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Abstract. The tetrahedron having ex-centers of a tetrahedron T as vertices is
said to be the ex-center-tetrahedron of T, and let us denote it by T™*.

Theorem 1 shows that the ex-center-tetrahedron of a tetrahedron 7" and the
tetrahedron that tangles T" with respect to the in-center of T" are the same. So T*
is also used to denote the tetrahedron that tangles T" with respect to the in-center
of T.

We define that a tetrahedron is weakly reversible if the sum of a pair of two face
areas is equal to the sum of the other pair of two face areas. Theorem 2 shows
that T is weakly reversible if and only if T and 7™ have the same volume.

While 7™ may not be weakly reversible when 7" is weakly reversible, Theorem 3
shows that T™ is reversible when 7' is reversible.

Key Words: tangled tetrahedron, in-sphere, in-center, in-radius, ex-sphere, ex-
center, ex-radius, ex-center-tetrahedron, deep interior of a tetrahedron, isosceles
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1 Introduction

The external bisectors of any two angles of a triangle are concurrent with the internal bisector
of the third angle, and this concurrent point is an ex-center of the triangle. We can find an
ex-center of a tetrahedron in a similar way. However, using the in-center of a tetrahedron, our
main Theorem 1 shows an alternate way to find ex-centers of a tetrahedron from its in-center
without externally bisecting dihedral angles at edges (see Remark 2 for details). Let us begin
with notations and definitions.

Let A, B, C, D be distinct points in R?. We denote the line segment with the end points
A and B by [AB], its length by |AB|, and the line AB by AB. A triangle AABC is formed
by three non-collinear points A, B, C'. A tetrahedron VABCD is a solid bounded by four
triangular faces AABC, AABD, AACD and ABCD, where the points A, B, C, and D are
non-coplanar. The plane containing non-collinear points U, V', W is denoted by Qyyy . For
simplicity for the planes defined by the faces of VABC D, we write Qapc = Qp, Qapp = Q¢,
Qacp = Qp, and Qpep = Q4.

ISSN 1433-8157/ © 2025 by the author(s), licensed under CC BY SA 4.0.


https://isgg.net/jgg/
https://creativecommons.org/licenses/by-sa/4.0/

8 H. Katsuura: Ex-Center-Tetrahedra

B

D D

Figure 1: The deep interior of the tetrahedron  Figure 2: The in-center P and the corresponding
VABCD is the interior of the octahe- E, F,G, H, I, J are indicated on the
dron F'F'G'H'T'J'. edges of the tetrahedron VABCD.

Definition 1. If £/, F', G', H', I’, J" are the midpoints of the edges [AB], [AC], [AD], [BC],
[BD], and [C'D], respectively, of a tetrahedron VABC D, then the interior of the octahedron
E'F'G'H'I'J is said to be the deep interior of VABCD. See Figure 1.

Definition 2. A tetrahedron VA*B*C*D* is said to tangle with the tetrahedron VABC D
if [AB]N[C*D*| = {E}, [AC|N[B*D*| = {F}, [AD|N[B*C*] = {G}, [BC]N[A*D*| = {H},
[BDIN[A*C*] = {I}, and [CD|N[A*B*] = {J} for some points F, F', G, H, I, J. In addition,
it [EJ]N[FI|N[GH] = {P} for some point P, then the tetrahedron VA*B*C*D* is said to
tangle with with tetrahedron VABCD with respect to P. See Figures 2 and 4.

Let P be a deep interior point of VABC D. Then it is known to have unique points E, F',
G, H, I, J on the edges AB, AC, AD, BC, CD, respectively, such that [EJ|N[FI|N[GH] =
{P} (see Lemma 1(1) below and Figure 2). For simplicity, let ['a = Qgrg, I's = Qgur,
I'c = Qppy, and T'p = Qgry. The planes I'p, I'c and I'p intersect (see Lemma 1(4) below
and Figure 3), say at A*. Then the three points A, P, and A* are known to be collinear, and
A and A* are on the opposite sides of the plane 24 (Lemma 1, (4) and (5) below).

