AC is equivalent to each of the statements

(i) CE > BD, (ii) BE > CD, (iii) [EC ′B] > [DB′C],
(iv) per(EC ′B) > per(DB′C).

(15)

Proof. Let ∠B = 2β, 180◦ −∠B = 2β′ and ∠C = 2γ, 180◦ −∠C = 2γ′ as shown in Figure 4.
Since 60◦ = µ+ξ = ω+δ = ϕ+θ > θ > ϕ by (3) and (6) and 2β′ = ∠A+∠C = ω+θ+60◦, it
follows that β′ > θ. Therefore the cevian from C through F meets the external angle bisector
of B at E. Similarly we have 2γ′ = ∠A + ∠B = ξ + ϕ + 60◦ and 60◦ > ϕ. Thus γ′ > ϕ and
the cevian from B through F meets the external angle bisector of C at D.

Note that if AB = AC, then by (1) we have θ = ϕ, µ = δ, FB = FC and it is clear that
γ′ = β′ and hence △DBC ∼= △ECB. Thus we conclude that CE = BD, BE = CD, and all
equalities in (14) hold. So, in view of this note and as shown in Theorem 1, it is enough to
prove that if AB > AC, then all the inequalities in (15) hold and the rest of (a) and (b) will
follow by contradiction. Note also that γ > β and β′ > γ′.

(b-i) Applying the sine law to triangles ECB and DBC we get

CE

sin(β′) = BC

sin(β′ − θ) = BE

sin(θ) , (16)

BD

sin(γ′) = BC

sin(γ′ − ϕ) = CD

sin(ϕ) . (17)
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Since we have

β′ = A + µ + θ

2 > γ′ = A + δ + ϕ

2 , β′ + γ′ = A

2 + 90◦ < 180◦,

0 < γ′ − ϕ = A + δ − ϕ

2 < 90◦, 0 < β′ − θ = A + µ − θ

2 < 90◦ and,

θ − ϕ > µ − δ by Theorem 2, it follows that δ − ϕ > µ − θ and hence

90◦ > γ′ − ϕ = A + δ − ϕ

2 >
A + µ − θ

2 = β′ − θ > 0.

(18)

Thus by (16), (17), and (18) we have

CE

BD
= sin(β′) sin(γ′ − ϕ)

sin(γ′) sin(β′ − θ) > 1.

Therefore CE > BD as required in (b-i).
(b-ii) From (16), (17), (18), and θ > ϕ by (6), we get

BE

CD
= sin(θ) sin(γ′ − ϕ)

sin(ϕ) sin(β′ − θ) > 1.

Thus BE > CD as required in (b-ii).
(b-iii) Since [EC ′B] = 1

2(BE)(BC ′) sin(β′), [DB′C] = 1
2(CD)(CB′) sin(γ′), BE > CD by

(b-ii), BC ′ > CB′ by (2), β′ > γ′ and β′ + γ′ < 180◦ by (18), it follows that sin(β′) > sin(γ′)
and hence [EC ′B] > [DB′C].

(b-iv) Since we have by (b-ii) that CE = CC ′ + C ′E > BD = BB′ + B′D and by (2)
that BB′ > CC ′, it follows that C ′E > B′D, we have BE > CD by (b-ii), and BC ′ > CB′

by (2). Thus per(EC ′B) = C ′E + BE + BC ′ > B′D + CD + CB′ = per(DB′C) and the
proof is complete.

In the next theorem we consider the case where the circumcevians of the Fermat point F
from B and C meet the circumcircle of triangle ABC at K and L respectively.

Theorem 4. Let Ω be the circumcircle of △ABC with all angles less than 120◦ and the
∠A ̸= 60◦ and let the circumcevians BK and CL of the Fermat point F be equal, as shown
in Figure 5. Then the triangle ABC is isosceles with AB = AC.
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Proof. Since, in the circle Ω, the angles CAK and CBK subtend the chord CK and ∠CBK =
ϕ, it follows that ∠CAK = ∠CBK = ϕ and similarly the angles BCL and BAL subtend the
chord LB and ∠BCL = θ, and hence ∠BAL = ∠BCL = θ.

So to complete the proof of the theorem we apply the sine law to △ABK and △ACL
and get

BK

sin(A + ϕ) = AB

sin(K) = AB

sin(C) and CL

sin(A + θ) = AC

sin(L) = AC

sin(B) .

Therefore
BK

CL
= AB sin(B) sin(A + ϕ)

AC sin(C) sin(A + θ) .

But by the sine law applied to △ABC we get AB sin(B) = AC sin(C). Thus
BK

CL
= sin(A + ϕ)

sin(A + θ) .

But BK = CL. Therefore sin(A + ϕ) = sin(A + θ). Since sin(A + ϕ) = sin(A + θ) only if
A+ϕ = A+θ or 2A+ϕ+θ = 180◦ and ϕ+θ = 60◦ by (3), it follows that sin(A+ϕ) = sin(A+θ)
only if ϕ = θ or ∠A = 60◦. But by assumption ∠A ̸= 60◦. Thus ϕ = θ and hence FB = FC
and by (1) the triangle ABC is isosceles with AB = AC as required

Note that if AB > AC, then BC ′ > CB′ by (2) and if also ∠A = 60◦ then we have
AC ′ = AB′ by (11) and it is clear that ∠BKC = ∠BLC = ∠A = 60◦ for they are subtended
by the chord BC and hence the triangles BLF and CKF are equilateral triangles. Therefore
BK = BF + FK = LF + FC = CL.
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