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Abstract. A polyhedron is flexible if it can be continuously deformed preserving
the shape and dimensions of each face. In the late 1970’s Klaus Steffen constructed
a sphere-homeomorphic embedded flexible polyhedron with triangular faces and
with 9 vertices only, which is well-known in the theory of flexible polyhedra. At
about the same time, a hypothesis was formulated that the Steffen polyhedron has
the least possible number of vertices among all embedded flexible polyhedra with-
out boundary. A counterexample to this hypothesis was constructed by Matteo
Gallet, Georg Grasegger, Jan Legersky, and Josef Schicho in 2024 only. Surpris-
ingly, until now, no proof has been published in the mathematical literature that
the Steffen polyhedron is embedded. Probably, this fact was considered obvious
to everyone who made a cardboard model of this polyhedron. In this article, we
prove this fact using computer symbolic calculations.
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1 Introduction

Let K be a connected 2-dimensional simplicial complex with or without boundary. Depending
on the context, a polyhedron is either a continuous map f: K — R3 which is affine linear and
nondegenerate on every simplex or the image f(K) C R? of K. A polyhedron is embedded
(or self-intersection free) if f is injective. A polyhedron Py: K — R? is flezible if there are
e > 0 and a continuous family {P;}ie(_c.) of polyhedra P;: K — R® such that, for every
t # 0, P,(0) is congruent to Py(o) for every o € K, while P,(K) and Py(K) themselves are
not congruent to each other. The family {P, }ic(_..) is a (nontrivial) flex of Py, and ¢ is a
parameter of the flex.

The first examples of flexible polyhedra without boundary in R?® were constructed by
Raoul Bricard in 1897 in [4]. Nowadays they are called Bricard octahedra since, for all of
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them, K is equivalent to the natural simplicial complex of a regular octahedron. Every
Bricard octahedron has self-intersections.

The first example of an embedded flexible polyhedron without boundary in R? was con-
structed by Robert Connelly in 1977 in [5]; it has 18 vertices and its simplicial complex K is
homeomorphic to the sphere.

In 1978, Klaus Steffen constructed an example of an embedded sphere-homeomorphic
flexible polyhedron with only 9 vertices. Though Steffen never published his example in a
mathematical journal, nowadays it is widely known as the Steffen polyhedron. For a long
period of time the Steffen polyhedron was supposed to have the least possible number of
vertices among all embedded flexible polyhedra without boundary. A counterexample was
constructed by Matteo Gallet, Georg Grasegger, Jan Legersky, and Josef Schicho in 2024
only, see [9].

Surprisingly, until now, no proof has been published in the mathematical literature that
the Steffen polyhedron is embedded. Probably, the reason is that this fact is considered
obvious to everyone who made a cardboard model of this polyhedron.

In this article, we give the first proof of this fact. Our proof is based on computer symbolic
calculations. The corresponding algorithm was previously presented in our article [2] (for the
study of another problem) and in our post [3] (for the study of the embeddedness of the
Steffen polyhedron, but many mathematical details were omitted there).

2 The Steffen Polyhedron S

In Section 2 we briefly explain what the Steffen polyhedron is. The easiest way to do this
is to explain how to build its cardboard model. Another approach to introduce the Steffen
polyhedron to the reader is realized in [1].
A cardboard model of the Steffen polyhedron can be glued from the development shown
in Fig. 1. The gluing instructions and explanations are given in the caption under the figure.
When gluing, it is useful to keep in mind the following two facts, for which we refer the
reader to [1]:

(a) after performing all the gluings a, ..., h, the spatial distance between the vertices v
and v, is automatically set to 11 (this is not immediately obvious from Fig. 1, because
v3 and vy are not connected by an edge);

(b) after performing the gluings a,..., f, but not the gluings g and h, both the vertex
vg of the triangle {vs,vg,v9} and the vertex vy of the triangle {v7,vs,v9} can move
independently of each other along a circle, v, which is the intersection of two spheres
of the same radius 10; one sphere is centered at vz, the other at vy.

We call the Steffen polyhedron Sy a polyhedron glued from the development shown in
Fig. 1 in accordance with the gluing instructions given in the caption under Fig. 1 and such
that its vertex vy is located on the ray coming out of the midpoint of the segment {vs,vs}
and passing through the the midpoint of the segment {vy,v,}.