We have {A*} = T'p NTcNT'p (see Figure 3). Similarly, let {B*} = 'y NT'cNTp,
{C*}=TsNTpNTp,and {D*} =Ty NT'pNT¢c. The points (A* and A), (B* and B), (C*
and ('), (D* and D) are opposite with respect to the planes Q4, Qpg, Q¢, Qp, respectively. It is
known that the tetrahedron VA*B*C* D* tangles with the tetrahedron VABC' D with respect
to P (Lemma 1(7) and see Figure 4 below). For more information on tangled tetrahedron,
please see [4].

Definition 3. The in-sphere of a tetrahedron VABC D, denoted by S, is the sphere inside
of VABCD, tangent to the four triangular faces AABC, AABD, ANACD and ABCD. The
center and the radius of S are called the in-center and the in-radius, respectively. The ex-
sphere of the tetrahedron VABC'D opposite of the vertex A with respect to €24 is the sphere
with center A’ outside of VABCD tangent to the planes Qp, Qp, Q¢, and the face ABCD,
and it is denoted by S4.. Hence, VABCD has four ex-spheres Sy4/, Sp/, Scr, and Spr. The
centers A’, B', C', D' are called ex-centers of a tetrahedron VABCD.

The tetrahedron VA'B'C'D’ is said to be the ex-center-tetrahedron of VABCD. The
radius of Sy is called ex-radius and denoted by 7 4.
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Figure 3: The construction of the point A* from  Figure 4: Tetrahedra VABCD and
Figure 2 is indicated. VA*B*C*D* are shown.

Lemma 3 will prove that the in-center is a deep interior point of VABCD. Then Theo-
rem 1 will show that a tetrahedron that tangles VABC' D with respect to its in-center is the
ex-center-tetrahedron of VABC' D. Therefore, the notations A’, B’, C’, D’ in Definition 3 will
be replaced by A*, B*, C*, D* as in Definition 2. As shown in Remark 2, Theorem 1 gives
us an alternate way to find ex-centers of a tetrahedron from its in-center without externally
bisecting dihedral angles at edges.

Definition 4. Let VABCD be a tetrahedron. Let the area of the faces AABC, NABD,
ANACD, ANBCD be denoted by Ap, Ac, Ap, and Ay, respectively. Let A = Ay + Ap +
Ac + Ap, the total surface area of VABCD.

A tetrahedron VABCD is reversible if (|AB| = |CD| and |AD| = |BC|), or (|[AB| = |CD|
and |AC| = |BD|), or (|AD| = |BC| and |AC| = |BD|) holds. Klain recently proved that
a tetrahedron VABCD is reversible if and only if (A4 = Ap and Ac = Ap), or (As = Ac
and Ap = Ap), or (A4 = Ap and Ap = A¢) holds. (See [6, Theorem 1].)

A tetrahedron VABCD is isosceles if |AB| = |CD|, |AC| = |BD|, and |AD| = |BC|. It
is known that a tetrahedron VABCD is isosceles if and only if Ay = Ag = Ac = Ap. (See
[6] for more information.) An isosceles tetrahedron is reversible.

Motivated by these, we define that a tetrahedron VABCD is weakly reversible if (A4 +
A = Ac + AD), or (.AA +Ac = A + .AD), or (.AA +Ap = A+ Ac) holds.

FExample 1. If a tetrahedron is reversible, then it must be weakly reversible. But a weakly
reversible tetrahedron may not be reversible. In order to see this, let A = (1,0,0), B =
(=1,0,0), C = (0,2,0), and D = (0,0,1) in R® with the Cartesian coordinates. Then
VABCD is a tetrahedron such that |AB| = 2, |AC| = |BC| = |DC| = /5, and |DB| =
|DA| = /2. Hence, VABCD is not reversible. On the other hand, we can check to see
that Ap = 2 and Ac = 1, and AC x AD = (—=1,2,0) x (—1,0,1) = (2,1,2) so that
Ay = A = %\/4 +14+4= % This shows that Ap + Ac =3 = A4 + Ag. Thus, VABCD
is weakly reversible.

Let VA*B*C*D* be the ex-center-tetrahedron of VABCD. Theorem 1 will be used to
prove that VABC'D is weakly reversible if and only if VA*B*C*D* and VABC'D have the
same volume in Theorem 2. This led us to the following question: If a tetrahedron is weakly
reversible, then is its ex-center-tetrahedron also weakly reversible? The answer to this is NO,
as we will see in Example 2. However, Theorem 3 will show that if a tetrahedron is reversible,
then its ex-center-tetrahedron must also be reversible.
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2 Preliminaries

We will use barycentric coordinates used in [3] to prove Theorems 1 and 2.

