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Abstract. The tetrahedron having ex-centers of a tetrahedron T as vertices is
said to be the ex-center-tetrahedron of T , and let us denote it by T ⋆.

Theorem 1 shows that the ex-center-tetrahedron of a tetrahedron T and the
tetrahedron that tangles T with respect to the in-center of T are the same. So T ⋆

is also used to denote the tetrahedron that tangles T with respect to the in-center
of T .

We define that a tetrahedron is weakly reversible if the sum of a pair of two face
areas is equal to the sum of the other pair of two face areas. Theorem 2 shows
that T is weakly reversible if and only if T and T ⋆ have the same volume.

While T ⋆ may not be weakly reversible when T is weakly reversible, Theorem 3
shows that T ⋆ is reversible when T is reversible.
Key Words: tangled tetrahedron, in-sphere, in-center, in-radius, ex-sphere, ex-
center, ex-radius, ex-center-tetrahedron, deep interior of a tetrahedron, isosceles
MSC 2020: 51M04

1 Introduction

The external bisectors of any two angles of a triangle are concurrent with the internal bisector
of the third angle, and this concurrent point is an ex-center of the triangle. We can find an
ex-center of a tetrahedron in a similar way. However, using the in-center of a tetrahedron, our
main Theorem 1 shows an alternate way to find ex-centers of a tetrahedron from its in-center
without externally bisecting dihedral angles at edges (see Remark 2 for details). Let us begin
with notations and definitions.

Let A, B, C, D be distinct points in R3. We denote the line segment with the end points
A and B by [AB], its length by |AB|, and the line AB by AB. A triangle △ABC is formed
by three non-collinear points A, B, C. A tetrahedron ∇ABCD is a solid bounded by four
triangular faces △ABC, △ABD, △ACD and △BCD, where the points A, B, C, and D are
non-coplanar. The plane containing non-collinear points U , V , W is denoted by ΩUV W . For
simplicity for the planes defined by the faces of ∇ABCD, we write ΩABC = ΩD, ΩABD = ΩC ,
ΩACD = ΩB, and ΩBCD = ΩA.
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Figure 1: The deep interior of the tetrahedron
∇ABCD is the interior of the octahe-
dron E′F ′G′H ′I ′J ′.

Figure 2: The in-center P and the corresponding
E, F , G, H, I, J are indicated on the
edges of the tetrahedron ∇ABCD.

Definition 1. If E ′, F ′, G′, H ′, I ′, J ′ are the midpoints of the edges [AB], [AC], [AD], [BC],
[BD], and [CD], respectively, of a tetrahedron ∇ABCD, then the interior of the octahedron
E ′F ′G′H ′I ′J ′ is said to be the deep interior of ∇ABCD. See Figure 1.

Definition 2. A tetrahedron ∇A∗B∗C∗D∗ is said to tangle with the tetrahedron ∇ABCD
if [AB] ∩ [C∗D∗] = {E}, [AC] ∩ [B∗D∗] = {F}, [AD] ∩ [B∗C∗] = {G}, [BC] ∩ [A∗D∗] = {H},
[BD]∩[A∗C∗] = {I}, and [CD]∩[A∗B∗] = {J} for some points E, F , G, H, I, J . In addition,
if [EJ ] ∩ [FI] ∩ [GH] = {P} for some point P , then the tetrahedron ∇A∗B∗C∗D∗ is said to
tangle with with tetrahedron ∇ABCD with respect to P. See Figures 2 and 4.

Let P be a deep interior point of ∇ABCD. Then it is known to have unique points E, F ,
G, H, I, J on the edges AB, AC, AD, BC, CD, respectively, such that [EJ ]∩ [FI]∩ [GH] =
{P} (see Lemma 1(1) below and Figure 2). For simplicity, let ΓA = ΩEF G, ΓB = ΩEHI ,
ΓC = ΩF HJ , and ΓD = ΩGIJ . The planes ΓB, ΓC and ΓD intersect (see Lemma 1(4) below
and Figure 3), say at A∗. Then the three points A, P , and A∗ are known to be collinear, and
A and A∗ are on the opposite sides of the plane ΩA (Lemma 1, (4) and (5) below).

We have {A∗} = ΓB ∩ ΓC ∩ ΓD (see Figure 3). Similarly, let {B∗} = ΓA ∩ ΓC ∩ ΓD,
{C∗} = ΓA ∩ ΓB ∩ ΓD, and {D∗} = ΓA ∩ ΓB ∩ ΓC . The points (A∗ and A), (B∗ and B), (C∗

and C), (D∗ and D) are opposite with respect to the planes ΩA, ΩB, ΩC , ΩD, respectively. It is
known that the tetrahedron ∇A∗B∗C∗D∗ tangles with the tetrahedron ∇ABCD with respect
to P (Lemma 1(7) and see Figure 4 below). For more information on tangled tetrahedron,
please see [4].