Let us introduce a right-handed Cartesian coordinate system in Euclidean 3-space such
that its origin 0 coincides with the midpoint of {vs,v4} and its positive z- and z-semiaxis
pass through the point v, and the middle point of {v;, vy}, respectively; see Fig. 2. In this
article, we use coordinates of points relative to this coordinate system only.

By definition, put v; = (x;,y;, 2;) for every j =1,...,9.



V. Alexandrov, E. Volokitin: Steffen’s Flexible Polyhedron Is Embedded. .. 81

Figure 1: Development of the Steffen polyhedron. Solid lines represent mountain folds, dash lines
are valley folds. Integer numbers (other than subscripts) indicate edge lengths. Symbols v;

indicate vertices, j = 1,...,9. Letters a, ..., h, written outside the development, provide gluing
instructions.
The coordinates of the vertices vy, ..., v4, and vy are known to us from the above:
17 /166 17 /166
U1 = 07_7a7 ) Vg = 07777 )
2 2 2 2 1)
11 3v/31
—v3=v4=|—,0,0]; v9=1{0,0,———|.
2 2
To find the coordinates of the remaining vertices vs,...,vs, we note that, for every j =
5,...,8, v; is connected by an edge to some three vertices among those, whose coordinates

are specified in (1). For example, for vg, these are vy, vy, and vg. Therefore, to find the
coordinates of vg, we solve the following system of algebraic equations

(26 — 21)* + (Y6 — 11)* + (26 — 21)* = 10%
(26 — 24)* + (Y6 — va)* + (26 — 24)* = 57, (2)
(26 — 29)” + (Yo — Yo)* + (26 — 29)* = 12

with respect to xg, ys, and zg. We solve (2) symbolically using the Wolfram Mathematica
software system and obtain two solutions (xy,ys, 25) and (z¢, yg, 24 ), which correspond to
points v; and vy in Euclidean 3-space, which obviously are symmetric to each other with
respect to the plane, passing through the vertices vy, vy, and vg. In Fig. 1, the edge {vy, v9}
is a mountain fold, while {v1,v4} is a valley fold. Hence, the vertices v3 and vg are located in
the different halfspaces determined by the plane passing through the vertices vy, v9, and vy;
equivalently, we can say that the vectors v3 and vg are such that the following mixed products

((v2 = 1) X (v —v1)) - (v3—v1) and  ((v2 —v1) X (va —v1)) - (v6 — v1) (3)
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v z

Figure 2: The right-handed Cartesian coordinate system in FEuclidean 3-space associated with the
Steffen polyhedron Sp.

have opposite signs. So, using (3) and executing symbolic calculations with Wolfram Math-
ematica, we detect the vertex vg = (¢, ys, 26) among the two solutions v and vy to (2). It
turns out that

258783870279 — 389769468+/5146 + 102v/31a

Te

51998549858
 —89746193059 4 533205663v/5146 — 33v/31a — 111/166a (4)
Y6 = 25999274929 !
b — 6920764197+/31 + 714577358+/166 — 187\/5.
25999274929

where a = 23829556819105727 + 373057935372156+/5146.

Using similar arguments, we find expressions in radicals for the coordinates of the vertices
vs, v7, and vg through symbolic calculations and use them in Section 4. Those expressions
are even longer then the expressions for the coordinates of vg in (4) and, thus, are even
less informative. So, we omit them, but write the approximate values for the coordinates of
V5, ...,0Us:

vs A~ (—1.98248,0.834943, 3.45397), v ~ (6.89559, —4.79631, 0.218428),

vr &~ (—6.89559,4.79631,0.218428), wvg ~ (1.98248, —0.834943, 3.45397). (5)

The main goal of this article is to prove that the Steffen polyhedron Sy with the vertices
v1, ..., 9, the coordinates of which are given in radicals by (1), (4), and by the expressions
in radicals, corresponding to (5), is embedded. This goal will be achieved using symbolic
calculations described in Sections 3 and 4.