Definition 5. Let VABC'D be a tetrahedron, and its volume is denoted by V = Vagcp. Let
P be a point in R3. Then Vpapc is defined to be the volume of the tetrahedron VPABC' if P
is on the same side of D with respect to the plane Q2p; and Vpape is defined to be the negative
of the volume of the tetrahedron VPABC' if P is on the opposite side of D with respect to the
plane Qp. Hence, for example, Vpgep > 0 if P and A are on the same side of the plane €4;
and Vppep < 0 if P and A are on opposite sides of the plane Q4. Let a’ = V”%, b = V’”‘%,
d = VPA%, d = V’”‘% (Here, Vppep, Vpacn, Vrasp, Vrapce are signed volumes.) Then
the barycentric coordinates of P are given and denoted by [da’,V', ¢, d’]. Every point in R3
has unique barycentric coordinates. Since Vpgep + Vpape + Veasp + Veacp = V, we have

a+b+d+d=1
The next Lemma 1 is a collection of results from [3].

Lemma 1. Let P be a point inside of a tetrahedron VABCD. Then the following hold:

(1) There are unique points E, F, G, H, I, J on the edges AB, AC, AD, BC, BD, and
CD, respectively, such that [EJ] N [FI] N |[GH] = {P}. (See Figure 2.) Recall that
Qprg =14, Qe =T, Qpuy =T¢, and Qg =Tp.

(2) Let [a',V,c,d] be the barycentric coordinates of P. Then 0 < o', b, c,d < 1. And the
planes I'g, I'c, and I'p intersect at a point if and only if a’ # %

(3) Suppose a’ #+ % Let A* be the intersection of the planes I'g, I'c and I'p. Then the
barycentric coordinate of A* is given by L 2;,, : b;a,, il C;a,, : d;a }

(4) If &’ < %, then A* and A are on opposite sides of the plane Q4. If a' > %, then A* and
A are on the same side of the plane 4.

(5) Supposed a' # % Then the three points A, P, A* are collinear. (See Figure 3 when
a<3i)

(6) If E’,2 F', G' are the midpoints of [AB], [AC], [AD], respectively, then a' = L if and
only if P is a point on the triangle AE'F'G'. Also, the point P = [a/,V/,c,d'] is a deep
interior point if and only if 0 < o', ¥, ¢, d <

(7) Suppose P is a deep interior point of a tetrahedron VABCD. Then I'g NT'c NTp,
FanTenlp, I'aynNT'gnNI'p, and 'y NT'gN e are all sets with one element.

(8) Let FBﬂFcﬂFD == {A*}, FAﬂFcﬂFD == {B*}, PAQFBQFD = {C*}, and FAQFBQFC ==
{D*}. Then VA*B*C*D* is the unique tangled tetrahedron of VABCD with respect to
the point P.

Proof. Proof of (1): This is [3, Lemma 2]. An alternate proof is given in [4, Lemma 1].

Proof of (2) and (3): See [3, Corollary 1].

Proof of (4): By (3), the first barycentric coordinate of A* is 1’ . Since ;=55 < 0, the
points A* and A are on opposite sides of €24. Hence, if a’ < %, then A* and A are on opposite
sides of Q4. If ' > 3, then A* and A are on the same side of Q4. ([3, Remark 1] is a mistake,
stated in reverse.)

Proof of (5): See [3, Theorem 1].

Proof of (6): Let E', F', G', H', I'; J' be the midpoints of the edges [AB], [AC], [AD],
[BC, [BD], and [C'D], respectively. Suppose P = [a/, V', ¢/, d'] are the barycentric coordinates.
a = m =z 1f and only if the height of the tetrahedron VPBC’D from P to €4 is less
than half of the height of VABCD from A to Q4. Thus, d = = 1f and only if P is on
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the triangle AE'F'G’. Suppose P is a deep interior point. Since P is a point inside of the
octahedron E'F'G'H'I'J’, P has to be between the planes 24 and Qg pr. Hence, the height
of the tetrahedron VPBCD from P to 4 is less than the half of the height of VABCD
from A to Q4 so that Vppep < %V, ie., d = V“?% < % Similarly, we have V', ¢, d' < %
Conversely, if 0 < d/,V/,,d < %, we can reverse this argument to show that P = [a/, 0/, ¢, d']
is a deep interior point.

