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Abstract. Generalisations of mathematical problems often require innovative
approaches and open up promising avenues for further research. In this article,
we propose a generalisation of a geometry problem originally featured in the 1995
International Mathematical Olympiad contest. We employ projective geometric
techniques to rigorously prove our generalisation, demonstrating the value of ap-
plying advanced mathematical tools to extend the boundaries of traditional prob-
lems. Even though this is a geometry problem originally intended for students,
it opens up many interesting ideas for generalisation and the inclusion of more
advanced tools to prove these generalisations. We define a special transformation
with respect to two conic sections and a line intersecting the conics, and we prove
several properties of the transformation that provide a solution to our generalised
problem. Our main aim is to determine the invariant lines with respect to the
transformation as a generalisation of the original IMO problem.
Key Words: Projective geometry tools, projectivity, perspectivity, invariant lines,
generalisation
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1 Introduction and organization of the paper

1.1 Introductory remarks
One interesting geometry problem appeared in the 1995 edition of the International Mathe-
matical Olympiad (IMO) (see [3, Problem 1 on p. 275]), with two solutions presented in [3,
Solution to Problem 7, p. 595-596] using the power of a point, cyclic quadrilaterals, and the
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similarity of triangles. Additional solutions that employ the radical axis and the radical centre
can be found in [1], while another approach employing analytic geometry tools is presented
in [6].

Original IMO Geometry Problem. Let A, B, C, D be four distinct points on a line,
in that order. The circles with diameters AC and BD intersect at X and Y . The line XY
meets BC at Z. Let P be a point on the line XY other than Z. The line CP intersects the
circle with diameter AC at C and M , and the line BP intersects the circle with diameter
BD at B and N . Prove that the lines AM , DN , XY are concurrent (Figure 1).
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Figure 1: 36th IMO geometry problem

One possible approach to solving this problem is to prove that if P ′ is the intersection
point of the lines AM and DN , then P ′ lies on the line XZ. More generally, the line XY is
invariant under the given drawing process.

The line XY in the original IMO geometry problem is the radical axis of the given
intersecting circles. This raised the question: what happens when, instead of intersecting
circles, we have two arbitrary circles, and for the line XY , we take their radical axis? More
generally, what if, instead of radical axis, we consider any line perpendicular to one connecting
the centres of these circles?

This led to the following generalisation, which Kamber Hamzić, Németh, and Šabanac [5,
p. 2] proved analytically.

First Generalisation of the IMO Geometry Problem. Let k1 and k2 be two circles,
and let ℓ be the line that contains their centres. The line ℓ intersects the circle k1 at points
A1 and A2 and the circle k2 at points B1 and B2. We assume that these points appear in
either the order A1, B1, A2, B2 or A1, A2, B1, B2 along ℓ. Let p be a line perpendicular to ℓ,
and let P be any point on p. The line PA2 intersects k1 at PA2 (in addition to A2), and the
line PB1 intersects k2 at PB1 (in addition to B1). The lines A1PA2 and B2PB1 intersect at
P ′

21. As the position P varies, the position of P ′
21 also changes. However, P ′

21 always belongs
to a line p′

21 parallel to p (Figure 2). If p is the radical axis of k1 and k2, then p′
21 = p.

1.2 Structure of the Paper
In this paper, we present intriguing results that emerge when, instead of considering the line
ℓ passing through the centres of the given circles, we examine any line intersecting the circles
at four points. Furthermore, rather than focusing solely on the line p perpendicular to ℓ, we
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Figure 2: First generalisation of 36th IMO geometry problem

analyse any line p ̸= ℓ. Moreover, instead of limiting our study to two circles, we extend our
observations to the case of any two conics.

In Section 1.2, we introduce the necessary terminology and present our results, which
generalise the IMO geometry problem. In Section 2, we provide rigorous proofs of these gen-
eralisations. Finally, in Section 3, we summarise our findings on invariant lines and propose
further exploration of the transformation IMOij (see Definition 1.1 below for details), partic-
ularly in relation to conic sections, raising questions about the existence of invariant conics
and conditions under which their images remain conics.

sectionFurther Generalisations of the IMO Geometry Problem
Before generalising the IMO geometry problem further, we begin this section by defining

the drawing process we will be using throughout the paper.