We have already mentioned that the Steffen polyhedron Sy is flexible. Let us define its
flex {S;}ie(—e,e) right now. To do this, it suffices to specify the position of each vertex v;(t)
of the polyhedron S;. By definition, we put v;(¢) = v; for all j = 1,...,4, and define vy(t)
as the point lying on the circle 7, defined in the property (b) in Section 2, and such that the
oriented angle Zvg(t)0vy is equal to t radians; finally, we calculate the coordinates of v;(t)
for all j =5,...,8, from the coordinates of v;(t), j = 1,...,4, and vg(t) in the same way as
the coordinates of v; for j =5, ..., 8 were calculated from the coordinates of v;, j =1,...,4,
and vy above. In Section 5 we study some properties of {S;}c(—c.) using floating point
calculations.
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3 An Algorithm for Checking Whether a Polyhedron is Embedded

Many algorithms for recognizing self-intersections of polyhedral surfaces are described in the
literature; for example, see references in [2]. But their creators optimize performance, memory
usage, and other parameters that are not interesting to us; on the other hand they often don’t
care about the missing a “small”, indistinguishable on the screen, self-intersection. This does
not suit us in principle, because even the presence of an intersection consisting of a single
point changes the answer in our problem to the opposite. Therefore, we had to propose our
own algorithm and had to realize it in Wolfram Mathematica, using symbolic computations
only. Our algorithm has already been described in [2]. In this section, we describe it in a
slightly different way, which is shorter and clearer than the original one.
Lemmas 1 and 2 provide mathematical background for our algorithm.

Lemma 1. Let K be a connected 2-dimensional simplicial complex with or without boundary,
and let f : K — R? be a polyhedron. Then the following statements are equivalent to each
other:

(i) f(K) is not embedded in R3;

(it) there are two simplices 01, 05 € K, dimoy < 1, and two points u; € o;, j = 1,2, such

that uy # us, f(ur) = f(us).

Proof. The statement (ii) yields that f is not injective. Hence, f(K) is not embedded, and
(i) is true.

Conversely, suppose that (i) holds true. Then f is not injective, i.e., there are two points
u; € K, j = 1,2, such that @; # 4y and f(u;) = f(4g). For every j = 1,2, among all
simplices in K containing u;, choose the simplex of the minimum dimension and denote it by
;. Let us show how to choose oy, 09, uy, and uy, satisfying (ii).

First, consider the case, when dimo; < 2 or dimagy < 2. Swapping, if necessary, the
indices j = 1,2 so that dim ¢y < 1, we conclude that (ii) is true with u; = @; and ¢; = &; for
j=1,2.

Now consider the case, when dimo; = dim o, = 2. For every j = 1,2, u; is an interior
point of &; because o; has the minimum dimension among all simplices in K containing ;.
Therefore, the point f(@;) = f(ug) is an interior point of both the triangle f(7;) and the
triangle f(02). Hence, f(a1) N f(52) is not reduced to the single point f(u1) = f(u2). Let a
straight-line segment 7 be such that

(A) 7 C f(o1) N f(o2);
(B) f(u1) = f(u2) € 75 and
(C) 7 is maximal with respect to inclusion among all segments satisfying (A) and (B).

Note that at least one endpoint of 7 is not contained in the set f(712), where d15 = 01N 0.
Indeed, by the definition of simplicial complex, &5 is either an empty set, a 0-dimensional
simplex, or a 1-dimensional simplex of K, and, by the definition of polyhedron, f|; is a
nondegenerate affine linear map. Therefore, assuming that both ends of 7 are contained in
f(G12), it follows that 7 C f(d12). But then the condition f(uy) = f(uy) € 7 implies 4 = Us,
which contradicts the above assumption @; # .

So, at least one endpoint of 7 is not contained in f(&12). Let us denote that endpoint
by v. Since 7 is maximal with respect to inclusion among all segments with the properties
(A) and (B), v cannot be an interior point for both the triangle f(&;) and the triangle
f(72). Swapping, if necessary, the indices j = 1,2, we may assume without loss of generality
that v is not an interior point of the triangle f(&;). Hence, there is a simplex o1 C 47,
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Figure 3: Various cases of mutual arrangement of the triangle f(A) with vertices y1,y2,y3 and the
straight-line segment f(§) with endpoints z1, 2.

dimo; < dima; = 2, such that v € f(oy). Thus, (ii) is true with u; = (f|,,) ' (v) € o,
Uy = Uy € O, and o9 = 09. ]

Informally speaking, Lemma 1 reduces the problem “whether a given polyhedral surface
has self-intersections” to the problem “whether a segment and a triangle intersect”. Now we
begin to study the last one, and we need the following notation.