Proof of (7): Since P is a deep interior point of VABCD, we have 0 < d/, b, ,d < % by
(6) Hence, by part (2), FB N FC N FD, FA N FC N FD, FA N FB N FD, and FA N FB N FC are
all sets with one element.

Proof of (8): By part (4), we have that (A* and A), (B* and B), and (C* and C),
(D* and D) are on the opposite side of the planes Q4, Qp, Q¢, and Qp, respectively. Since
C*D* = FAHFB = QEFGmQEH] so that F € [C*D*], we have [AB]Q[C*D*] = {E} Slmllarly,
[AC] N [B*D*] = {F}, [AD] N [B*C"] = {G}, [BC]N[A*D*] = {H}, [BD]N[A*C"] = {1},
and [CD]N[A*B*] = {J}. Therefore, VA*B*C*D* is the tangled tetrahedron VABC D with
respect to P. The uniqueness of VA*B*C*D* is proved in [4, Theorem 2(3)]. O]

Lemma 2. Let a = A—A“, b= ATB, c= %, d= ATD. Then the barycentric coordinates of the

in-center of the tetrahedron VABCD is given by [a,b, c,d].

Proof. Let r and P be the in-radius and in-center of VABCD, respectively. Recall that
A= Ap + Ac + Ap + Ay, the surface area of VABCD. Then Vppcp = %r - Ay, and
V= %r - A. Hence, a = VP"% = %. Similarly, we have b = ATB, c= %, d= ATD so that the
barycentric coordinate of P is given by [a, b, ¢, d]. O

Lemma 3. The in-center of a tetrahedron is a deep interior point of the tetrahedron.

Proof. Let VABCD be a tetrahedron, and let S be its in-sphere. Let P and r be the center
and radius of S, respectively. Let P = [a, b, ¢, d]| be the barycentric coordinates.

Let h be the height of the tetrahedron VABCD from the vertex A. Let ¥ be the plane
through the center of S parallel to the base triangle ABCD. Let E, F, G be the intersec-
tion with the plane ¥ and the edges [AB], [AC], [AD], respectively. Then the tetrahedron
VAEFG has the height h — r from the vertex A to the base AEFG, and VAEFG also
contains a hemisphere of S. This shows that h —r > r or r < %h Since Vpgep = %T.A 4 and
Vapcp = %hAA, we have a = VPB% =7 < %

Alternately, since Ap + Ac + Ap > A4, we have a = ATA = AD+AC’J“1|:4AB+AA < %

Similarly, we can show that 0 < b, ¢, d < % Therefore, this proves that the in-center of a
tetrahedron is a deep interior point of the tetrahedron by Lemma 1(6). []

3 Ex-centers of a Tetrahedron

We need the following two lemmas to prove Theorem 1.

Lemma 4. The barycentric coordinates of A, B, C, D are given by A = [1,0,0,0], B =
[0,1,0,0], C =10,0,1,0], D =10,0,0,1].

Let P = [a,b,c,d] be the barycentric coordinates of the in-center of VABCD. Let
VA*B*C*D* be the tangled tetrahedron of VABCD with respect to P. Then

A*:[ —a b c d ] *:{ a —b c d }
1-2a"1-2a"1—-2a"1-2al’ 1-20"1—-20"1—20"1—2b])
C*:[ a b —c d } *:{ a b c —d]

1-2c"1-2¢"1—-2¢"1—2¢]) 1-2d"1—-2d"1-2d"1—2d]
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Proof. See [3, Example 1] for the barycentric coordinates of A, B, C', D. Since the in-center
P is a deep interior point of the tetrahedron by Lemma 3, the barycentric coordinates of
A* are given by Lemma 1(3). The barycentric coordinates of B*, C*, D* are applications of
Lemma 1(3). O

Lemma 5. Let S = [81, S92, 83, 84}, T = [tl,tg,tg,t4], U= [ul,u2,u3, U,4], V = [1)1,1)2,’03,’04] be
points in R given in the barycentric coordinates with respect to a tetrahedron VABCD. Let
V be the volume of the tetrahedron VABCD, and let

S1, S2, 83, 5S4
5 = tla t27 t37 t4
- )

Uy, Uz, U3, U4
V1, U2, Vs, U4

the determinant of the matriz. Then the volume V' of the tetrahedron VSTUV is given by
10|V, d.e., V' = |6|V. (Here, we mean the usual volume, and it is not the signed volume of
VSTUV used in Definition 5 of barycentric coordinates.)