Definition 3. The in-sphere of a tetrahedron ∇ABCD, denoted by S, is the sphere inside
of ∇ABCD, tangent to the four triangular faces △ABC, △ABD, △ACD and △BCD. The
center and the radius of S are called the in-center and the in-radius, respectively. The ex-
sphere of the tetrahedron ∇ABCD opposite of the vertex A with respect to ΩA is the sphere
with center A′ outside of ∇ABCD tangent to the planes ΩD, ΩB, ΩC , and the face △BCD,
and it is denoted by SA′ . Hence, ∇ABCD has four ex-spheres SA′ , SB′ , SC′ , and SD′ . The
centers A′, B′, C ′, D′ are called ex-centers of a tetrahedron ∇ABCD.

The tetrahedron ∇A′B′C ′D′ is said to be the ex-center-tetrahedron of ∇ABCD. The
radius of SA′ is called ex-radius and denoted by rA′ .
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Figure 3: The construction of the point A∗ from
Figure 2 is indicated.

Figure 4: Tetrahedra ∇ABCD and
∇A∗B∗C∗D∗ are shown.

Lemma 3 will prove that the in-center is a deep interior point of ∇ABCD. Then Theo-
rem 1 will show that a tetrahedron that tangles ∇ABCD with respect to its in-center is the
ex-center-tetrahedron of ∇ABCD. Therefore, the notations A′, B′, C ′, D′ in Definition 3 will
be replaced by A∗, B∗, C∗, D∗ as in Definition 2. As shown in Remark 2, Theorem 1 gives
us an alternate way to find ex-centers of a tetrahedron from its in-center without externally
bisecting dihedral angles at edges.

Definition 4. Let ∇ABCD be a tetrahedron. Let the area of the faces △ABC, △ABD,
△ACD, △BCD be denoted by AD, AC , AB, and AA, respectively. Let A = AA + AB +
AC + AD, the total surface area of ∇ABCD.

A tetrahedron ∇ABCD is reversible if (|AB| = |CD| and |AD| = |BC|), or (|AB| = |CD|
and |AC| = |BD|), or (|AD| = |BC| and |AC| = |BD|) holds. Klain recently proved that
a tetrahedron ∇ABCD is reversible if and only if (AA = AB and AC = AD), or (AA = AC

and AB = AD), or (AA = AD and AB = AC) holds. (See [6, Theorem 1].)
A tetrahedron ∇ABCD is isosceles if |AB| = |CD|, |AC| = |BD|, and |AD| = |BC|. It

is known that a tetrahedron ∇ABCD is isosceles if and only if AA = AB = AC = AD. (See
[6] for more information.) An isosceles tetrahedron is reversible.

Motivated by these, we define that a tetrahedron ∇ABCD is weakly reversible if (AA +
AB = AC + AD), or (AA + AC = AB + AD), or (AA + AD = AB + AC) holds.

Example 1. If a tetrahedron is reversible, then it must be weakly reversible. But a weakly
reversible tetrahedron may not be reversible. In order to see this, let A = (1, 0, 0), B =
(−1, 0, 0), C = (0, 2, 0), and D = (0, 0, 1) in R3 with the Cartesian coordinates. Then
∇ABCD is a tetrahedron such that |AB| = 2, |AC| = |BC| = |DC| =

√
5, and |DB| =

|DA| =
√

2. Hence, ∇ABCD is not reversible. On the other hand, we can check to see
that AD = 2 and AC = 1, and #    »

AC × #    »

AD = ⟨−1, 2, 0⟩ × ⟨−1, 0, 1⟩ = ⟨2, 1, 2⟩ so that
AA = AB = 1

2
√

4 + 1 + 4 = 3
2 . This shows that AD + AC = 3 = AA + AB. Thus, ∇ABCD

is weakly reversible.
Let ∇A∗B∗C∗D∗ be the ex-center-tetrahedron of ∇ABCD. Theorem 1 will be used to

prove that ∇ABCD is weakly reversible if and only if ∇A∗B∗C∗D∗ and ∇ABCD have the
same volume in Theorem 2. This led us to the following question: If a tetrahedron is weakly
reversible, then is its ex-center-tetrahedron also weakly reversible? The answer to this is NO,
as we will see in Example 2. However, Theorem 3 will show that if a tetrahedron is reversible,
then its ex-center-tetrahedron must also be reversible.
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2 Preliminaries

We will use barycentric coordinates used in [3] to prove Theorems 1 and 2.

Definition 5. Let ∇ABCD be a tetrahedron, and its volume is denoted by V = VABCD. Let
P be a point in R3. Then VP ABC is defined to be the volume of the tetrahedron ∇PABC if P
is on the same side of D with respect to the plane ΩD; and VP ABC is defined to be the negative
of the volume of the tetrahedron ∇PABC if P is on the opposite side of D with respect to the
plane ΩD. Hence, for example, VP BCD > 0 if P and A are on the same side of the plane ΩA;
and VP BCD < 0 if P and A are on opposite sides of the plane ΩA. Let a′ = VP BCD

V , b′ = VP ACD

V ,
c′ = VP ABD

V , d′ = VP ABC

V . (Here, VP BCD, VP ACD, VP ABD, VP ABC are signed volumes.) Then
the barycentric coordinates of P are given and denoted by [a′, b′, c′, d′]. Every point in R3

has unique barycentric coordinates. Since VP BCD + VP ABC + VP ABD + VP ACD = V , we have
a′ + b′ + c′ + d = 1.

