Ex-Center-Tetrahedra

Hidefumi Katsuura

San Jose State University, San Jose, USA hidefumi.katsuura@sjsu.edu

Abstract. The tetrahedron having ex-centers of a tetrahedron T as vertices is said to be the ex-center-tetrahedron of T, and let us denote it by T^* .

Theorem 1 shows that the ex-center-tetrahedron of a tetrahedron T and the tetrahedron that tangles T with respect to the in-center of T are the same. So T^* is also used to denote the tetrahedron that tangles T with respect to the in-center of T.

We define that a tetrahedron is weakly reversible if the sum of a pair of two face areas is equal to the sum of the other pair of two face areas. Theorem 2 shows that T is weakly reversible if and only if T and T^* have the same volume.

While T^* may not be weakly reversible when T is weakly reversible, Theorem 3 shows that T^* is reversible when T is reversible.

Key Words: tangled tetrahedron, in-sphere, in-center, in-radius, ex-sphere, excenter, ex-radius, ex-center-tetrahedron, deep interior of a tetrahedron, isosceles MSC 2020: 51M04

1 Introduction

The external bisectors of any two angles of a triangle are concurrent with the internal bisector of the third angle, and this concurrent point is an ex-center of the triangle. We can find an ex-center of a tetrahedron in a similar way. However, using the in-center of a tetrahedron, our main Theorem 1 shows an alternate way to find ex-centers of a tetrahedron from its in-center without externally bisecting dihedral angles at edges (see Remark 2 for details). Let us begin with notations and definitions.

Let A, B, C, D be distinct points in \mathbb{R}^3 . We denote the line segment with the end points A and B by [AB], its length by |AB|, and the line AB by \overline{AB} . A triangle $\triangle ABC$ is formed by three non-collinear points A, B, C. A tetrahedron $\nabla ABCD$ is a solid bounded by four triangular faces $\triangle ABC$, $\triangle ABD$, $\triangle ACD$ and $\triangle BCD$, where the points A, B, C, and D are non-coplanar. The plane containing non-collinear points U, V, W is denoted by Ω_{UVW} . For simplicity for the planes defined by the faces of $\nabla ABCD$, we write $\Omega_{ABC} = \Omega_D$, $\Omega_{ABD} = \Omega_C$, $\Omega_{ACD} = \Omega_B$, and $\Omega_{BCD} = \Omega_A$.

ISSN 1433-8157/ © 2025 by the author(s), licensed under CC BY SA 4.0.

A G D

Figure 1: The deep interior of the tetrahedron $\nabla ABCD$ is the interior of the octahedron E'F'G'H'I'J'.

Figure 2: The in-center P and the corresponding E, F, G, H, I, J are indicated on the edges of the tetrahedron $\nabla ABCD$.

Definition 1. If E', F', G', H', I', J' are the midpoints of the edges [AB], [AC], [AD], [BC], [BD], and [CD], respectively, of a tetrahedron $\nabla ABCD$, then the interior of the octahedron E'F'G'H'I'J' is said to be the *deep interior* of $\nabla ABCD$. See Figure 1.

Definition 2. A tetrahedron $\nabla A^*B^*C^*D^*$ is said to tangle with the tetrahedron $\nabla ABCD$ if $[AB] \cap [C^*D^*] = \{E\}$, $[AC] \cap [B^*D^*] = \{F\}$, $[AD] \cap [B^*C^*] = \{G\}$, $[BC] \cap [A^*D^*] = \{H\}$, $[BD] \cap [A^*C^*] = \{I\}$, and $[CD] \cap [A^*B^*] = \{J\}$ for some points E, F, G, H, I, J. In addition, if $[EJ] \cap [FI] \cap [GH] = \{P\}$ for some point P, then the tetrahedron $\nabla A^*B^*C^*D^*$ is said to tangle with with tetrahedron $\nabla ABCD$ with respect to P. See Figures 2 and 4.

Let P be a deep interior point of $\nabla ABCD$. Then it is known to have unique points E, F, G, H, I, J on the edges AB, AC, AD, BC, CD, respectively, such that $[EJ] \cap [FI] \cap [GH] = \{P\}$ (see Lemma 1(1) below and Figure 2). For simplicity, let $\Gamma_A = \Omega_{EFG}, \Gamma_B = \Omega_{EHI}, \Gamma_C = \Omega_{FHJ}$, and $\Gamma_D = \Omega_{GIJ}$. The planes Γ_B, Γ_C and Γ_D intersect (see Lemma 1(4) below and Figure 3), say at A^* . Then the three points A, P, A^* are known to be collinear, and A^* are on the opposite sides of the plane Ω_A (Lemma 1, (4) and (5) below).

We have $\{A^*\} = \Gamma_B \cap \Gamma_C \cap \Gamma_D$ (see Figure 3). Similarly, let $\{B^*\} = \Gamma_A \cap \Gamma_C \cap \Gamma_D$, $\{C^*\} = \Gamma_A \cap \Gamma_B \cap \Gamma_D$, and $\{D^*\} = \Gamma_A \cap \Gamma_B \cap \Gamma_C$. The points $(A^* \text{ and } A)$, $(B^* \text{ and } B)$, $(C^* \text{ and } C)$, $(D^* \text{ and } D)$ are opposite with respect to the planes Ω_A , Ω_B , Ω_C , Ω_D , respectively. It is known that the tetrahedron $\nabla A^*B^*C^*D^*$ tangles with the tetrahedron $\nabla ABCD$ with respect to P (Lemma 1(7) and see Figure 4 below). For more information on tangled tetrahedron, please see [4].

Definition 3. The *in-sphere* of a tetrahedron $\nabla ABCD$, denoted by S, is the sphere inside of $\nabla ABCD$, tangent to the four triangular faces $\triangle ABC$, $\triangle ABD$, $\triangle ACD$ and $\triangle BCD$. The center and the radius of S are called the *in-center* and the *in-radius*, respectively. The *ex-sphere* of the tetrahedron $\nabla ABCD$ opposite of the vertex A with respect to Ω_A is the sphere with center A' outside of $\nabla ABCD$ tangent to the planes Ω_D , Ω_B , Ω_C , and the face $\triangle BCD$, and it is denoted by $S_{A'}$. Hence, $\nabla ABCD$ has four ex-spheres $S_{A'}$, $S_{B'}$, $S_{C'}$, and $S_{D'}$. The centers A', B', C', D' are called *ex-centers* of a tetrahedron $\nabla ABCD$.

The tetrahedron $\nabla A'B'C'D'$ is said to be the *ex-center-tetrahedron* of $\nabla ABCD$. The radius of $S_{A'}$ is called *ex-radius* and denoted by $r_{A'}$.

Figure 3: The construction of the point A^* from Figure 2 is indicated.