As is known, if x; = (x;1, %2, 2:3), i = 0,...,3, are four points in R3, then the oriented
volume Vol(zg, x1, T2, x3) of the tetrahedron {zy, 1, x2, 23} can be calculated using one of the
following formulas:

Vol(xg, z1, T2, 3) = é((xl — ) X (x93 — x0)) - (w3 — )

Zo,1 To2 Lo,3
T11 T12 T13
Toa1 T22 T23 '
T31 T32 X33

1 T11 — o1 T1,2 — Lo,2 L1,3 — Lo,3
6 T21 — Xo,1 T22 — To2 T23 — Lo3| =

1
6
T31 — Lol X32 — o2 I3,3 — L0,3

—_ = = =

In particular, it is a polynomial in variables z;; (i = 0,...,3; k = 1,2,3). We put by
definition g(xg, x1, 2, x3) = 6 Vol(zo, 1, T2, T3).

Let f: K — R? be a polyhedron, and let § and A be 1- and 2-dimensional simplices of K,
respectively. We denote the vertices of the closed triangle f(A) by yx = (Yx.1, Yr2, Ur3) € R,
k =1,...,3, and denote the endpoints of the closed straight-line segment f(J) by z; =
(Zj717 2.2, ijg) € R37 ] = ]_, 2.

Lemma 2. With the above notation, the following statements are true

(@) if g(y1, 2, Y3, 21)9 (Y1, Y2, Y3, 22) > 0, then f(0) N f(A) = @;
(5) Zf g(ylayQayZ’nZl)g Y1,Y2,Ys, 22) < 0; and; mn addition, g(Z17227y2ay3)7 g(zl7z27y37y1)7
and g(z1, 22, Y1, Y2) are nonzero and have one and the same sign, then f(5)N f(A) # @;

(
(fy) Zf g(yla Y2,Y3, Zl)g(yb Y2, Y3, ZZ) < 07 and, in additiOn; 9(21, 22, Y2, y3)7 9(217 22, Y3, yl);
and g(z1, 22, Y1, y2) are nonzero, but not all of them have one and the same sign, then

fO)NfA) =a.

Proof. The statement («) is true because if g(y1, Y2, y3, 21)9(y1, Y2, Y3, 22) > 0, then z; and 29
lie on one side of the plane containing the triangle f(A) = {y1,vy2,y3} (see the left part of
Fig. 3).

Now let us assume that the conditions of the statement () are fulfilled. Since

g(yb Y2, Y3, Zl)g(y17 Y2, Y3, ZQ) < 07
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the points z; and zp lie on different sides of the plane containing the triangle f(A) =
{y1,y2,y3} (see the center and right parts of Fig. 3). For each point = on the boundary of
f(A), denote by 7(x) the halfplane bounded by the line containing f(0) and passing through
x. Since g(z1, 22, Y2, Y3), 9(z1, 22, Y3, Y1), and g(z1, 22, Y1, y2) have the same sign, then if z goes
around the boundary of f(A) once, moving all time in the same direction, then the halfplane
7(x) also always rotates in the same direction and makes a complete turn around the straight
line including f(0). This means that the boundary of f(A) is linked to the straight line
including f(4). Taking into account that the endpoints of f(4) lie on the opposite sides of
the plane containing f(A), we conclude that f(6) N f(A) # @. Hence, (/) is proved. This
case is schematically shown in the center part of Fig. 3.

We treat the case (y) similarly to (8). But this time the halfplane 7(z) does not always
rotate in the same direction and therefore does not make a complete turn around the straight
line including f(J). Therefore, f(§)N f(A) = @, and () is proved. This case is schematically
shown in the right part of Fig. 3. O]

13

Lemma 2 solves the problem “whether a given segment and triangle intersect” in many
cases, but not in all. We say that the latter are “cases requiring additional study”. We hope
that in reality there will be few or no such cases. Therefore, we do not want to complicate
our algorithm; it suit us if, when such a case occurs, the algorithm informs us about it and
continues its work.

Now let us describe our algorithm.

The algorithm accepts four files as input: a list s of the 1-dimensional simplices of K;
a list ss of the edges of f(K) C R?® with the coordinates of their endpoints; a list t of the
2-dimensional simplices of K; and a list tt of the faces of f(K) C R? with the coordinates of
their vertices.