Proof. This is [3, Lemma 3]. O
We are ready to prove our first main theorem.

Theorem 1. Let P be in-center of a tetrahedron VABCD. Then the tetrahedron tangles
the tetrahedron VABCD with respect to P and the ex-center-tetrahedron of VABCD are
identical.

Proof. Suppose a tetrahedron VA*B*C*D* tangles VABC'D with respect to P. Since P
is in the deep interior of VABCD by Lemma 3, the existence of VA*B*C*D* makes sense
by Lemma 1(8). Let [a,b,c,d] be the barycentric coordinates of the in-center P. We will
prove that A* is the ex-center of VABCD by showing d(A*,Qp) = d(A*, Q) = d(A*,Qp) =
d(A*,Q4). Here, d(A*,Qp) is the distance between the point A* and the plane Qp.

We have the following determinants.

0, 1, 0, 0 1, 0, 0, 0 1, 0, 0, 0 1, 0, 0, 0
0, 0, 1, 0| 0, 0,1, 0/_, |0, 1,0, 0 _ 0, 1,0, 0__
0, 0,0 1% Jo, o0 0 1= Jo o0 0 119 |0, o0 1, 0
—a, b, ¢, d —a, b, ¢, d —a, b, ¢, d —a, b, ¢, d

b Y I

9

By Lemmas 4 and 5, since A and A* are on opposite sides of 4, and since Va«pcp is

a signed volume, we have Va«pcp = —17%.V. Since a = A—AA, we have Vaspep = —15.V =

A
_A-(lan)V'

On the other hand, we also have V4 pcp = —%AA ~d(A*,Q4) since Vaspep is a signed
volume. Hence, —ﬁv = —2 A4 d(A%, Q).

Since A4 # 0, we have d(A*,Q,) = A.(i’fza).

Similarly, we have

Vaacp = — 75V = —ﬁv and  Vaeacp = —3.Ap - d(A*, Qp)

so that d(A*,Qp) = ﬁ’

VA*ABD — _1—2(1

%V = —aiSgVY and Vaapp = —3Ac - d(A", Q)
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so that d(A*,Q¢) = A.(ilﬂ—}Za)’ and

VA*ABC = —ﬁv = —ﬁv and VA*ABC - —%AD . d(A*, QD)
so that d(A*,Qp) = ﬁ]—)m)'

Therefore, d(A*,Qp) = d(A*,Qc) = d(A*,Qp) = d(A*,Q4). This proves that A* is the
center of the ex-sphere Sy« (and r4 = ﬁ‘j%) is the radius of ex-sphere Sy+) of VABCD.
Similarly, we can show that B*, C*, D* are the ex-centers of VABCD. Therefore, this shows
that the ex-center-tetrahedron of VABCD is the tetrahedron that tangles VABCD with
respect to P.

Conversely, suppose VA'B'C'D’ is the ex-center-tetrahedron of VABCD as in Defini-
tion 3. Let P be the in-center of VABCD. If VA*B*C*D* is the tetrahedron that tangles
VABCD with respect to P, then we must have A’ = A*, B’ = B*, ¢! = C*, and D' = D* by
the first part of this proof and by the uniqueness of the tangled tetrahedron with respect to
P by Lemma 1(8). Therefore, the ex-center-tetrahedron VA*B*C*D* of VABCD must be
the tangled tetrahedron of VABCD with respect to P. [

Remark 1. For the rest of this section and Section 4, we use P for the in-center of a tetrahedron
VABCD with P = [a, b, ¢, d] being the barycentric coordinates of P. Because of Theorem 1,
we can replace A, B’, C’, D' in Definition 3 by A*, B*, C*, D* as in Definition 2. And we will
use VA*B*C* D* to denote the ex-center-tetrahedron of VABCD as well as the tetrahedron
that tangles VABCD with respect to the in-center P. Let V, V* be the volumes of VABCD,
and VA*B*C* D*, respectively.