Figure 4: Tetrahedra $\nabla ABCD$ and $\nabla A^*B^*C^*D^*$ are shown.

Lemma 3 will prove that the in-center is a deep interior point of $\nabla ABCD$. Then Theorem 1 will show that a tetrahedron that tangles $\nabla ABCD$ with respect to its in-center is the ex-center-tetrahedron of $\nabla ABCD$. Therefore, the notations A', B', C', D' in Definition 3 will be replaced by A^* , B^* , C^* , D^* as in Definition 2. As shown in Remark 2, Theorem 1 gives us an alternate way to find ex-centers of a tetrahedron from its in-center without externally bisecting dihedral angles at edges.

Definition 4. Let $\nabla ABCD$ be a tetrahedron. Let the area of the faces $\triangle ABC$, $\triangle ABD$, $\triangle ACD$, $\triangle BCD$ be denoted by \mathcal{A}_D , \mathcal{A}_C , \mathcal{A}_B , and \mathcal{A}_A , respectively. Let $\mathcal{A} = \mathcal{A}_A + \mathcal{A}_B + \mathcal{A}_C + \mathcal{A}_D$, the total surface area of $\nabla ABCD$.

A tetrahedron $\nabla ABCD$ is reversible if (|AB| = |CD| and |AD| = |BC|), or (|AB| = |CD| and |AC| = |BD|), or (|AD| = |BC| and |AC| = |BD|) holds. Klain recently proved that a tetrahedron $\nabla ABCD$ is reversible if and only if $(\mathcal{A}_A = \mathcal{A}_B \text{ and } \mathcal{A}_C = \mathcal{A}_D)$, or $(\mathcal{A}_A = \mathcal{A}_C \text{ and } \mathcal{A}_B = \mathcal{A}_D)$, or $(\mathcal{A}_A = \mathcal{A}_D \text{ and } \mathcal{A}_B = \mathcal{A}_C)$ holds. (See [6, Theorem 1].)

A tetrahedron $\nabla ABCD$ is isosceles if |AB| = |CD|, |AC| = |BD|, and |AD| = |BC|. It is known that a tetrahedron $\nabla ABCD$ is isosceles if and only if $\mathcal{A}_A = \mathcal{A}_B = \mathcal{A}_C = \mathcal{A}_D$. (See [6] for more information.) An isosceles tetrahedron is reversible.

Motivated by these, we define that a tetrahedron $\nabla ABCD$ is weakly reversible if $(\mathcal{A}_A + \mathcal{A}_B = \mathcal{A}_C + \mathcal{A}_D)$, or $(\mathcal{A}_A + \mathcal{A}_C = \mathcal{A}_B + \mathcal{A}_D)$, or $(\mathcal{A}_A + \mathcal{A}_D = \mathcal{A}_B + \mathcal{A}_C)$ holds.

Example 1. If a tetrahedron is reversible, then it must be weakly reversible. But a weakly reversible tetrahedron may not be reversible. In order to see this, let A = (1,0,0), B = (-1,0,0), C = (0,2,0), and D = (0,0,1) in \mathbb{R}^3 with the Cartesian coordinates. Then $\nabla ABCD$ is a tetrahedron such that |AB| = 2, $|AC| = |BC| = |DC| = \sqrt{5}$, and $|DB| = |DA| = \sqrt{2}$. Hence, $\nabla ABCD$ is not reversible. On the other hand, we can check to see that $A_D = 2$ and $A_C = 1$, and $\overrightarrow{AC} \times \overrightarrow{AD} = \langle -1, 2, 0 \rangle \times \langle -1, 0, 1 \rangle = \langle 2, 1, 2 \rangle$ so that $A_A = A_B = \frac{1}{2}\sqrt{4+1+4} = \frac{3}{2}$. This shows that $A_D + A_C = 3 = A_A + A_B$. Thus, $\nabla ABCD$ is weakly reversible.

Let $\nabla A^*B^*C^*D^*$ be the ex-center-tetrahedron of $\nabla ABCD$. Theorem 1 will be used to prove that $\nabla ABCD$ is weakly reversible if and only if $\nabla A^*B^*C^*D^*$ and $\nabla ABCD$ have the same volume in Theorem 2. This led us to the following question: If a tetrahedron is weakly reversible, then is its ex-center-tetrahedron also weakly reversible? The answer to this is NO, as we will see in Example 2. However, Theorem 3 will show that if a tetrahedron is reversible, then its ex-center-tetrahedron must also be reversible.

2 Preliminaries

We will use barycentric coordinates used in [3] to prove Theorems 1 and 2.

Definition 5. Let $\nabla ABCD$ be a tetrahedron, and its volume is denoted by $\mathcal{V} = \mathcal{V}_{ABCD}$. Let P be a point in \mathbb{R}^3 . Then \mathcal{V}_{PABC} is defined to be the volume of the tetrahedron $\nabla PABC$ if P is on the same side of D with respect to the plane Ω_D ; and \mathcal{V}_{PABC} is defined to be the negative of the volume of the tetrahedron $\nabla PABC$ if P is on the opposite side of D with respect to the plane Ω_D . Hence, for example, $\mathcal{V}_{PBCD} > 0$ if P and A are on the same side of the plane Ω_A ; and $\mathcal{V}_{PBCD} < 0$ if P and A are on opposite sides of the plane Ω_A . Let $a' = \frac{\mathcal{V}_{PBCD}}{\mathcal{V}}$, $b' = \frac{\mathcal{V}_{PACD}}{\mathcal{V}}$, $c' = \frac{\mathcal{V}_{PABD}}{\mathcal{V}}$, $d' = \frac{\mathcal{V}_{PABC}}{\mathcal{V}}$. (Here, \mathcal{V}_{PBCD} , \mathcal{V}_{PACD} , \mathcal{V}_{PABD} , \mathcal{V}_{PABC} are signed volumes.) Then the barycentric coordinates of P are given and denoted by [a', b', c', d']. Every point in \mathbb{R}^3 has unique barycentric coordinates. Since $\mathcal{V}_{PBCD} + \mathcal{V}_{PABC} + \mathcal{V}_{PABD} + \mathcal{V}_{PACD} = \mathcal{V}$, we have a' + b' + c' + d = 1.

The next Lemma 1 is a collection of results from [3].