The next Lemma 1 is a collection of results from [3].

Lemma 1. Let P be a point inside of a tetrahedron ∇ABCD. Then the following hold:
(1) There are unique points E, F , G, H, I, J on the edges AB, AC, AD, BC, BD, and

CD, respectively, such that [EJ ] ∩ [FI] ∩ [GH] = {P}. (See Figure 2.) Recall that
ΩEF G = ΓA, ΩEHI = ΓB, ΩF HJ = ΓC, and ΩGJI = ΓD.

(2) Let [a′, b′, c′, d′] be the barycentric coordinates of P . Then 0 < a′, b′, c′, d′ < 1. And the
planes ΓB, ΓC, and ΓD intersect at a point if and only if a′ ̸= 1

2 .
(3) Suppose a′ ̸= 1

2 . Let A∗ be the intersection of the planes ΓB, ΓC and ΓD. Then the
barycentric coordinate of A∗ is given by

[
−a′

1−2a′ ,
b′

1−2a′ ,
c′

1−2a′ ,
d′

1−2a′

]
.

(4) If a′ < 1
2 , then A∗ and A are on opposite sides of the plane ΩA. If a′ > 1

2 , then A∗ and
A are on the same side of the plane ΩA.

(5) Supposed a′ ̸= 1
2 . Then the three points A, P , A∗ are collinear. (See Figure 3 when

a′ < 1
2 .)

(6) If E ′, F ′, G′ are the midpoints of [AB], [AC], [AD], respectively, then a′ = 1
2 if and

only if P is a point on the triangle △E ′F ′G′. Also, the point P = [a′, b′, c′, d′] is a deep
interior point if and only if 0 < a′, b′, c′, d′ < 1

2 .
(7) Suppose P is a deep interior point of a tetrahedron ∇ABCD. Then ΓB ∩ ΓC ∩ ΓD,

ΓA ∩ ΓC ∩ ΓD, ΓA ∩ ΓB ∩ ΓD, and ΓA ∩ ΓB ∩ ΓC are all sets with one element.
(8) Let ΓB∩ΓC ∩ΓD = {A∗}, ΓA∩ΓC ∩ΓD = {B∗}, ΓA∩ΓB∩ΓD = {C∗}, and ΓA∩ΓB∩ΓC =

{D∗}. Then ∇A∗B∗C∗D∗ is the unique tangled tetrahedron of ∇ABCD with respect to
the point P .

Proof. Proof of (1): This is [3, Lemma 2]. An alternate proof is given in [4, Lemma 1].
Proof of (2) and (3): See [3, Corollary 1].
Proof of (4): By (3), the first barycentric coordinate of A∗ is −a′

1−2a′ . Since −a′

1−2a′ < 0, the
points A∗ and A are on opposite sides of ΩA. Hence, if a′ < 1

2 , then A∗ and A are on opposite
sides of ΩA. If a′ > 1

2 , then A∗ and A are on the same side of ΩA. ([3, Remark 1] is a mistake,
stated in reverse.)

Proof of (5): See [3, Theorem 1].
Proof of (6): Let E ′, F ′, G′, H ′, I ′, J ′ be the midpoints of the edges [AB], [AC], [AD],

[BC], [BD], and [CD], respectively. Suppose P = [a′, b′, c′, d′] are the barycentric coordinates.
a′ = VP BCD

V = 1
2 if and only if the height of the tetrahedron ∇PBCD from P to ΩA is less

than half of the height of ∇ABCD from A to ΩA. Thus, a′ = 1
2 if and only if P is on
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the triangle △E ′F ′G′. Suppose P is a deep interior point. Since P is a point inside of the
octahedron E ′F ′G′H ′I ′J ′, P has to be between the planes ΩA and ΩE′F ′G′ . Hence, the height
of the tetrahedron ∇PBCD from P to ΩA is less than the half of the height of ∇ABCD
from A to ΩA so that VP BCD < 1

2V , i.e., a′ = VP BCD

V < 1
2 . Similarly, we have b′, c′, d′ < 1

2 .
Conversely, if 0 < a′, b′, c′, d′ < 1

2 , we can reverse this argument to show that P = [a′, b′, c′, d′]
is a deep interior point.

Proof of (7): Since P is a deep interior point of ∇ABCD, we have 0 < a′, b′, c′, d′ < 1
2 by

(6). Hence, by part (2), ΓB ∩ ΓC ∩ ΓD, ΓA ∩ ΓC ∩ ΓD, ΓA ∩ ΓB ∩ ΓD, and ΓA ∩ ΓB ∩ ΓC are
all sets with one element.