Definition 1.1 (IMO drawing). Let A and B be two distinct circles (or, more generally,
conics), and let ℓ be a line that intersects A and B at points A1, A2, and B1, B2, respectively,
where all intersection points exist and are distinct (we suppose that ℓ always intersects each
conic at exactly two points). The orientations of A1, A2 and B1, B2 are assumed to be the
same (e.g., without restrictions, from left to right). Let P be a given point. Define PAi and
PBj as the second intersection points of the lines PAi and PBj with A and B, respectively,
where i, j ∈ {1, 2} (see Figure 3 for the case i = 1 and j = 2). Let P ′

ij be the intersection
point of the lines Ai⋆PAi and Bj⋆PBj, where i + i⋆ = j + j⋆ = 3. The process of obtaining P ′

ij

(if it exists) from P is called the IMOij drawing. Then, P ′
ij is the image of the point P with

respect to the IMOij drawing.

Let tAi
and tBi

be the tangent lines at Ai and Bi, respectively, for i ∈ {1, 2}, to the
corresponding circles (or conics) A and B. Let Tij denote the intersection points of tAi

and
tBj

.
It is easy to see that no point on ℓ has an image. Moreover, the image of all points on

the lines tAi
and tBj

, except for their intersection point Tij, is Bj⋆ and Ai⋆ , respectively. For
example, in Figure 3, if X is on tA1 , then its image with respect to IMO12 is X ′

12 = B1, as
XAi = A1.

Definition 1.2. Define p′
ij to be the image of a given line p, where p ̸= ℓ. That is, p′

ij is the
locus of the images of the points of p under IMOij.

Now, it is straightforward to verify the following proposition.
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Figure 3: Image of P with respect to IMO12 drawing

Proposition 1.3. The image of the point P ′
ij with respect to IMOi⋆j⋆ is the point P . Moreover,

the image of p′
ij with respect to IMOi⋆j⋆ is the line p.

We extend the Euclidean plane by adding points at infinity so that Tij can also be at
infinity. In Figure 2, for all i, j, the points Tij are at infinity and coincide. Moreover, let W∞
denote the point at infinity on the line p. We denote the intersection point of lines p and ℓ
by S. (S can be at infinity.)

Using Definition 1.1, we now can state the First Generalisation of the IMO Geometry
Problem in the following equivalent form.

Equivalent form of the First Generalisation of the IMO Geometry Problem. Let
A and B be two circles that do not necessarily intersect, and let ℓ be the line containing their
centres. Let p be a line perpendicular to ℓ. Then, for all i, j ∈ {1, 2}, the image of the line p
with respect to the IMOij drawing is a line parallel to p. If p is the radical axis of the circles,
then p is invariant, so p′

ij = p.
In Figure 2, the line r is the radical axis of A and B, and the figure illustrates the IMO21

drawing.
In this section, we further generalise the IMO geometry problem in two ways. First,

we consider ℓ as a general line (not necessarily passing through the centres of the circles).
Second, we extend our analysis to conics instead of circles. Our main objective is to determine
invariant lines with respect to an IMOij drawing.

There are four possible drawing processes. In this article, for the case of circles, we
assume — without restrictions — that the centres of A and B, as well as the points A1, A2,
and B1, B2, are arranged from left to right. In our theorems and figures, we primarily focus
on the case i = 2, j = 1, which we refer to as the IMO drawing. However, similar statements
hold for the other cases, which we occasionally present as well.

Moreover, we omit the indices i and j from PAi, PBj, P ′
ij, and p′

ij when this does not cause
confusion. We simply write them as PA, PB, P ′, and p′.

1.3 Generalisation Involving Circles
Let A and B be two circles, and let ℓ be a general line that intersects them as described in
Definition 1.1.
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Theorem 1.4 (Second Generalisation of the IMO Geometry Problem). Let p ̸= ℓ be a line.
Then, the image of p with respect to the IMOij drawing is a conic p′

ij passing through the
points Ai⋆, Bj⋆, Ti⋆j⋆, and W ′

ij (the image of W∞), where i, j ∈ 1, 2 and i + i⋆ = j + j⋆ = 3
(see Figures 4 and 5). Moreover, if p contains any of the points Ai, Bj, or Tij, then p′

ij is a
line, meaning the conic p′

ij is degenerate (see Figure 6, where p passes through Tij = T21).
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Figure 4: Line and its image with respect to IMO21 drawing
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Figure 5: Line and its image with respect to IMO11 drawing

We note that the points Ai⋆ , Bj⋆ , and Ti⋆j⋆ are determined by the given circles and the
line ℓ, while W ′

ij is determined by the direction of p. We observe that the image of S = ℓ ∩ p
with respect to the IMOij drawing is Ti⋆j⋆ .