Lemma 1. Let P be a point inside of a tetrahedron $\nabla ABCD$. Then the following hold:

- (1) There are unique points E, F, G, H, I, J on the edges AB, AC, AD, BC, BD, and CD, respectively, such that $[EJ] \cap [FI] \cap [GH] = \{P\}$. (See Figure 2.) Recall that $\Omega_{EFG} = \Gamma_A$, $\Omega_{EHI} = \Gamma_B$, $\Omega_{FHJ} = \Gamma_C$, and $\Omega_{GJI} = \Gamma_D$.
- (2) Let [a', b', c', d'] be the barycentric coordinates of P. Then 0 < a', b', c', d' < 1. And the planes Γ_B , Γ_C , and Γ_D intersect at a point if and only if $a' \neq \frac{1}{2}$.
- (3) Suppose $a' \neq \frac{1}{2}$. Let A^* be the intersection of the planes Γ_B , Γ_C and Γ_D . Then the barycentric coordinate of A^* is given by $\left[\frac{-a'}{1-2a'}, \frac{b'}{1-2a'}, \frac{c'}{1-2a'}, \frac{d'}{1-2a'}\right]$.
- (4) If $a' < \frac{1}{2}$, then A^* and A are on opposite sides of the plane Ω_A . If $a' > \frac{1}{2}$, then A^* and A are on the same side of the plane Ω_A .
- (5) Supposed $a' \neq \frac{1}{2}$. Then the three points A, P, A* are collinear. (See Figure 3 when $a' < \frac{1}{2}$.)
- (6) If E', F', G' are the midpoints of [AB], [AC], [AD], respectively, then $a' = \frac{1}{2}$ if and only if P is a point on the triangle $\triangle E'F'G'$. Also, the point P = [a', b', c', d'] is a deep interior point if and only if $0 < a', b', c', d' < \frac{1}{2}$.
- (7) Suppose P is a deep interior point of a tetrahedron $\nabla ABCD$. Then $\Gamma_B \cap \Gamma_C \cap \Gamma_D$, $\Gamma_A \cap \Gamma_C \cap \Gamma_D$, $\Gamma_A \cap \Gamma_B \cap \Gamma_D$, and $\Gamma_A \cap \Gamma_B \cap \Gamma_C$ are all sets with one element.
- (8) Let $\Gamma_B \cap \Gamma_C \cap \Gamma_D = \{A^*\}$, $\Gamma_A \cap \Gamma_C \cap \Gamma_D = \{B^*\}$, $\Gamma_A \cap \Gamma_B \cap \Gamma_D = \{C^*\}$, and $\Gamma_A \cap \Gamma_B \cap \Gamma_C = \{D^*\}$. Then $\nabla A^*B^*C^*D^*$ is the unique tangled tetrahedron of $\nabla ABCD$ with respect to the point P.

Proof. Proof of (1): This is [3, Lemma 2]. An alternate proof is given in [4, Lemma 1]. Proof of (2) and (3): See [3, Corollary 1].

Proof of (4): By (3), the first barycentric coordinate of A^* is $\frac{-a'}{1-2a'}$. Since $\frac{-a'}{1-2a'} < 0$, the points A^* and A are on opposite sides of Ω_A . Hence, if $a' < \frac{1}{2}$, then A^* and A are on opposite sides of Ω_A . If $a' > \frac{1}{2}$, then A^* and A are on the same side of Ω_A . ([3, Remark 1] is a mistake, stated in reverse.)

Proof of (5): See [3, Theorem 1].

Proof of (6): Let E', F', G', H', I', J' be the midpoints of the edges [AB], [AC], [AD], [BC], [BD], and [CD], respectively. Suppose P = [a', b', c', d'] are the barycentric coordinates. $a' = \frac{\mathcal{V}_{PBCD}}{\mathcal{V}} = \frac{1}{2}$ if and only if the height of the tetrahedron $\nabla PBCD$ from P to Ω_A is less than half of the height of $\nabla ABCD$ from A to Ω_A . Thus, $a' = \frac{1}{2}$ if and only if P is on

the triangle $\triangle E'F'G'$. Suppose P is a deep interior point. Since P is a point inside of the octahedron E'F'G'H'I'J', P has to be between the planes Ω_A and $\Omega_{E'F'G'}$. Hence, the height of the tetrahedron $\nabla PBCD$ from P to Ω_A is less than the half of the height of $\nabla ABCD$ from A to Ω_A so that $\mathcal{V}_{PBCD} < \frac{1}{2}\mathcal{V}$, i.e., $a' = \frac{\mathcal{V}_{PBCD}}{\mathcal{V}} < \frac{1}{2}$. Similarly, we have b', c', $d' < \frac{1}{2}$. Conversely, if $0 < a', b', c', d' < \frac{1}{2}$, we can reverse this argument to show that P = [a', b', c', d'] is a deep interior point.

Proof of (7): Since P is a deep interior point of $\nabla ABCD$, we have $0 < a', b', c', d' < \frac{1}{2}$ by (6). Hence, by part (2), $\Gamma_B \cap \Gamma_C \cap \Gamma_D$, $\Gamma_A \cap \Gamma_C \cap \Gamma_D$, $\Gamma_A \cap \Gamma_B \cap \Gamma_D$, and $\Gamma_A \cap \Gamma_B \cap \Gamma_C$ are all sets with one element.

Proof of (8): By part (4), we have that $(A^* \text{ and } A)$, $(B^* \text{ and } B)$, and $(C^* \text{ and } C)$, $(D^* \text{ and } D)$ are on the opposite side of the planes Ω_A , Ω_B , Ω_C , and Ω_D , respectively. Since $\overline{C^*D^*} = \Gamma_A \cap \Gamma_B = \Omega_{EFG} \cap \Omega_{EHI}$ so that $E \in [C^*D^*]$, we have $[AB] \cap [C^*D^*] = \{E\}$. Similarly, $[AC] \cap [B^*D^*] = \{F\}$, $[AD] \cap [B^*C^*] = \{G\}$, $[BC] \cap [A^*D^*] = \{H\}$, $[BD] \cap [A^*C^*] = \{I\}$, and $[CD] \cap [A^*B^*] = \{J\}$. Therefore, $\nabla A^*B^*C^*D^*$ is the tangled tetrahedron $\nabla ABCD$ with respect to P. The uniqueness of $\nabla A^*B^*C^*D^*$ is proved in [4, Theorem 2(3)].

Lemma 2. Let $a = \frac{A_A}{A}$, $b = \frac{A_B}{A}$, $c = \frac{A_C}{A}$, $d = \frac{A_D}{A}$. Then the barycentric coordinates of the in-center of the tetrahedron $\nabla ABCD$ is given by [a, b, c, d].

Proof. Let r and P be the in-radius and in-center of $\nabla ABCD$, respectively. Recall that $\mathcal{A} = \mathcal{A}_D + \mathcal{A}_C + \mathcal{A}_B + \mathcal{A}_A$, the surface area of $\nabla ABCD$. Then $\mathcal{V}_{PBCD} = \frac{1}{3}r \cdot \mathcal{A}_A$, and $\mathcal{V} = \frac{1}{3}r \cdot \mathcal{A}$. Hence, $a = \frac{\mathcal{V}_{PBCD}}{\mathcal{V}} = \frac{\mathcal{A}_A}{\mathcal{A}}$. Similarly, we have $b = \frac{\mathcal{A}_B}{\mathcal{A}}$, $c = \frac{\mathcal{A}_C}{\mathcal{A}}$, $d = \frac{\mathcal{A}_D}{\mathcal{A}}$ so that the barycentric coordinate of P is given by [a, b, c, d].