Proof of (8): By part (4), we have that (A∗ and A), (B∗ and B), and (C∗ and C),
(D∗ and D) are on the opposite side of the planes ΩA, ΩB, ΩC , and ΩD, respectively. Since
C∗D∗ = ΓA∩ΓB = ΩEF G∩ΩEHI so that E ∈ [C∗D∗], we have [AB]∩[C∗D∗] = {E}. Similarly,
[AC] ∩ [B∗D∗] = {F}, [AD] ∩ [B∗C∗] = {G}, [BC] ∩ [A∗D∗] = {H}, [BD] ∩ [A∗C∗] = {I},
and [CD] ∩ [A∗B∗] = {J}. Therefore, ∇A∗B∗C∗D∗ is the tangled tetrahedron ∇ABCD with
respect to P . The uniqueness of ∇A∗B∗C∗D∗ is proved in [4, Theorem 2(3)].
Lemma 2. Let a = AA

A , b = AB

A , c = AC

A , d = AD

A . Then the barycentric coordinates of the
in-center of the tetrahedron ∇ABCD is given by [a, b, c, d].
Proof. Let r and P be the in-radius and in-center of ∇ABCD, respectively. Recall that
A = AD + AC + AB + AA, the surface area of ∇ABCD. Then VP BCD = 1

3r · AA, and
V = 1

3r · A. Hence, a = VP BCD

V = AA

A . Similarly, we have b = AB

A , c = AC

A , d = AD

A so that the
barycentric coordinate of P is given by [a, b, c, d].
Lemma 3. The in-center of a tetrahedron is a deep interior point of the tetrahedron.
Proof. Let ∇ABCD be a tetrahedron, and let S be its in-sphere. Let P and r be the center
and radius of S, respectively. Let P = [a, b, c, d] be the barycentric coordinates.

Let h be the height of the tetrahedron ∇ABCD from the vertex A. Let Σ be the plane
through the center of S parallel to the base triangle △BCD. Let E, F , G be the intersec-
tion with the plane Σ and the edges [AB], [AC], [AD], respectively. Then the tetrahedron
∇AEFG has the height h − r from the vertex A to the base △EFG, and ∇AEFG also
contains a hemisphere of S. This shows that h − r > r or r < 1

2h. Since VP BCD = 1
3rAA and

VABCD = 1
3hAA, we have a = VP BCD

V = r
h

< 1
2 .

Alternately, since AD + AC + AB > AA, we have a = AA

A = AA

AD+AC+AB+AA
< 1

2 .
Similarly, we can show that 0 < b, c, d < 1

2 . Therefore, this proves that the in-center of a
tetrahedron is a deep interior point of the tetrahedron by Lemma 1(6).

3 Ex-centers of a Tetrahedron

We need the following two lemmas to prove Theorem 1.
Lemma 4. The barycentric coordinates of A, B, C, D are given by A = [1, 0, 0, 0], B =
[0, 1, 0, 0], C = [0, 0, 1, 0], D = [0, 0, 0, 1].

Let P = [a, b, c, d] be the barycentric coordinates of the in-center of ∇ABCD. Let
∇A∗B∗C∗D∗ be the tangled tetrahedron of ∇ABCD with respect to P . Then

A∗ =
[ −a

1 − 2a
,

b

1 − 2a
,

c

1 − 2a
,

d

1 − 2a

]
, B∗ =

[
a

1 − 2b
,

−b

1 − 2b
,

c

1 − 2b
,

d

1 − 2b

]
,

C∗ =
[

a

1 − 2c
,

b

1 − 2c
,

−c

1 − 2c
,

d

1 − 2c

]
, D∗ =

[
a

1 − 2d
,

b

1 − 2d
,

c

1 − 2d
,

−d

1 − 2d

]
.
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Proof. See [3, Example 1] for the barycentric coordinates of A, B, C, D. Since the in-center
P is a deep interior point of the tetrahedron by Lemma 3, the barycentric coordinates of
A∗ are given by Lemma 1(3). The barycentric coordinates of B∗, C∗, D∗ are applications of
Lemma 1(3).

Lemma 5. Let S = [s1, s2, s3, s4], T = [t1, t2, t3, t4], U = [u1, u2, u3, u4], V = [v1, v2, v3, v4] be
points in R3 given in the barycentric coordinates with respect to a tetrahedron ∇ABCD. Let
V be the volume of the tetrahedron ∇ABCD, and let

δ =

∣∣∣∣∣∣∣∣∣
s1, s2, s3, s4
t1, t2, t3, t4
u1, u2, u3, u4
v1, v2, v3, v4

∣∣∣∣∣∣∣∣∣ ,

the determinant of the matrix. Then the volume V ′ of the tetrahedron ∇STUV is given by
|δ|V, i.e., V ′ = |δ|V. (Here, we mean the usual volume, and it is not the signed volume of
∇STUV used in Definition 5 of barycentric coordinates.)

Proof. This is [3, Lemma 3].

We are ready to prove our first main theorem.