Remark 2. The interior angle between the faces AABC and AABD of the tetrahedron
VABCD is called the dihedral angle of VABCD at the edge AB, and let us denote it by
<AB. Let Ayp be the plane containing the line AB that bisect the dihedral angle <AB.
Since any point on A 4 is equidistant from the planes 2p and ¢, the in-center P of VABC' D
must be on A,p. Therefore, {P} = Aap N Aac N Aap N Ape N Agp N Acp. This is a way
to find P.

We can continue using exterior dihedral angle bisecting planes of VABCD to find ex-
centers. However, Theorem 1 gives us an alternate method of finding ex-centers as follows:

Let {E} = [AB] N Acp, {F} = [AC] N Acp, {G} = [AD]|N Age, {H} = [BC| N Aap,
{I} = [BD|NA ¢, and {J} = [CD|NA4p. Then [EJ|N[FI|N[GH] = {P}. Let Qgrg = T4,
QEH[ = FB, QFHJ = Pc, and QGJ] = FD, and let {A*} = FBﬂFc'ﬂFD, {B*} = FAﬂF(jﬂFD,
{C*}=TaNT'pNlp, and {D*} =T 4NI'pNT¢. Since P is a deep interior point of VABC D
by Lemma 3, the points A*, B*, C*, D* exists by Lemma 1(4). By Theorem 1, A*, B*, C*,
D* are the ex-centers of the tetrahedron VABCD.

Corollary 1. (1) The radii of the ex-spheres Sa+, Sp+, Sc+, Sp+ of VABCD are given by

o 3y o 3Y
T At A+ A — AL T T Apt Ao — A+ Ay
3y 3)

TC*:AD—AC—Q—AB-F.AA’ TD*:—AD—FAC—F.AB-F.AA’

3V
Aps+Ap+Ac+Ap °

respectively. Also, the in-radius r of VABCD s given by r =
2 -+ 1+ L+ L =2

T A% L rc* Tp* T
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Proof. Proof of (1): Since a +b+c+d =1, we have A- (1 —2a) = A-(d+c+b—a) =
Ap + Ac + As — A4. Hence, from the above proof, the radius rs« of Sy« is given by

_ 3 _ 3V o
Tpx = .A-(lan)V il ey pery ey Similar for rg«, ro«, and rp-«.
3V 3V

. 1 _ 3V _
Since V = grA, we have r = 7 = G
Proof of (2):

. I A —l—i:%{(.AD—F.ACHFAB—AA)+(AD+A0—AB+AA)+

T A* TB* ro* T px*

(Ap—Ac+Ap+Ax)+ (—Ap+Ac+ Ap+ Ax)} =2 (AD”LAC;;ABJFAA) =2

r

by part (1). O

Remark 3. Corollary 1(1) can be proved by the method similar to Exercise 5 on page 13 and
its hint on page 156, [2]. Corollary 1(2) is known. See Equation (5) on page 83 of [1]. If
Ta, Th, Te are the ex-radii of a triangle AABC, and if r is the inradius of AABC, then it is
known that i + le + i = 1 (see Exercise 6 on page 13, [2]).

4 Weakly Reversible Tetrahedron

We will characterize a weakly reversible tetrahedron in Theorem 2 whose proof heavily de-
pends on Theorem 1 because of its use in Lemma 6. Recall P = [a, b, ¢, d] is the incenter of

the tetrahedron VABCD.

Lemma 6. Recall that V and V* be the volumes of VABCD and its ex-center-tetrahedron

* % Yk )% . * 16abcd
VA*B*C*D*, respectively. then V* = (1_2(1)(1_%)(1_26)(1_%)V.

Proof. Since VA*B*C*D* tangles with VABC D with respect to its in-center, we can apply
[3, Theorem 3(2)] by Theorem 1. O

Theorem 2. A tetrahedron VABCD is weakly reversible if and only if VABCD and its
ex-center-tetrahedron VA*B*C*D* have the same volume.