Lemma 3. The in-center of a tetrahedron is a deep interior point of the tetrahedron.

Proof. Let $\nabla ABCD$ be a tetrahedron, and let S be its in-sphere. Let P and r be the center and radius of S, respectively. Let P = [a, b, c, d] be the barycentric coordinates.

Let h be the height of the tetrahedron $\nabla ABCD$ from the vertex A. Let Σ be the plane through the center of S parallel to the base triangle $\triangle BCD$. Let E, F, G be the intersection with the plane Σ and the edges [AB], [AC], [AD], respectively. Then the tetrahedron $\nabla AEFG$ has the height h-r from the vertex A to the base $\triangle EFG$, and $\nabla AEFG$ also contains a hemisphere of S. This shows that h-r>r or $r<\frac{1}{2}h$. Since $\mathcal{V}_{PBCD}=\frac{1}{3}r\mathcal{A}_A$ and $\mathcal{V}_{ABCD}=\frac{1}{3}h\mathcal{A}_A$, we have $a=\frac{\mathcal{V}_{PBCD}}{\mathcal{V}}=\frac{r}{h}<\frac{1}{2}$.

Alternately, since $A_D + A_C + A_B > A_A$, we have $a = \frac{A_A}{A} = \frac{A_A}{A_D + A_C + A_B + A_A} < \frac{1}{2}$.

Similarly, we can show that $0 < b, c, d < \frac{1}{2}$. Therefore, this proves that the in-center of a tetrahedron is a deep interior point of the tetrahedron by Lemma 1(6).

3 Ex-centers of a Tetrahedron

We need the following two lemmas to prove Theorem 1.

Lemma 4. The barycentric coordinates of A, B, C, D are given by A = [1, 0, 0, 0], B = [0, 1, 0, 0], C = [0, 0, 1, 0], D = [0, 0, 0, 1].

Let P = [a, b, c, d] be the barycentric coordinates of the in-center of $\nabla ABCD$. Let $\nabla A^*B^*C^*D^*$ be the tangled tetrahedron of $\nabla ABCD$ with respect to P. Then

$$A^* = \left[\frac{-a}{1-2a}, \frac{b}{1-2a}, \frac{c}{1-2a}, \frac{d}{1-2a}\right], \quad B^* = \left[\frac{a}{1-2b}, \frac{-b}{1-2b}, \frac{c}{1-2b}, \frac{d}{1-2b}\right],$$

$$C^* = \left[\frac{a}{1-2c}, \frac{b}{1-2c}, \frac{-c}{1-2c}, \frac{d}{1-2c}\right], \quad D^* = \left[\frac{a}{1-2d}, \frac{b}{1-2d}, \frac{c}{1-2d}, \frac{-d}{1-2d}\right].$$

Proof. See [3, Example 1] for the barycentric coordinates of A, B, C, D. Since the in-center P is a deep interior point of the tetrahedron by Lemma 3, the barycentric coordinates of A^* are given by Lemma 1(3). The barycentric coordinates of B^* , C^* , D^* are applications of Lemma 1(3).

Lemma 5. Let $S = [s_1, s_2, s_3, s_4]$, $T = [t_1, t_2, t_3, t_4]$, $U = [u_1, u_2, u_3, u_4]$, $V = [v_1, v_2, v_3, v_4]$ be points in \mathbb{R}^3 given in the barycentric coordinates with respect to a tetrahedron $\nabla ABCD$. Let \mathcal{V} be the volume of the tetrahedron $\nabla ABCD$, and let

$$\delta = \begin{vmatrix} s_1, & s_2, & s_3, & s_4 \\ t_1, & t_2, & t_3, & t_4 \\ u_1, & u_2, & u_3, & u_4 \\ v_1, & v_2, & v_3, & v_4 \end{vmatrix},$$

the determinant of the matrix. Then the volume \mathcal{V}' of the tetrahedron $\nabla STUV$ is given by $|\delta|\mathcal{V}$, i.e., $\mathcal{V}' = |\delta|\mathcal{V}$. (Here, we mean the usual volume, and it is not the signed volume of $\nabla STUV$ used in Definition 5 of barycentric coordinates.)

Proof. This is
$$[3, Lemma 3]$$
.

We are ready to prove our first main theorem.

Theorem 1. Let P be in-center of a tetrahedron $\nabla ABCD$. Then the tetrahedron tangles the tetrahedron $\nabla ABCD$ with respect to P and the ex-center-tetrahedron of $\nabla ABCD$ are identical.

Proof. Suppose a tetrahedron $\nabla A^*B^*C^*D^*$ tangles $\nabla ABCD$ with respect to P. Since P is in the deep interior of $\nabla ABCD$ by Lemma 3, the existence of $\nabla A^*B^*C^*D^*$ makes sense by Lemma 1(8). Let [a,b,c,d] be the barycentric coordinates of the in-center P. We will prove that A^* is the ex-center of $\nabla ABCD$ by showing $d(A^*,\Omega_D)=d(A^*,\Omega_C)=d(A^*,\Omega_D)=d(A^*,\Omega_D)$. Here, $d(A^*,\Omega_D)$ is the distance between the point A^* and the plane Ω_D .

We have the following determinants.

$$\begin{vmatrix} 0, & 1, & 0, & 0 \\ 0, & 0, & 1, & 0 \\ 0, & 0, & 0, & 1 \\ -a, & b, & c, & d \end{vmatrix} = a, \quad \begin{vmatrix} 1, & 0, & 0, & 0 \\ 0, & 0, & 1, & 0 \\ 0, & 0, & 0, & 1 \\ -a, & b, & c, & d \end{vmatrix} = b, \quad \begin{vmatrix} 1, & 0, & 0, & 0 \\ 0, & 1, & 0, & 0 \\ 0, & 0, & 0, & 1 \\ -a, & b, & c, & d \end{vmatrix} = c, \quad \begin{vmatrix} 1, & 0, & 0, & 0 \\ 0, & 1, & 0, & 0 \\ 0, & 0, & 1, & 0 \\ -a, & b, & c, & d \end{vmatrix} = d.$$

By Lemmas 4 and 5, since A and A^* are on opposite sides of Ω_A , and since \mathcal{V}_{A^*BCD} is a signed volume, we have $\mathcal{V}_{A^*BCD} = -\frac{a}{1-2a}\mathcal{V}$. Since $a = \frac{\mathcal{A}_A}{\mathcal{A}}$, we have $\mathcal{V}_{A^*BCD} = -\frac{a}{1-2a}\mathcal{V} = -\frac{\mathcal{A}_A}{\mathcal{A}\cdot(1-2a)}\mathcal{V}$.