Theorem 1. Let P be in-center of a tetrahedron ∇ABCD. Then the tetrahedron tangles
the tetrahedron ∇ABCD with respect to P and the ex-center-tetrahedron of ∇ABCD are
identical.

Proof. Suppose a tetrahedron ∇A∗B∗C∗D∗ tangles ∇ABCD with respect to P . Since P
is in the deep interior of ∇ABCD by Lemma 3, the existence of ∇A∗B∗C∗D∗ makes sense
by Lemma 1(8). Let [a, b, c, d] be the barycentric coordinates of the in-center P . We will
prove that A∗ is the ex-center of ∇ABCD by showing d(A∗, ΩD) = d(A∗, ΩC) = d(A∗, ΩB) =
d(A∗, ΩA). Here, d(A∗, ΩD) is the distance between the point A∗ and the plane ΩD.

We have the following determinants.∣∣∣∣∣∣∣∣∣
0, 1, 0, 0
0, 0, 1, 0
0, 0, 0, 1

−a, b, c, d

∣∣∣∣∣∣∣∣∣ = a,

∣∣∣∣∣∣∣∣∣
1, 0, 0, 0
0, 0, 1, 0
0, 0, 0, 1

−a, b, c, d

∣∣∣∣∣∣∣∣∣ = b,

∣∣∣∣∣∣∣∣∣
1, 0, 0, 0
0, 1, 0, 0
0, 0, 0, 1

−a, b, c, d

∣∣∣∣∣∣∣∣∣ = c,

∣∣∣∣∣∣∣∣∣
1, 0, 0, 0
0, 1, 0, 0
0, 0, 1, 0

−a, b, c, d

∣∣∣∣∣∣∣∣∣ = d.

By Lemmas 4 and 5, since A and A∗ are on opposite sides of ΩA, and since VA∗BCD is
a signed volume, we have VA∗BCD = − a

1−2a
V . Since a = AA

A , we have VA∗BCD = − a
1−2a

V =
− AA

A·(1−2a)V .
On the other hand, we also have VA∗BCD = −1

3AA · d(A∗, ΩA) since VA∗BCD is a signed
volume. Hence, − AA

A·(1−2a)V = −1
3AA · d(A∗, ΩA).

Since AA ̸= 0, we have d(A∗, ΩA) = 3V
A·(1−2a) .

Similarly, we have

VA∗ACD = − b
1−2a

V = − AB

A·(1−2a)V and VA∗ACD = −1
3AB · d(A∗, ΩB)

so that d(A∗, ΩB) = 3V
A·(1−2a) ,

VA∗ABD = − c
1−2a

V = − AC

A·(1−2a)V and VA∗ABD = −1
3AC · d(A∗, ΩC)
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so that d(A∗, ΩC) = 3V
A·(1−2a) , and

VA∗ABC = − d
1−2a

V = − AD

A·(1−2a)V and VA∗ABC = −1
3AD · d(A∗, ΩD)

so that d(A∗, ΩD) = 3V
A·(1−2a) .

Therefore, d(A∗, ΩD) = d(A∗, ΩC) = d(A∗, ΩB) = d(A∗, ΩA). This proves that A∗ is the
center of the ex-sphere SA∗ (and rA = 3V

A·(1−2a) is the radius of ex-sphere SA∗) of ∇ABCD.
Similarly, we can show that B∗, C∗, D∗ are the ex-centers of ∇ABCD. Therefore, this shows
that the ex-center-tetrahedron of ∇ABCD is the tetrahedron that tangles ∇ABCD with
respect to P .

Conversely, suppose ∇A′B′C ′D′ is the ex-center-tetrahedron of ∇ABCD as in Defini-
tion 3. Let P be the in-center of ∇ABCD. If ∇A∗B∗C∗D∗ is the tetrahedron that tangles
∇ABCD with respect to P , then we must have A′ = A∗, B′ = B∗, C ′ = C∗, and D′ = D∗ by
the first part of this proof and by the uniqueness of the tangled tetrahedron with respect to
P by Lemma 1(8). Therefore, the ex-center-tetrahedron ∇A∗B∗C∗D∗ of ∇ABCD must be
the tangled tetrahedron of ∇ABCD with respect to P .

Remark 1. For the rest of this section and Section 4, we use P for the in-center of a tetrahedron
∇ABCD with P = [a, b, c, d] being the barycentric coordinates of P . Because of Theorem 1,
we can replace A′, B′, C ′, D′ in Definition 3 by A∗, B∗, C∗, D∗ as in Definition 2. And we will
use ∇A∗B∗C∗D∗ to denote the ex-center-tetrahedron of ∇ABCD as well as the tetrahedron
that tangles ∇ABCD with respect to the in-center P . Let V , V∗ be the volumes of ∇ABCD,
and ∇A∗B∗C∗D∗, respectively.
Remark 2. The interior angle between the faces △ABC and △ABD of the tetrahedron
∇ABCD is called the dihedral angle of ∇ABCD at the edge AB, and let us denote it by
∢AB. Let ∆AB be the plane containing the line AB that bisect the dihedral angle ∢AB.
Since any point on ∆AB is equidistant from the planes ΩD and ΩC , the in-center P of ∇ABCD
must be on ∆AB. Therefore, {P} = ∆AB ∩ ∆AC ∩ ∆AD ∩ ∆BC ∩ ∆BD ∩ ∆CD. This is a way
to find P .