Our algorithm performs a complete search for all pairs (6, A), where § € s and A € t.
When (9, A) is fixed, proceed as follows:

(1) If 6 C A, then go to (8); else go to (2). [At this step we conclude that this situation
makes no contribution to the set of self-intersections of f(K)]

(2) Pick up the coordinates of the endpoints z; and zy of f(0) from the list ss and the
coordinates of the vertices yi, y2, and y3 of f(A) from the list tt. If § N A consists of a
single point, u, then go to (3); else go to (4). [At this step we introduce notation and
switch between two cases|

(3) Change, if necessary, the indices 1, 2, and 3 so that y; = 23 = f(w); if g(y1, Y2, 93, 22) # 0
then go to (4); else add the line “The case of (4, A) requires additional study” to the
output file out1 and go to (8). [At this step we study the case when 6 N A consists of
a single point]

4y It g(y1, Y2, Y3, 21)9(Y1, Yo, Y3, z2) > 0, then go to (8); else go to (5). [At this step we study
the case when § N A = &; according to the case () of Lemma 2, we conclude that that
this situation makes no contribution to the set of self-intersections of f(K)]

(5) Tt g(y1, y2, Y3, 21) (Y1, Yo, Y3, 22) < 0and g(21, 22, Y2, Y3), 9(21, 22, Y3, Y1), and g(z1, 22, Y1, y2)
are nonzero and have one and the same sign, then add the line “The edge f(¢) intersects
the face f(A)” to the output file out2, and go to (8); else go to (6). [At this step we
use the case () of Lemma 2, and conclude that that this situation contributes to the
set of self-intersections of f(K)]

(6) If g(y1, 2, Y3, 21)9 (Y1, Y2, Y3, 22) < 0 and g(21, 22,92, Y3), 9(21, 22, Y3, y1), and g(z1, 22, Y1, y2)
are nonzero, but not all of them have one and the same sign, then go to (8); else go
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to (7). [At this step we use the case (7) of Lemma 2, and conclude that this situation
makes no contribution to the set of self-intersections of f(K)]

(7) Add the line “The case of (4, A) requires additional study” to the output file out1 and
go to (8). [This step corresponds to situations not covered by Lemma 2]

(8) If (6, A) is the last item in the complete search, then go to (9); else choose the next pair
(0, A) and go to (1).

(9) Save the output files, out1 and out2, and quit.

4 Studying the Embeddedness of the Steffen Polyhedron S; via
Symbolic Calculations

We have implemented the algorithm described in Section 3 as a program in the software
system Wolfram Mathematica. The full text of this program is available in [3].

Recall that throughout this article, the Steffen polyhedron Sy is the polyhedron con-
structed in Section 2 from the development shown in Fig. 1. In particular, in the coordinate
system constructed in Section 2, the vertex vg of Sy is located on the z-axis and has a negative
z-coordinate.

The lists s and t of 1- and 2-dimensional simplices of K, mentioned in Section 3, are
compiled directly from the development of Sy, shown in Fig. 1. In Section 3 we explained in
detail how we find the coordinates of all the vertices vy, ..., v9 of Sy in rational numbers or in
radicals. Using these coordinates, we prepare the list ss of the edges of f(K) C R? with the
coordinates of their endpoints and the list tt of the faces of f(K) C R? with the coordinates
of their vertices.

Using the lists s, t, ss, and tt as input data for our program and performing all calcu-
lations symbolically (i.e. without using floating point arithmetic), we get two empty output
files out1 and out2. This means that the program does not find in Sj intersections and cases
requiring additional study. On this basis, we consider the following theorem to be proved:

Theorem 1. The Steffen polyhedron Sy is embedded (i.e., Sy has no self-intersections). [

Since we know the coordinates of all the vertices of Sj in rational numbers or in radicals,
it is not difficult for us to find its volume in radicals. To do this, we represent the volume of
Sp as the sum of the oriented volumes of 14 tetrahedra, each of which has the origin of the
coordinate system as its apex and some face of Sy as its base. (Of course, the orientation of
each tetrahedron must be inherited from a fixed orientation of Sy.) Symbolic computations in
Wolfram Mathematica show that the volume of Sy is equal to 187+/83/(6+/2). It is interesting
to note that the same number, 187v/83/(6/2), is equal to the volume of the tetrahedron whose
vertices are the vertices vy, vy, v, and vy of the Steffen polyhedron Sy, see (1), and Figs. 1
and 2.