On the other hand, we also have $\mathcal{V}_{A^*BCD} = -\frac{1}{3}\mathcal{A}_A \cdot d(A^*, \Omega_A)$ since \mathcal{V}_{A^*BCD} is a signed volume. Hence, $-\frac{\mathcal{A}_A}{\mathcal{A}\cdot(1-2a)}\mathcal{V} = -\frac{1}{3}\mathcal{A}_A \cdot d(A^*, \Omega_A)$.

Since $\mathcal{A}_A \neq 0$, we have $d(A^*, \Omega_A) = \frac{3\mathcal{V}}{\mathcal{A} \cdot (1-2a)}$.

Similarly, we have

$$\mathcal{V}_{A^*ACD} = -\frac{b}{1-2a}\mathcal{V} = -\frac{\mathcal{A}_B}{\mathcal{A}\cdot(1-2a)}\mathcal{V}$$
 and $\mathcal{V}_{A^*ACD} = -\frac{1}{3}\mathcal{A}_B\cdot d(A^*, \Omega_B)$

so that $d(A^*, \Omega_B) = \frac{3\mathcal{V}}{\mathcal{A}\cdot(1-2a)}$,

$$\mathcal{V}_{A^*ABD} = -\frac{c}{1-2a}\mathcal{V} = -\frac{\mathcal{A}_C}{\mathcal{A}\cdot(1-2a)}\mathcal{V}$$
 and $\mathcal{V}_{A^*ABD} = -\frac{1}{3}\mathcal{A}_C \cdot d(A^*, \Omega_C)$

so that $d(A^*, \Omega_C) = \frac{3\mathcal{V}}{\mathcal{A} \cdot (1-2a)}$, and

$$\mathcal{V}_{A^*ABC} = -\frac{d}{1-2a}\mathcal{V} = -\frac{\mathcal{A}_D}{\mathcal{A}\cdot(1-2a)}\mathcal{V}$$
 and $\mathcal{V}_{A^*ABC} = -\frac{1}{3}\mathcal{A}_D \cdot d(A^*, \Omega_D)$

so that $d(A^*, \Omega_D) = \frac{3\mathcal{V}}{\mathcal{A} \cdot (1-2a)}$.

Therefore, $d(A^*, \Omega_D) = d(A^*, \Omega_C) = d(A^*, \Omega_B) = d(A^*, \Omega_A)$. This proves that A^* is the center of the ex-sphere S_{A^*} (and $r_A = \frac{3\mathcal{V}}{A \cdot (1-2a)}$ is the radius of ex-sphere S_{A^*}) of $\nabla ABCD$. Similarly, we can show that B^* , C^* , D^* are the ex-centers of $\nabla ABCD$. Therefore, this shows that the ex-center-tetrahedron of $\nabla ABCD$ is the tetrahedron that tangles $\nabla ABCD$ with respect to P.

Conversely, suppose $\nabla A'B'C'D'$ is the ex-center-tetrahedron of $\nabla ABCD$ as in Definition 3. Let P be the in-center of $\nabla ABCD$. If $\nabla A^*B^*C^*D^*$ is the tetrahedron that tangles $\nabla ABCD$ with respect to P, then we must have $A' = A^*$, $B' = B^*$, $C' = C^*$, and $D' = D^*$ by the first part of this proof and by the uniqueness of the tangled tetrahedron with respect to P by Lemma 1(8). Therefore, the ex-center-tetrahedron $\nabla A^*B^*C^*D^*$ of $\nabla ABCD$ must be the tangled tetrahedron of $\nabla ABCD$ with respect to P.

Remark 1. For the rest of this section and Section 4, we use P for the in-center of a tetrahedron $\nabla ABCD$ with P = [a, b, c, d] being the barycentric coordinates of P. Because of Theorem 1, we can replace A', B', C', D' in Definition 3 by A^* , B^* , C^* , D^* as in Definition 2. And we will use $\nabla A^*B^*C^*D^*$ to denote the ex-center-tetrahedron of $\nabla ABCD$ as well as the tetrahedron that tangles $\nabla ABCD$ with respect to the in-center P. Let \mathcal{V} , \mathcal{V}^* be the volumes of $\nabla ABCD$, and $\nabla A^*B^*C^*D^*$, respectively.

Remark 2. The interior angle between the faces $\triangle ABC$ and $\triangle ABD$ of the tetrahedron $\nabla ABCD$ is called the dihedral angle of $\nabla ABCD$ at the edge AB, and let us denote it by $\triangleleft AB$. Let Δ_{AB} be the plane containing the line \overline{AB} that bisect the dihedral angle $\triangleleft AB$. Since any point on Δ_{AB} is equidistant from the planes Ω_D and Ω_C , the in-center P of $\nabla ABCD$ must be on Δ_{AB} . Therefore, $\{P\} = \Delta_{AB} \cap \Delta_{AC} \cap \Delta_{AD} \cap \Delta_{BC} \cap \Delta_{BD} \cap \Delta_{CD}$. This is a way to find P.

We can continue using exterior dihedral angle bisecting planes of $\nabla ABCD$ to find excenters. However, Theorem 1 gives us an alternate method of finding ex-centers as follows:

Let $\{E\} = [AB] \cap \Delta_{CD}$, $\{F\} = [AC] \cap \Delta_{CB}$, $\{G\} = [AD] \cap \Delta_{BC}$, $\{H\} = [BC] \cap \Delta_{AD}$, $\{I\} = [BD] \cap \Delta_{AC}$, and $\{J\} = [CD] \cap \Delta_{AB}$. Then $[EJ] \cap [FI] \cap [GH] = \{P\}$. Let $\Omega_{EFG} = \Gamma_A$, $\Omega_{EHI} = \Gamma_B$, $\Omega_{FHJ} = \Gamma_C$, and $\Omega_{GJI} = \Gamma_D$, and let $\{A^*\} = \Gamma_B \cap \Gamma_C \cap \Gamma_D$, $\{B^*\} = \Gamma_A \cap \Gamma_C \cap \Gamma_D$, and $\{D^*\} = \Gamma_A \cap \Gamma_B \cap \Gamma_C$. Since P is a deep interior point of $\nabla ABCD$ by Lemma 3, the points A^* , B^* , C^* , D^* exists by Lemma 1(4). By Theorem 1, A^* , B^* , C^* , D^* are the ex-centers of the tetrahedron $\nabla ABCD$.