We can continue using exterior dihedral angle bisecting planes of ∇ABCD to find ex-
centers. However, Theorem 1 gives us an alternate method of finding ex-centers as follows:

Let {E} = [AB] ∩ ∆CD, {F} = [AC] ∩ ∆CB, {G} = [AD] ∩ ∆BC , {H} = [BC] ∩ ∆AD,
{I} = [BD]∩∆AC , and {J} = [CD]∩∆AB. Then [EJ ]∩[FI]∩[GH] = {P}. Let ΩEF G = ΓA,
ΩEHI = ΓB, ΩF HJ = ΓC , and ΩGJI = ΓD, and let {A∗} = ΓB ∩ΓC ∩ΓD, {B∗} = ΓA ∩ΓC ∩ΓD,
{C∗} = ΓA ∩ΓB ∩ΓD, and {D∗} = ΓA ∩ΓB ∩ΓC . Since P is a deep interior point of ∇ABCD
by Lemma 3, the points A∗, B∗, C∗, D∗ exists by Lemma 1(4). By Theorem 1, A∗, B∗, C∗,
D∗ are the ex-centers of the tetrahedron ∇ABCD.

Corollary 1. (1) The radii of the ex-spheres SA∗, SB∗, SC∗, SD∗ of ∇ABCD are given by

rA∗ = 3V
AD + AC + AB − AA

, rB∗ = 3V
AD + AC − AB + AA

,

rC∗ = 3V
AD − AC + AB + AA

, rD∗ = 3V
−AD + AC + AB + AA

,

respectively. Also, the in-radius r of ∇ABCD is given by r = 3V
AA+AB+AC+AD

.
(2) 1

rA∗
+ 1

rB∗
+ 1

rC∗
+ 1

rD∗
= 2

r
.
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Proof. Proof of (1): Since a + b + c + d = 1, we have A · (1 − 2a) = A · (d + c + b − a) =
AD + AC + AB − AA. Hence, from the above proof, the radius rA∗ of SA∗ is given by
rA∗ = 3

A·(1−2a)V = 3V
AD+AC+AB−AA

. Similar for rB∗ , rC∗ , and rD∗ .
Since V = 1

3rA, we have r = 3V
A = 3V

AA+AB+AC+AD
.

Proof of (2):

1
rA∗

+ 1
rB∗

+ 1
rC∗

+ 1
rD∗

= 1
3V {(AD + AC + AB − AA) + (AD + AC − AB + AA)+

(AD − AC + AB + AA) + (−AD + AC + AB + AA)} = 2 · (AD+AC+AB+AA)
3V = 2

r

by part (1).

Remark 3. Corollary 1(1) can be proved by the method similar to Exercise 5 on page 13 and
its hint on page 156, [2]. Corollary 1(2) is known. See Equation (5) on page 83 of [1]. If
ra, rb, rc are the ex-radii of a triangle △ABC, and if r is the inradius of △ABC, then it is
known that 1

ra
+ 1

rb
+ 1

rc
= 1

r
(see Exercise 6 on page 13, [2]).

4 Weakly Reversible Tetrahedron

We will characterize a weakly reversible tetrahedron in Theorem 2 whose proof heavily de-
pends on Theorem 1 because of its use in Lemma 6. Recall P = [a, b, c, d] is the incenter of
the tetrahedron ∇ABCD.

Lemma 6. Recall that V and V∗ be the volumes of ∇ABCD and its ex-center-tetrahedron
∇A∗B∗C∗D∗, respectively. then V∗ = 16abcd

(1−2a)(1−2b)(1−2c)(1−2d)V.

Proof. Since ∇A∗B∗C∗D∗ tangles with ∇ABCD with respect to its in-center, we can apply
[3, Theorem 3(2)] by Theorem 1.

Theorem 2. A tetrahedron ∇ABCD is weakly reversible if and only if ∇ABCD and its
ex-center-tetrahedron ∇A∗B∗C∗D∗ have the same volume.

Proof. Suppose the tetrahedron ∇ABCD is weakly reversible, say AA + AB = AC + AD.
Then a = AA

A = AA

2(AA+AB) . Hence, 1 − 2a = 1 − 2 · AA

2(AA+AB) = (AA+AB)−AA

AA+AB
= AB

AA+AB
so that

a
1−2a

= AA

2(AA+AB) · (AA+AB)
AB

= AA

2AB
.

Similarly, we have b
1−2b

= AB

2AA
, c

1−2c
= AD

2AC
, and d

1−2d
= AC

2AD
.