Proof. Suppose the tetrahedron VABCD is weakly reversible, say As + A = Ac + Ap.

_ Aa A _ —_1_9o. A _ (Aa+Ap)-Aa _ A
Then a = 5 = m. Hence, 1 —2a=1-—2 2(AAfAB) = AA+BAB = 14, S0 that
a Aa C(AatAp) . Ag
1-2a ~ 2(Aas+Ap) Ap T 2Ap-
s b _ A _ A d _ A
Slml].arly, we have -2 — ﬁ, leC = ﬁ, and 1—2d — ﬁ
By substituting these into the formula given in Lemma 6, we have
a b c d A A A A
V=16 y=16. 24 . 5. 2D ¢ y_y

2A5 244 2A0 2Ap

Hence, VABCD and VA*B*C*D* have the same volume.
Conversely, suppose VABCD and VA*B*C*D* have the same volume, i.e., V* =). By
Lemma 6, we have

"1-2 1-2b 1—2¢ 1-—2d

. 16abed
V=Y = a0 24"

Since V # 0, this implies that

16abcd = (1—2a)(1—-2b)(1—2¢)(1—2d) = (—a+b+c+d)(a—b+c+d)(a+b—c+d)(a+b+c—d).
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By multiplying and simplifying, we have
a* + b+t dt - 2(a 4 aPP + dPd? b2 4 VAP + Ad?) + Sabed = 0.
This can be factored as

la+b+c+d(a+b)—(c+d)][(a+c)— (b+ad)][(b+c)— (a+d)] =0.

Hence, a+b=c+d,a+c=0b+d, or a+d = b+ c. These are equivalent to (A4 + Ap =
Ac+ Ap), (Ax+ Ac = A+ Ap), or (As+ Ap = Ag + Ac). Therefore, the tetrahedron
VABCD is weakly reversible. m

Remark 4. As a related result, [5, Theorem 1] states that a tetrahedron T is isosceles if and
only if its twin tetrahedron is the ex-center-tetrahedron of T'. (Please see [5, Definition 3] or
[1] for the definition of “twin”.)

5 Reversible Tetrahedra

Ezample 2. Let A = (1,0,0), B = (—1,0,0), C = (0,2,0), and D = (0,0,1) in R3, then
the tetrahedron VABCD is a weakly reversible tetrahedron (see Example 1). The normal
vectors to the planes Q4, Qp, Qc, and Qp are 4 = (=2,1,2), 7ig = (2,1,2), 7ic = (0,1,0),
and 1ip = (0,0, 1), respectively. From these, we can check that the in-center is P = (O, %, % .
For example,
|BP-1is] 1 |BP-1¢|
Ad(P,Qy)=——F—"—=-=—F"""=d(P, ).
( A) |nA| 3 |nC| ( C)

Here, |ﬁ -Ti 4| is the absolute value of the dot product, and |77 4] is the norm of the vector.
Similarly, we can verify that the vertices of its ex-center-tetrahedron VA*B*C*D* are given
by

A =(-1,32), B'=(1,%%), ¢ =(0,-41%), D =(0,1,-1).

1373 1373 T 202
Now, we can calculate the area A 4+«p+c+ of the triangle AA*B*C* and others as follows;

—

_ |AB*xA*CH| /B0 _ /%6 _ V34
Apspcr = % =% Apspp- = 3 Apscopx = I and  Ap-c+p-

— V34

T
These show that no two sums of Ax«g<cs, Aapp+, Aac+p+, Ap-c+p~ is equal to the re-
maining two sums. Thus, VA*B*C*D* is not weakly reversible. Therefore, the ex-center-
tetrahedron of a weakly reversible tetrahedron may not be weakly reversible.

On the other hand, we will prove that the ex-center-tetrahedron of a reversible tetrahedron
is reversible in Theorem 3 below. The proof is computational and we need the following lemma,
to prove it. Please note that the letters a, b, ¢ used in this section are not related to the
barycentric coordinates of the in-center P.

Lemma 7. (1) A reversible tetrahedron VABCD can be embedded in R® so that A =
(—a,—b,c), B = (a,b,c), C = (—ka,kb,0), D = (ka,—kb,0) for some a,b,c > 0
and k > 1, given in Cartesian coordinates.