Corollary 1. (1) The radii of the ex-spheres S_{A^*} , S_{B^*} , S_{C^*} , S_{D^*} of $\nabla ABCD$ are given by

$$\begin{split} r_{A^*} &= \frac{3\mathcal{V}}{\mathcal{A}_D + \mathcal{A}_C + \mathcal{A}_B - \mathcal{A}_A}, \quad r_{B^*} = \frac{3\mathcal{V}}{\mathcal{A}_D + \mathcal{A}_C - \mathcal{A}_B + \mathcal{A}_A}, \\ r_{C^*} &= \frac{3\mathcal{V}}{\mathcal{A}_D - \mathcal{A}_C + \mathcal{A}_B + \mathcal{A}_A}, \quad r_{D^*} = \frac{3\mathcal{V}}{-\mathcal{A}_D + \mathcal{A}_C + \mathcal{A}_B + \mathcal{A}_A}, \end{split}$$

respectively. Also, the in-radius r of $\nabla ABCD$ is given by $r = \frac{3\mathcal{V}}{\mathcal{A}_A + \mathcal{A}_B + \mathcal{A}_C + \mathcal{A}_D}$. (2) $\frac{1}{r_{A^*}} + \frac{1}{r_{B^*}} + \frac{1}{r_{C^*}} + \frac{1}{r_{D^*}} = \frac{2}{r}$.

Proof. Proof of (1): Since a+b+c+d=1, we have $\mathcal{A}\cdot(1-2a)=\mathcal{A}\cdot(d+c+b-a)=0$ $\mathcal{A}_{\mathcal{D}} + \mathcal{A}_{\mathcal{C}} + \mathcal{A}_{\mathcal{B}} - \mathcal{A}_{\mathcal{A}}$. Hence, from the above proof, the radius r_{A^*} of S_{A^*} is given by $r_{A^*} = \frac{3}{\mathcal{A} \cdot (1-2a)} \mathcal{V} = \frac{3\mathcal{V}}{\mathcal{A}_D + \mathcal{A}_C + \mathcal{A}_B - \mathcal{A}_A}$. Similar for r_{B^*} , r_{C^*} , and r_{D^*} . Since $\mathcal{V} = \frac{1}{3} r \mathcal{A}$, we have $r = \frac{3\mathcal{V}}{\mathcal{A}} = \frac{3\mathcal{V}}{\mathcal{A}_A + \mathcal{A}_B + \mathcal{A}_C + \mathcal{A}_D}$.

$$\frac{1}{r_{A^*}} + \frac{1}{r_{B^*}} + \frac{1}{r_{C^*}} + \frac{1}{r_{D^*}} = \frac{1}{3\mathcal{V}} \{ (\mathcal{A}_D + \mathcal{A}_C + \mathcal{A}_B - \mathcal{A}_A) + (\mathcal{A}_D + \mathcal{A}_C - \mathcal{A}_B + \mathcal{A}_A) + (\mathcal{A}_D - \mathcal{A}_C + \mathcal{A}_B + \mathcal{A}_A) + (-\mathcal{A}_D + \mathcal{A}_C + \mathcal{A}_B + \mathcal{A}_A) \} = 2 \cdot \frac{(\mathcal{A}_D + \mathcal{A}_C + \mathcal{A}_B + \mathcal{A}_A)}{3\mathcal{V}} = \frac{2}{r}$$

by part
$$(1)$$
.

Remark 3. Corollary 1(1) can be proved by the method similar to Exercise 5 on page 13 and its hint on page 156, [2]. Corollary 1(2) is known. See Equation (5) on page 83 of [1]. If r_a , r_b , r_c are the ex-radii of a triangle $\triangle ABC$, and if r is the inradius of $\triangle ABC$, then it is known that $\frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{r}$ (see Exercise 6 on page 13, [2]).

4 Weakly Reversible Tetrahedron

We will characterize a weakly reversible tetrahedron in Theorem 2 whose proof heavily depends on Theorem 1 because of its use in Lemma 6. Recall P = [a, b, c, d] is the incenter of the tetrahedron $\nabla ABCD$.

Lemma 6. Recall that V and V^* be the volumes of $\nabla ABCD$ and its ex-center-tetrahedron $\nabla A^*B^*C^*D^*$, respectively. then $\mathcal{V}^* = \frac{16abcd}{(1-2a)(1-2b)(1-2c)(1-2d)}\mathcal{V}$.

Proof. Since $\nabla A^*B^*C^*D^*$ tangles with $\nabla ABCD$ with respect to its in-center, we can apply [3, Theorem 3(2)] by Theorem 1.

Theorem 2. A tetrahedron $\nabla ABCD$ is weakly reversible if and only if $\nabla ABCD$ and its ex-center-tetrahedron $\nabla A^*B^*C^*D^*$ have the same volume.

Proof. Suppose the tetrahedron $\nabla ABCD$ is weakly reversible, say $\mathcal{A}_A + \mathcal{A}_B = \mathcal{A}_C + \mathcal{A}_D$. Then $a = \frac{\mathcal{A}_A}{\mathcal{A}} = \frac{\mathcal{A}_A}{2(\mathcal{A}_A + \mathcal{A}_B)}$. Hence, $1 - 2a = 1 - 2 \cdot \frac{\mathcal{A}_A}{2(\mathcal{A}_A + \mathcal{A}_B)} = \frac{(\mathcal{A}_A + \mathcal{A}_B) - \mathcal{A}_A}{\mathcal{A}_A + \mathcal{A}_B} = \frac{\mathcal{A}_B}{\mathcal{A}_A + \mathcal{A}_B}$ so that $\frac{a}{1-2a} = \frac{\mathcal{A}_A}{2(\mathcal{A}_A + \mathcal{A}_B)} \cdot \frac{(\mathcal{A}_A + \mathcal{A}_B)}{\mathcal{A}_B} = \frac{\mathcal{A}_A}{2\mathcal{A}_B}$. Similarly, we have $\frac{b}{1-2b} = \frac{\mathcal{A}_B}{2\mathcal{A}_A}$, $\frac{c}{1-2c} = \frac{\mathcal{A}_D}{2\mathcal{A}_C}$, and $\frac{d}{1-2d} = \frac{\mathcal{A}_C}{2\mathcal{A}_D}$. By substituting these into the formula given in Lemma 6, we have

$$\mathcal{V}^* = 16 \cdot \frac{a}{1 - 2a} \cdot \frac{b}{1 - 2b} \cdot \frac{c}{1 - 2c} \cdot \frac{d}{1 - 2d} \cdot \mathcal{V} = 16 \cdot \frac{\mathcal{A}_A}{2\mathcal{A}_B} \cdot \frac{\mathcal{A}_B}{2\mathcal{A}_A} \cdot \frac{\mathcal{A}_D}{2\mathcal{A}_C} \cdot \frac{\mathcal{A}_C}{2\mathcal{A}_D} \cdot \mathcal{V} = \mathcal{V}.$$

Hence, $\nabla ABCD$ and $\nabla A^*B^*C^*D^*$ have the same volume.