By substituting these into the formula given in Lemma 6, we have

V∗ = 16 · a

1 − 2a
· b

1 − 2b
· c

1 − 2c
· d

1 − 2d
· V = 16 · AA

2AB

· AB

2AA

· AD

2AC

· AC

2AD

· V = V .

Hence, ∇ABCD and ∇A∗B∗C∗D∗ have the same volume.
Conversely, suppose ∇ABCD and ∇A∗B∗C∗D∗ have the same volume, i.e., V∗ = V . By

Lemma 6, we have
V = V∗ = 16abcd

(1 − 2a)(1 − 2b)(1 − 2c)(1 − 2d)V .

Since V ̸= 0, this implies that

16abcd = (1−2a)(1−2b)(1−2c)(1−2d) = (−a+b+c+d)(a−b+c+d)(a+b−c+d)(a+b+c−d).
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By multiplying and simplifying, we have

a4 + b4 + c4 + d4 − 2(a2b2 + a2c2 + a2d2 + b2c2 + b2d2 + c2d2) + 8abcd = 0.

This can be factored as

[a + b + c + d][(a + b) − (c + d)][(a + c) − (b + d)][(b + c) − (a + d)] = 0.

Hence, a + b = c + d, a + c = b + d, or a + d = b + c. These are equivalent to (AA + AB =
AC + AD), (AA + AC = AB + AD), or (AA + AD = AB + AC). Therefore, the tetrahedron
∇ABCD is weakly reversible.

Remark 4. As a related result, [5, Theorem 1] states that a tetrahedron T is isosceles if and
only if its twin tetrahedron is the ex-center-tetrahedron of T . (Please see [5, Definition 3] or
[1] for the definition of “twin”.)

5 Reversible Tetrahedra

Example 2. Let A = (1, 0, 0), B = (−1, 0, 0), C = (0, 2, 0), and D = (0, 0, 1) in R3, then
the tetrahedron ∇ABCD is a weakly reversible tetrahedron (see Example 1). The normal
vectors to the planes ΩA, ΩB, ΩC , and ΩD are n⃗A = ⟨−2, 1, 2⟩, n⃗B = ⟨2, 1, 2⟩, n⃗C = ⟨0, 1, 0⟩,
and n⃗D = ⟨0, 0, 1⟩, respectively. From these, we can check that the in-center is P =

(
0, 1

3 , 1
3

)
.

For example,

d(P, ΩA) = | #    »

BP · n⃗A|
|n⃗A|

= 1
3 = | #    »

BP · n⃗C |
|n⃗C |

= d(P, ΩC).

Here, | #    »

BP ·n⃗A| is the absolute value of the dot product, and |n⃗A| is the norm of the vector.
Similarly, we can verify that the vertices of its ex-center-tetrahedron ∇A∗B∗C∗D∗ are given
by

A∗ =
(
−1, 2

3 , 2
3

)
, B∗ =

(
1, 2

3 , 2
3

)
, C∗ =

(
0, −1

2 , 1
2

)
, D∗ = (0, 1, −1).

Now, we can calculate the area AA∗B∗C∗ of the triangle △A∗B∗C∗ and others as follows;

AA∗B∗C∗ = | #          »

A∗B∗× #          »

A∗C∗|
2 =

√
50
6 , AA∗B∗D∗ =

√
26
3 , AA∗C∗D∗ =

√
34
4 , and AB∗C∗D∗ =

√
34
4 .

These show that no two sums of AA∗B∗C∗ , AA∗B∗D∗ , AA∗C∗D∗ , AB∗C∗D∗ is equal to the re-
maining two sums. Thus, ∇A∗B∗C∗D∗ is not weakly reversible. Therefore, the ex-center-
tetrahedron of a weakly reversible tetrahedron may not be weakly reversible.

On the other hand, we will prove that the ex-center-tetrahedron of a reversible tetrahedron
is reversible in Theorem 3 below. The proof is computational and we need the following lemma
to prove it. Please note that the letters a, b, c used in this section are not related to the
barycentric coordinates of the in-center P .

Lemma 7. (1) A reversible tetrahedron ∇ABCD can be embedded in R3 so that A =
(−a, −b, c), B = (a, b, c), C = (−ka, kb, 0), D = (ka, −kb, 0) for some a, b, c > 0
and k ≥ 1, given in Cartesian coordinates.

(2) Let L =
√

(ac)2 + (bc)2 + 4(kab)2 and M =
√

(ac)2 + (bc)2 + 4(ab)2. And let P =(
0, 0, kcM

L+kM

)
. Then P is the in-center of ∇ABCD.
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(3) The vertices of its ex-center-tetrahedron ∇A∗B∗C∗D∗ are given by

A∗ =
(

kaM
L

, kbM
L

, 0
)
, B∗ =

(
−kaM

L
, −kbM

L
, 0

)
, C∗ =

(
aL
M

, −bL
M

, c
)
, D∗ =

(
−aL
M

, bL
M

, c
)
.