Let K and K be the external and internal homothety centres, respectively, of the circles
A and B in the Euclidean plane. We note that K and K do not necessarily exist, for example,
in the cases of intersecting or concentric circles.
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Figure 6: Line with the point T21 with respect to IMO21 drawing

Recall, according to Definition 1.1 the line ℓ always intersects A and B and the order of
their indices are the same. Now we give a statement for the case when ℓ contains at least one
of homothety center.

Theorem 1.5. If the external (internal) homothety centre K (K) of the circles A and B
exists and ℓ passes through it, then their radical axis is an invariant line with respect to the
IMO12 and IMO21 (IMO11 and IMO22) drawings.

We will show that Theorems 1.4 and 1.5 are corollaries of more general theorems, for
which we will use projective geometry tools.

1.4 Projective Generalisation
We now consider the case of conics instead of circles, which is more general setting than the
previous subsection. Let A and B be two distinct non-degenerate conics. We intersect them
with a line ℓ according to Definition 1.1, as shown in Figure 7.

Theorem 1.6 (Third Generalisation of the IMO Geometry Problem). If a general line p
contains none of the points Ai, Bj, or Tij, then the image of p under the IMOij drawing is a
conic p′

ij passing through the points Ai⋆, Bj⋆, and Ti⋆j⋆.

Theorem 1.7. If the line p contains at least one of the points Ai, Bj, or Tij, then the image
of p under the IMOij drawing is a line p′

ij (or, equivalently, p′
ij is a degenerate conic).

Corollary 1.8. If p′
ij = p, then p passes through the points Tij and Ti⋆j⋆.

Corollary 1.9. If p passes through the points Tij and Ti⋆j⋆, and Ti⋆j⋆ is a point at infinity,
then p and p′

ij are either parallel or coincident lines.

Let K be the intersection point of two common tangent lines of the conics A and B. Then
the following theorem gives the condition for the line p to be invariant with respect to the
IMOij drawing.



P. Csiba et al.: Invariant Lines and a Projective Geometric Generalisation. . . 71

1

2

p'

3

4' 3'

1'

2'

4

p

S

1
A

2
A

2
B

3
B

4
B

1
B

3
A

4
A

l

A

B

tBj*

tAi*

tAi

tBj

Ai*

Bj
Ai

Bj*

Tij

ij

Ti j* *

Figure 7: Generalised IMO geometry problem with conics

Theorem 1.10. Let π be the perspective collineation defined by two non-degenerate conics A
and B with center K, where Ai and Bj are corresponding points, and suppose A and B are
images of each other under π. If the line ℓ passes through the center K, then the axis p of π
is invariant with respect to the IMOij drawing.

Moreover, the pencil of lines through K corresponds under π to the pencil of lines through
K (the second center of collineation determined by A and B). Consequently, there exist exactly
two fixed lines in the generic case—one through K and one through K—or, in exceptional
degenerate cases, infinitely many fixed lines.

2 Proofs of Generalisations

In this section, we prove the aforementioned generalisations. First, we establish the general-
isations for the case of conics and demonstrate that the case of circles follows as a corollary
of the conic case.

Before presenting the proofs, we introduce some preliminaries on projective tools that will
be used throughout.

2.1 Projective Tools
In this subsection, we provide a brief summary of the key terms we use. For a more detailed
introduction, see, for example, the books by Coxeter [2] and Glaeser, Stachel, and Odehnal [4,
Chapter 5 and 6].
Projective Plane. We extend each line of the Euclidean plane by adding an extra point, known
as the point at infinity, so that parallel lines share the same infinity point. All infinity points
together form a line, known as the line at infinity. With this extension, we obtain the (real)
projective plane.
Range of Points. The set of all (finite and infinite) points on a (finite or infinite) line in the
projective plane is called a range of points.
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Pencil of Lines. The set of all lines in the projective plane passing through a common (finite
or infinite) point is called a pencil of lines. The common point of a pencil of lines is called its
vertex.
Perspectivity and Projectivity. Two ranges of points are called perspective if their correspond-
ing points lie on a common line in a pencil of lines. Two pencils of lines are called perspective
if the intersection points of their corresponding lines lie in a common range of lines. A range
of points and a pencil of lines are called perspective if each point in the range lies on its
corresponding line in the pencil [4, p. 188].