Conversely, suppose $\nabla ABCD$ and $\nabla A^*B^*C^*D^*$ have the same volume, i.e., $\mathcal{V}^* = \mathcal{V}$. By Lemma 6, we have

$$V = V^* = \frac{16abcd}{(1-2a)(1-2b)(1-2c)(1-2d)}V.$$

Since $\mathcal{V} \neq 0$, this implies that

$$16abcd = (1-2a)(1-2b)(1-2c)(1-2d) = (-a+b+c+d)(a-b+c+d)(a+b-c+d)(a+b+c-d).$$

By multiplying and simplifying, we have

$$a^4 + b^4 + c^4 + d^4 - 2(a^2b^2 + a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 + c^2d^2) + 8abcd = 0.$$

This can be factored as

$$[a+b+c+d][(a+b)-(c+d)][(a+c)-(b+d)][(b+c)-(a+d)] = 0.$$

Hence, a+b=c+d, a+c=b+d, or a+d=b+c. These are equivalent to $(\mathcal{A}_A+\mathcal{A}_B=\mathcal{A}_C+\mathcal{A}_D)$, $(\mathcal{A}_A+\mathcal{A}_C=\mathcal{A}_B+\mathcal{A}_D)$, or $(\mathcal{A}_A+\mathcal{A}_D=\mathcal{A}_B+\mathcal{A}_C)$. Therefore, the tetrahedron $\nabla ABCD$ is weakly reversible.

Remark 4. As a related result, [5, Theorem 1] states that a tetrahedron T is isosceles if and only if its twin tetrahedron is the ex-center-tetrahedron of T. (Please see [5, Definition 3] or [1] for the definition of "twin".)

5 Reversible Tetrahedra

Example 2. Let $A=(1,0,0),\ B=(-1,0,0),\ C=(0,2,0),\ \text{and}\ D=(0,0,1)$ in \mathbb{R}^3 , then the tetrahedron $\nabla ABCD$ is a weakly reversible tetrahedron (see Example 1). The normal vectors to the planes Ω_A , Ω_B , Ω_C , and Ω_D are $\vec{n}_A=\langle -2,1,2\rangle,\ \vec{n}_B=\langle 2,1,2\rangle,\ \vec{n}_C=\langle 0,1,0\rangle,$ and $\vec{n}_D=\langle 0,0,1\rangle$, respectively. From these, we can check that the in-center is $P=\left(0,\frac{1}{3},\frac{1}{3}\right)$. For example,

$$d(P,\Omega_A) = \frac{|\overrightarrow{BP} \cdot \overrightarrow{n}_A|}{|\overrightarrow{n}_A|} = \frac{1}{3} = \frac{|\overrightarrow{BP} \cdot \overrightarrow{n}_C|}{|\overrightarrow{n}_C|} = d(P,\Omega_C).$$

Here, $|\overrightarrow{BP} \cdot \overrightarrow{n}_A|$ is the absolute value of the dot product, and $|\overrightarrow{n}_A|$ is the norm of the vector. Similarly, we can verify that the vertices of its ex-center-tetrahedron $\nabla A^*B^*C^*D^*$ are given by

$$A^* = \left(-1, \frac{2}{3}, \frac{2}{3}\right), \quad B^* = \left(1, \frac{2}{3}, \frac{2}{3}\right), \quad C^* = \left(0, -\frac{1}{2}, \frac{1}{2}\right), \quad D^* = (0, 1, -1).$$

Now, we can calculate the area $\mathcal{A}_{A^*B^*C^*}$ of the triangle $\triangle A^*B^*C^*$ and others as follows;

$$\mathcal{A}_{A^*B^*C^*} = \frac{|\overrightarrow{A^*B^*} \times \overrightarrow{A^*C^*}|}{2} = \frac{\sqrt{50}}{6}, \quad \mathcal{A}_{A^*B^*D^*} = \frac{\sqrt{26}}{3}, \quad \mathcal{A}_{A^*C^*D^*} = \frac{\sqrt{34}}{4}, \quad \text{and} \quad \mathcal{A}_{B^*C^*D^*} = \frac{\sqrt{34}}{4}.$$

These show that no two sums of $\mathcal{A}_{A^*B^*C^*}$, $\mathcal{A}_{A^*B^*D^*}$, $\mathcal{A}_{A^*C^*D^*}$, $\mathcal{A}_{B^*C^*D^*}$ is equal to the remaining two sums. Thus, $\nabla A^*B^*C^*D^*$ is not weakly reversible. Therefore, the ex-center-tetrahedron of a weakly reversible tetrahedron may not be weakly reversible.

On the other hand, we will prove that the ex-center-tetrahedron of a reversible tetrahedron is reversible in Theorem 3 below. The proof is computational and we need the following lemma to prove it. Please note that the letters a, b, c used in this section are not related to the barycentric coordinates of the in-center P.

Lemma 7. (1) A reversible tetrahedron $\nabla ABCD$ can be embedded in \mathbb{R}^3 so that A = (-a, -b, c), B = (a, b, c), C = (-ka, kb, 0), D = (ka, -kb, 0) for some a, b, c > 0 and $k \ge 1$, given in Cartesian coordinates.

(2) Let $L = \sqrt{(ac)^2 + (bc)^2 + 4(kab)^2}$ and $M = \sqrt{(ac)^2 + (bc)^2 + 4(ab)^2}$. And let $P = (0, 0, \frac{kcM}{L+kM})$. Then P is the in-center of $\nabla ABCD$.

(3) The vertices of its ex-center-tetrahedron $\nabla A^*B^*C^*D^*$ are given by

$$A^* = \left(\frac{kaM}{L}, \frac{kbM}{L}, 0\right), \quad B^* = \left(\frac{-kaM}{L}, \frac{-kbM}{L}, 0\right), \quad C^* = \left(\frac{aL}{M}, \frac{-bL}{M}, c\right), \quad D^* = \left(\frac{-aL}{M}, \frac{bL}{M}, c\right).$$

Proof. The statement (1) is [4, Lemma 11]. Normal vectors to the planes Ω_A , Ω_B , Ω_C , and Ω_D are $\vec{n}_A = \langle bc, ac, -2ab \rangle$, $\vec{n}_B = \langle -bc, -ac, -2ab \rangle$, $\vec{n}_C = \langle bc, -ac, 2kab \rangle$, and $\vec{n}_D = \langle -bc, ac, 2kab \rangle$, respectively. From these, we can check that P is the in-center of $\nabla ABCD$, and that A^* , B^* , C^* , D^* are ex-centers of the tetrahedron $\nabla ABCD$. These computational checking are similar to the above Example 2, and we leave these checking to the readers. \square

Theorem 3. If $\nabla ABCD$ is reversible, then so is its ex-center-tetrahedron $A^*B^*C^*D^*$.