Proof. The statement (1) is [4, Lemma 11]. Normal vectors to the planes ΩA, ΩB, ΩC ,
and ΩD are n⃗A = ⟨bc, ac, −2ab⟩, n⃗B = ⟨−bc, −ac, −2ab⟩, n⃗C = ⟨bc, −ac, 2kab⟩, and n⃗D =
⟨−bc, ac, 2kab⟩, respectively. From these, we can check that P is the in-center of ∇ABCD,
and that A∗, B∗, C∗, D∗ are ex-centers of the tetrahedron ∇ABCD. These computational
checking are similar to the above Example 2, and we leave these checking to the readers.

Theorem 3. If ∇ABCD is reversible, then so is its ex-center-tetrahedron A∗B∗C∗D∗.

Proof. Using the notations and conclusions of the above lemma, we have

|A∗C∗|2 =
(

aL
M

− kaM
L

)2
+

(
bL
M

+ kbM
L

)2
+ c2 = |B∗D∗|2

so that |A∗C∗| = |B∗D∗|. Similarly,

|A∗D∗|2 =
(

aL
M

+ kaM
L

)2
+

(
bL
M

− kbM
L

)2
+ c2 = |B∗D∗|2

so that |A∗D∗| = |B∗C∗|. Therefore, ∇A∗B∗C∗D∗ is a reversible tetrahedron.

Remark 5. From the proof of Lemma 7, we can check that P =
(
0, 0, kcM

L+kM

)
is the in-center

of ∇ABCD. Normal vectors to the planes ΩA∗B∗C∗ and ΩA∗B∗D∗ are
#               »nA∗B∗C∗ = ⟨−bcM, acM, 2aL⟩ and #               »nA∗B∗D∗ = ⟨bcL, acL, 2abkM⟩ .

Hence, we have

d(P, ΩA∗B∗C∗) = | #      »

A∗P · #               »nA∗B∗C∗|
| #               »nA∗B∗C∗|

= 2abckML

(L + kM)
√

(bcM)2 + (acM)2 + 4(abL)2
,

and
d(P, ΩA∗B∗D∗) = | #      »

A∗P · #               »nA∗B∗D∗|
| #               »nA∗B∗D∗|

= 2abckML

(L + kM)
√

(bcL)2 + (acL)2 + 4(abM)2
.

Suppose a = b = c = 1 and k = 2. Then M =
√

6, and L =
√

18. Then by Lemma 7,
∇ABCD is weakly reversible, and we have

d(P, ΩA∗B∗C∗) = 4
√

6
√

18
(
√

6+
√

18)
√

84 ̸= 4
√

6
√

18
(
√

6+
√

18)
√

80 = d(P, ΩA∗B∗D∗).

Therefore, the in-center of a weakly reversible tetrahedron may not be the in-center of its
ex-center-tetrahedron.

On the other hand, by noting that any isosceles tetrahedron ∇ABCD can be embedded
in R3 by letting A = (−a, −b, c), B = (a, b, c), C = (−a, b, 0), D = (a, −b, 0) for some
a, b, c > 0. So let k = 1 in Lemma 7. Then ∇ABCD becomes an isosceles tetrahedron and
L = M , A∗ = (a, b, 0), B∗ = (−a, −b, 0), C∗ = (a, −b − c), D∗ = (−a, b, c), and P =

(
0, 0, c

2

)
is the in-center of ∇ABCD as well as ∇A∗B∗C∗D∗. We can see this in an alternate way.
Suppose ∇ABCD is isosceles. Then the in-center P is the centroid of ∇ABCD, and we
know that ∇ABCD and ∇A∗B∗C∗D∗ are twins (see [5, Theorem 3]) so that P is also the
in-center of ∇A∗B∗C∗D∗. Hence, A, B, C, D are the ex-centers of ∇A∗B∗C∗D∗. (Please see
[5, Definition 3], [4, Definition 4], or [1] for the definition of “twin”.)
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Example 3. Let ∇ABCD be the reversible tetrahedron in Lemma 7. By calculating the
determinants, we have

#    »

AB · ( #    »

AC × #    »

AD) =

∣∣∣∣∣∣∣
2a 2b 0

−ka + a kb + b −c
ka + a −kb + b −c

∣∣∣∣∣∣∣ = −8abck,

and
#        »

A∗B∗ · ( #        »

A∗C∗ ×
#         »

A∗D∗) =

∣∣∣∣∣∣∣
−2akM

L
−2bkM

L
0

aL
M

− akM
L

− bL
M

− bkM
L

−c
−aL

M
− akM

L
bL
M

− bkM
L

−c

∣∣∣∣∣∣∣ = −8abck.

Therefore, V = 8abck
6 = V∗ as we expected from Theorem 2.

Also, from Lemma 7, we can calculate that

r = 2abck

L + kM
, rA∗ = rB∗ = 2abck

L
, and rC∗ = rD∗ = 2abc

M
.

Hence, 1
rA∗

+ 1
rB∗

+ 1
rC∗

+ 1
rD∗

= L
abck

+ M
abc

= L+kM
abck

= 2
r

as expected from Corollary 1.
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