5 Numerical Study of the Flex {S;},c(_. )

Recall that, in the last paragraph of Section 2, we defined a flex {S;}ic(—c.) of the Steffen
polyhedron Sy by specifying the position of each vertex v;(t) of the polyhedron S;. Namely,
we put v;(t) = v; for all j = 1,....4, and define vg(¢) as the point lying on the circle 7,
defined in the property (b) in Section 2, and such that the oriented angle Zvg(t)0vg is equal
to t radians. Since lengths of all edges of the Steffen polyhedron are known to us, the above
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data is sufficient to compute the coordinates of the points v;(t) for every j =5,...,8, from
the coordinates of the points v;(t), j =1,...,4, and vy(?).

In Section 4 we used Lemma 2 in order to conclude that S is embedded, i.e., our argu-
ments were based on some combinations of inequalities involving the values of the polynomial
g. By continuity, the same inequalities hold true for the values of g calculated for .S; for every
t close enough to zero. Thus, S; is embedded for all such ¢. Naturally, we want to have a
quantitative estimate for the maximum ¢ for which S; is embedded.

In Section 5 we present the results of our study of the problem “what is the maximum
value of € > 0 such that S; has no self-intersections for all t € (—¢,¢)?” In other words, in
this Section we want to understand how big the angle Zvg(¢)0vg can be made so that S; is
still embedded.

Unfortunately, we can only answer this question using floating point calculations.

We put t = arcsin(9/40) ~ 0.226943 ~ 13.0029° and apply our program in Wolfram
Mathematica mentioned in Section 4, which implements our algorithm described in Section
3. Using floating point calculations we see that S; has no self-intersections.

Similarly, for ¢ = arcsin(19/80) ~ 0.239791 ~ 13.739° numerical calculations show that
S; has self-intersections. Moreover, our program informs us that self-intersections occur be-
cause the edge {vq(t), v3(t)} intersects the face {v7(t),vs(t), vo(t)}, and {v7(t), vs(t)} intersects
{v1(2), va(t), vs(t) }-

Therefore, we can conjecture that vg(¢) can be moved along the circle y per angle up to 13°
in both directions from the point vg = v9(0) so that S; is embedded. In other words, the range
of the displacements of vg(t) for which S; is embedded, is at least 9/2621/100 ~ 4.60761.
Note that this value is comparable to 5, i.e., to the length of the shortest edges of S;.

6 Concluding Remarks

The theory of flexible polyhedra began with Bricard’s article [4]. Its heyday started after
Connelly’s article [5]. The most famous result of the theory of flexible polyhedra states that
the volume of any flexible closed orientable polyhedron in R™, n > 3, remains constant during
the flex, see, for example, Gaifullin’s overview article [6]. This theory is also being developed
in non-Euclidean spaces, see, for example, [7].

The theory of flexible polyhedra is attractive because everyone can find here an open
problem of any level of difficulty that would suit their mathematical tastes and background.
Below we pose two open problems related to the topic of this article.

Recall that two embedded polyhedra in R? are called scissors-congruent if the finite part
of the space bounded by the first polyhedron can be cut into finitely many tetrahedra that
can be reassembled to yield the finite part of the space bounded by the second polyhedron.

The first problem develops the well-known fact that if one embedded polyhedron is ob-
tained from another by a flex, then they are scissors-congruent, see [8]. Hence, the Steffen
polyhedron Sy is scissors-congruent to every polyhedron S; constructed in the last paragraph
of Section 2 with ¢ close enough to zero (so that S; is embedded).

Open problem 1: For a given t close enough to zero, explicitly specify the partition of Sy
into a finite set of tetrahedra from which S; can be reassembled.

In Section 4 we observed that the volume of the Steffen polyhedron S; is equal to the
volume of the tetrahedron, whose vertices are the vertices v1, v9, v3, and vy of Sg. This
naturally gives rise to the following
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Open problem 2: Are the Steffen polyhedron Sy and the tetrahedron {vy, vq, v3, v4} scissors-
congruent? If yes, explicitly specify the partition of {vy, vo, v3,v4} into a finite set of tetrahedra
from which Sy can be reassembled.

In conclusion, the authors declare that all symbolic and numerical calculations performed
in the preparation of this article were executed using the computer software system Wolfram
Mathematica 12.1 [10], license 3322-8225.
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