Proof. Using the notations and conclusions of the above lemma, we have

$$|A^*C^*|^2 = \left(\frac{aL}{M} - \frac{kaM}{L}\right)^2 + \left(\frac{bL}{M} + \frac{kbM}{L}\right)^2 + c^2 = |B^*D^*|^2$$

so that $|A^*C^*| = |B^*D^*|$. Similarly,

$$|A^*D^*|^2 = \left(\frac{aL}{M} + \frac{kaM}{L}\right)^2 + \left(\frac{bL}{M} - \frac{kbM}{L}\right)^2 + c^2 = |B^*D^*|^2$$

so that $|A^*D^*| = |B^*C^*|$. Therefore, $\nabla A^*B^*C^*D^*$ is a reversible tetrahedron.

Remark 5. From the proof of Lemma 7, we can check that $P = (0, 0, \frac{kcM}{L+kM})$ is the in-center of $\nabla ABCD$. Normal vectors to the planes $\Omega_{A^*B^*C^*}$ and $\Omega_{A^*B^*D^*}$ are

$$\overrightarrow{n_{A^*B^*C^*}} = \langle -bcM, acM, 2aL \rangle \quad \text{and} \quad \overrightarrow{n_{A^*B^*D^*}} = \langle bcL, acL, 2abkM \rangle \,.$$

Hence, we have

$$d(P, \Omega_{A^*B^*C^*}) = \frac{|\overrightarrow{A^*P} \cdot \overrightarrow{n_{A^*B^*C^*}}|}{|\overrightarrow{n_{A^*B^*C^*}}|} = \frac{2abckML}{(L+kM)\sqrt{(bcM)^2 + (acM)^2 + 4(abL)^2}},$$

and

$$d(P, \Omega_{A^*B^*D^*}) = \frac{|\overrightarrow{A^*P} \cdot \overrightarrow{n_{A^*B^*D^*}}|}{|\overrightarrow{n_{A^*B^*D^*}}|} = \frac{2abckML}{(L+kM)\sqrt{(bcL)^2 + (acL)^2 + 4(abM)^2}}.$$

Suppose a=b=c=1 and k=2. Then $M=\sqrt{6}$, and $L=\sqrt{18}$. Then by Lemma 7, $\nabla ABCD$ is weakly reversible, and we have

$$d(P, \Omega_{A^*B^*C^*}) = \frac{4\sqrt{6}\sqrt{18}}{(\sqrt{6}+\sqrt{18})\sqrt{84}} \neq \frac{4\sqrt{6}\sqrt{18}}{(\sqrt{6}+\sqrt{18})\sqrt{80}} = d(P, \Omega_{A^*B^*D^*}).$$

Therefore, the in-center of a weakly reversible tetrahedron may not be the in-center of its ex-center-tetrahedron.

On the other hand, by noting that any isosceles tetrahedron $\nabla ABCD$ can be embedded in \mathbb{R}^3 by letting A = (-a, -b, c), B = (a, b, c), C = (-a, b, 0), D = (a, -b, 0) for some a, b, c > 0. So let k = 1 in Lemma 7. Then $\nabla ABCD$ becomes an isosceles tetrahedron and L = M, $A^* = (a, b, 0)$, $B^* = (-a, -b, 0)$, $C^* = (a, -b - c)$, $D^* = (-a, b, c)$, and $P = \left(0, 0, \frac{c}{2}\right)$ is the in-center of $\nabla ABCD$ as well as $\nabla A^*B^*C^*D^*$. We can see this in an alternate way. Suppose $\nabla ABCD$ is isosceles. Then the in-center P is the centroid of $\nabla ABCD$, and we know that $\nabla ABCD$ and $\nabla A^*B^*C^*D^*$ are twins (see [5, Theorem 3]) so that P is also the in-center of $\nabla A^*B^*C^*D^*$. Hence, A, B, C, D are the ex-centers of $\nabla A^*B^*C^*D^*$. (Please see [5, Definition 3], [4, Definition 4], or [1] for the definition of "twin".)

Example 3. Let $\nabla ABCD$ be the reversible tetrahedron in Lemma 7. By calculating the determinants, we have

$$\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) = \begin{vmatrix} 2a & 2b & 0 \\ -ka + a & kb + b & -c \\ ka + a & -kb + b & -c \end{vmatrix} = -8abck,$$

and

$$\overrightarrow{A^*B^*} \cdot (\overrightarrow{A^*C^*} \times \overrightarrow{A^*D^*}) = \begin{vmatrix} -\frac{2akM}{L} & -\frac{2bkM}{L} & 0\\ \frac{aL}{M} - \frac{akM}{L} & -\frac{bL}{M} - \frac{bkM}{L} & -c\\ -\frac{aL}{M} - \frac{akM}{L} & \frac{bL}{M} - \frac{bkM}{L} & -c \end{vmatrix} = -8abck.$$

Therefore, $\mathcal{V} = \frac{8abck}{6} = \mathcal{V}^*$ as we expected from Theorem 2.

Also, from Lemma 7, we can calculate that

$$r = \frac{2abck}{L + kM}$$
, $r_{A^*} = r_{B^*} = \frac{2abck}{L}$, and $r_{C^*} = r_{D^*} = \frac{2abc}{M}$.

Hence, $\frac{1}{r_{A^*}} + \frac{1}{r_{B^*}} + \frac{1}{r_{C^*}} + \frac{1}{r_{D^*}} = \frac{L}{abck} + \frac{M}{abc} = \frac{L+kM}{abck} = \frac{2}{r}$ as expected from Corollary 1.

References

- [1] N. Altshiller-Court: College Geometry; An Introduction to the Modern Geometry of the Triangle and the Circle. Dover Publications, Inc., Mineola, New York, 2nd ed., 1952.
- [2] H. S. M. COXETER and S. L. GREITZER: Geometry Revisited. The Mathematical Association of America, 1967.
- [3] H. Katsuura: Three Collinear Points Generated by a Tetrahedron. J. Geom. Graph. **27**(1), 29–37, 2023.
- [4] H. Katsuura: Boxes and Tangled Tetrahedra of a Tetrahedron. J. Geom. Graph. 28(2), 157–170, 2024.
- [5] H. Katsuura: In and Ex Spheres of a Tetrahedron. J. Geom. Graph. 28(1), 19–27, 2024.
- [6] D. A. Klain: Tetrahedra with Congruent Facet Pairs. The Mathematical Intelligencer 45(3), 251–255, 2023. doi: 10.1007/s00283-022-10228-4.

Received January 20, 2025; final form March 19, 2025.