(2) Let L = \/(ac)? + (bc)* + A(kab)? and M = \/(ac)? + (bc)? +4(ab)2. And let P =
(0,0, 22L). Then P is the in-center of VABCD.

> L+kM
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(3) The vertices of its ex-center-tetrahedron VA* B*C*D* are given by
A — (kaM)%’O)’ B* — (fkaM7 7kbM70)7 O — <% —bL 0)7 D* — (faL bL C).

L L L > MY M 7 M

Proof. The statement (1) is [4, Lemma 11]. Normal vectors to the planes Q4, Qp, Qc¢,
and Qp are 14 = (be,ac, —2ab), g = (—bc, —ac, —2ab), e = (bc, —ac,2kab), and 7ip =
(—bc, ac, 2kab), respectively. From these, we can check that P is the in-center of VABCD,
and that A*, B*, C*, D* are ex-centers of the tetrahedron VABCD. These computational
checking are similar to the above Example 2, and we leave these checking to the readers. [

Theorem 3. If VABCD is reversible, then so is its ex-center-tetrahedron A*B*C*D*.

Proof. Using the notations and conclusions of the above lemma, we have

A*C*J2 = (aL kaM>2_|_ (bL %—M)Q—l—c? — |B*D*P?

L M+L

so that |[A*C*| = |B*D*|. Similarly,

P = (54 ) (- )

so that |[A*D*| = |B*C*|. Therefore, VA*B*C*D* is a reversible tetrahedron. O

Remark 5. From the proof of Lemma 7, we can check that P = (0, 0, LT%M) is the in-center

of VABC'D. Normal vectors to the planes Q «pg«c+ and 4+p+p+ are
napror = (—bcM,acM,2al) and mnap-pr = (beL,acL,2abkM) .
Hence, we have

|A*P-nA*B*C* . 2abck M L

(L kM)y/(beM)? + (acM)? + A(abL)?’

‘nA*B*C*

and
|A*P - napepe| 2abck M L
(L + kM)/(beL)? + (acL)? + 4(abM)?.
Suppose a = b =c¢=1and k = 2. Then M = /6, and L = /18. Then by Lemma 7,
VABCD is weakly reversible, and we have

d(P,Queppe) =

|nA*B*D*

d(P,Quepec+) = (ﬁ[\/[f £ (\/é[f\ﬁ d(P, Q- p-p~).
Therefore, the in-center of a weakly reversible tetrahedron may not be the in-center of its
ex-center-tetrahedron.

On the other hand, by noting that any isosceles tetrahedron VABC' D can be embedded
in R? by letting A = (—a,—b,¢), B = (a,b,¢), C = (—a,b,0), D = (a,—b,0) for some
a,b,c > 0. Solet £k =1 in Lemma 7. Then VABCD becomes an isosceles tetrahedron and
L =M, A* = (a,b,0), B* = (—a, —b,0), C* = (a,—b — ¢), D* = (—a,b,c), and P = (0,0, 5)
is the in-center of VABCD as well as VA*B*C*D*. We can see this in an alternate way.
Suppose VABC'D is isosceles. Then the in-center P is the centroid of VABCD, and we
know that VABCD and VA*B*C*D* are twins (see [5, Theorem 3]) so that P is also the
in-center of VA*B*C*D*. Hence, A, B, C, D are the ex-centers of VA*B*C*D*. (Please see
[5, Definition 3], [4, Definition 4], or [1] for the definition of “twin”.)
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Example 3. Let VABCD be the reversible tetrahedron in Lemma 7. By calculating the
determinants, we have

o 2a 2b 0

AB-(AC x AD) = |-ka+a kb+b —c|= —8abck,
ka+a —kb+b —c

and
_ 2akM _ 2bkM 0

L L
A*B* - (A*C* x A*D*) = % — “’“LM _bML — —bkLM —c| = —8abck.
aL _ akM  bL _ bkAM

M L M L

Therefore, V = % = V* as we expected from Theorem 2.
Also, from Lemma 7, we can calculate that

2abck 2abck and 2abce
Yy = —" TAxs = T'px — 11 Tox = T'px — —.
Hence, i + é + T;* + r;* = achk + % = L;?)’Z,iw = % as expected from Corollary 1.
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