The product of arbitrarily many perspectivities is a projectivity. Projectivities preserve
cross-ratios.
Steiner theorem. Two pencils of lines at different points are projective (not merely perspective)
if and only if the intersection points of corresponding lines lie on a non-degenerate projective
conic (see, e.g., [2, Theorem 8.51 on p. 80]).

2.2 Proof of Theorem 1.6
We consider the line p as a range of points and denote it by [p]. We take the pencil of lines
through the points Ai, denoted by [Ai], such that [p] and [Ai] are perspective, written as
[p] ⩞ [Ai]. For example, the point 1 in [p] corresponds to the line Ai1 in [Ai], and let 1A be
its other intersection point with A. The central projection with respect to Ai establishes a
one-to-one correspondence between the points on the conic A and those on [p], including their
point at infinity (see Figure 7).

According to Steiner’s theorem for projective pencils of lines, the pencil [Ai⋆ ] is projective
to [Ai] if and only if the intersection points of their corresponding lines lie on A. For example,
the line Ai⋆1A corresponds to the line Ai1A. Therefore, [Ai⋆ ] and [Ai] are projective, written
as [Ai⋆ ] ⊼ [Ai].

Similarly, we consider the pencils of lines [Bj] and [Bj⋆ ], so that [p]⩞ [Bj] and [Bj]⊼ [Bj⋆ ].
Since perspectivity implies projectivity and projectivity is transitive, the pencils [Ai⋆ ]

and [Bj⋆ ] are projective, denoted as [Ai⋆ ] ⊼ [Bj⋆ ]. Therefore, the intersection points of their
corresponding lines lie on a conic p′

ij, which contains the points Ai⋆ , Bj⋆ , Ti⋆j⋆ .
Note that Figure 7 shows the corresponding points on p, A, B, and p′

ij.

2.3 Proof of Theorem 1.7
Building on the proof of Theorem 1.6, the pencils of lines [Ai⋆ ] and [Bj⋆ ] are perspective,
written as [Ai⋆ ] ⩞ [Bj⋆ ], since the common line Ai⋆Bj⋆ corresponds to itself. See the example
in Figure 8, where p passes through the point Tij.

As the point P on p approaches Tij, both lines Ai⋆PA and Bj⋆PB tend towards the line
Ai⋆Bj⋆ = ℓ. By Steiner’s theorem for perspective pencils of lines, p′

ij must be a line.
The other two cases, where p passes through the points Ai or Bj, can be proved similarly.

2.4 Proof of Theorem 1.10
First, we determine how to choose the line ℓ such that p can be an invariant line with respect
to the IMOij drawing. We define a perspective collineation (or central collineation) between
the non-degenerate conics A and B, where the axis of this collineation remains invariant. We
assume that A and B share common tangent lines e and f , such that their intersection point
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K serves as the centre of the collineation. Consequently, every line passing through K and
intersecting one of the conics must also intersect the other conic (see Figure 9 and [4] for
further details). In the general case, there are four common tangent lines to the conics, and
among their intersection points, only two can serve as centres of collineation: K and K.

Let L be the intersection point of the polars of K with respect to A and B (where the
polar lines are the lines of tangent points with common tangent lines, respectively). Let EA,
EB, FA, and FB denote the points of tangency on the tangent lines e and f , respectively, as
shown in Figure 9.
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Figure 9: Perspective collineation (or central collineation) between A and B

We need the following lemma.

Lemma 2.1. Let ℓ be a line passing through the center K of a perspective collineation π
between two non-degenerate conics A and B. Assume that ℓ intersects A at points Ai and
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Ai⋆, and B at the corresponding points Bj and Bj⋆, in such a way that the ordering of points
on ℓ is consistent with the correspondence defined by π. Then the points Tij, Ti⋆j⋆, and L are
collinear, and the line p containing them is the axis of π.

Proof. A perspective collineation is defined by its centre and three pairs of corresponding
points. Let the centre be K, and let the corresponding point pairs be EA − EB and FA − FB.
Since the lines EAFA and EBFB correspond to each other under the perspective collineation,
their intersection point L is a fixed point and thus lies on the axis. (If EA = EB and FB = FB,
then they automatically lie on the axis.) The perspective collineation is therefore defined.
For additional corresponding points, we consider ℓ and its intersecting points with conics (as
previously), which also form corresponding point pairs: Ai − Bj and Ai⋆ − Bj⋆ .

The identification of these corresponding pairs depends on the order of the intersection
points along ℓ relative to K and K. We assume that the labels are chosen so that the
ordering on ℓ is consistent with the correspondence induced by π. If the order is interleaved
differently, the labels of {Bj, Bj⋆} must be swapped so that (Ai, Bj) and (Ai⋆ , Bj⋆) remain
true corresponding pairs. Without this alignment, the subsequent statement about the fixed
points Tij and Ti⋆j⋆ may not hold.

Furthermore, their tangent lines also correspond to each other, so tAi
−tBj

and tAi⋆ −tBj⋆ .
Therefore, their intersecting points Tij and Ti⋆j⋆ are fixed and lie on the axis of the perspective
collineation. If ℓ contains both K and K, then Tij, Ti⋆j⋆ , and L coincide. In this case, we must
choose another pair of points and their tangents on the conics to determine the line p.

Remark 1. Since the pencils of (possibly parallel) lines through K and through K correspond
projectively, the projective correspondence of the two pencils has exactly two fixed lines (or
infinitely many in the degenerate case when the correspondence is the identity). In our setting,
one fixed line is the axis p through K, as constructed above, and the other passes through K.
This is consistent with the general theory of projective correspondences of line pencils and is
also directly visible from the above construction.

Using Lemma 2.1, we now establish the proof of Theorem 1.10. Since the lines PAiPA
and PBjPB are the corresponding lines with respect to π, the points PA and PB form a pair of
corresponding points. The intersecting point P ′

ij of the corresponding lines Ai⋆PA and Bj⋆PB
is fixed and must be on the axis p.

2.5 Proof of Theorems 1.4 and 1.5
Theorem 1.4 follows directly from Theorem 1.6 and its related corollaries.

In Figure 4, the conic p′
21 is determined by the points A1, B2, T12 (the image of S), Q′

21,
and W ′

21 (the image of the point at infinity on p).
We now turn our attention to Theorem 1.5. Applying Theorem 1.10 to circles, Figure 9

transforms into Figure 10.
We need to prove that the line p is not only the axis of the central collineation but also

the radical axis of the circles.
Consider the circle C, which is tangent to A at A2 and to B at B1. The existence of such

a circle C is guaranteed (see [7, Theorem 61.e on p. 41]). Since tA2 is the radical axis of A
and C, and tB1 is the radical axis of C and B, their intersection point T21 is the radical centre
of the three circles. Thus, T21 lies on the radical axis of A and B, which is perpendicular to
the line connecting their centres.
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Figure 10: Invariant radical axis with respect to IMO21 and IMO12 drawings

For IMO21, similarly, p is an invariant line. However, in the cases of IMO11 and IMO22,
the perspective collineation simplifies to a central homothety (symmetry), and the points T11,
T22, and L either disappear or move to infinity. As a result, there is no invariant line (or the
line at infinity becomes the invariant line).

If ℓ contains the internal homothety centre of the circles, then the situations is reversed
(see Figure 11).
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Figure 11: Invariant radical axis with internal homothety centre and with respect to IMO11 drawing

Moreover, if both homothety centres lie on ℓ, then in all IMOij cases, the points Tij are
at infinity, leading to the first generalisation of the problem [5], as shown in Figure 2.

Finally, in Figure 12, we present a case where p passes through the point B1, with the
drawing process corresponding to IMO21.
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3 Concluding Remarks

In this article, we identified invariant lines as a generalisation of the original IMO problem.
We have achieved our main goal, yet the transformation IMOij we have introduced still holds
great potential. It would be worthwhile to consider the images of conics in a similarly general
way as we have done for straight lines. This raises further intriguing questions. Are there
invariant conic sections under the IMOij transformation? Under what conditions does the
image of a conic remain a conic? It seems that the maps IMOij are quadratic birational maps
(quadratic Cremona transformations) which are well studied in classical geometry and also
play a role in modern triangle geometry (see [4, Ch. 7.5]), The image of a conic is, in general,
a quartic curve but the degree may drop if the original conic contains base points of the
transformation, as observed in Figure 13, where we present the conic C passes through the
points A2 and B1. In this case, its image under the IMO21 drawing is also a conic, containing
the points A1 and A2.
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