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sergey.korotov@mdu.se

2Czech Academy of Sciences, Prague, Czech Republic
krizek@math.cas.cz

Abstract. We investigate a hierachical relation between minimum and maximum
angle conditions widely used in the interpolation theory and finite element analysis
over simplicial partitions. We prove that the minimum angle condition implies
the maximum angle condition in arbitrary space dimension.
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1 Introduction

It is well-known that the sum of angles in a triangle is constant and equal to π. Therefore,
it is easy to prove that the existence of a positive lower bound on angles of all triangles in
all triangulations used (minimum angle condition in 2d) implies the existence of an upper
bound (less than π) on angles of all triangles in all triangulations used (maximum angle
condition in 2d). Both angle conditions guarantee the optimal interpolation properties in
appropriate Sobolev norms and, therefore, are widely used in the finite element analysis, see
e.g. [1, 3, 7, 9, 12, 14]. However, the situations with tetrahedra and simplices is quite different.
Thus, the sum of dihedral angles in a tetrahedron is not constant anymore and varies between
2π and 3π. Similar situation appears in higher dimensions. See [6]. Therefore, the implication
between minimum and maximum angle conditions in higher dimensions is much less trivial
than in the case of triangulations. Simplicial meshes are often used for problems in higher
dimensions d ≥ 4 which appear e.g. in financial mathematics, statistical physics, etc., see
[4, 13].
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2 Denotations and Definitions

Let Ω ⊂ Rd be a bounded domain for d ∈ {2, 3, . . .}. Assume that Ω is polytopic. By this we
mean that Ω is the closure of a domain whose boundary ∂Ω is contained in a finite number
of (d − 1)-dimensional hyperplanes.

Let A0, A1, . . . , Ad be points in Rd, d ∈ {1, 2, . . .}, not lying in one hyperplane. Then
the convex hull of these points

S = conv{A0, A1, . . . , Ad}

is called a d-simplex or shortly a simplex. The points A0, A1, . . . , Ad are called the vertices
of S, and the symbol Fj stands for the facet opposite to the vertex Aj.

Next we define a simplicial partition of a bounded closed polytopic domain Ω ⊂ Rd as
follows. We subdivide Ω into a finite number of d-simplices, so that their union is Ω, any
two distinct simplices have disjoint interiors, and any facet of any simplex is either a facet of
another simplex from the partition or belongs to the boundary ∂Ω. The set of such simplices
will be called simplicial partition and denoted by Th.

For a given partition Th the discretization parameter h stands for the maximum length
of all edges in the partition, i.e.,

h = max
S∈Th

hS,

where
hS = diam S.

Definition 1. An infinite sequence F = {Th}h→0 of simplicial partitions of Ω is called a
family of simplicial partitions if for every ε > 0 there exists Th ∈ F with h < ε.

Definition 2. The dihedral angles of a d-simplex are defined as the complementary angles
of the angles between the outward unit normals to the corresponding facets and can thus be
calculated by means of the inner product

cos α = −ni · nj, (1)

where ni and nj, i ̸= j, are outward unit normals of the facets Fi and Fj, respectively.
Similarly we can define dihedral angles for lower-dimensional simplices. For d = 3, the
dihedral angle is the standard interior angle between tetrahedral faces, and for d = 2, it is
the usual angle between sides of a triangle.

In the following definition we present a generalization of the concept of the minimum
angle condition proposed by Zlámal [14] to any dimension, see [11].

Definition 3. A family F = {Th}h→0 of partitions of a polytope Ω ⊂ Rd into d-simplices is
said to satisfy the d-dimensional minimum angle condition if there exists a constant α0 > 0
such that for any Th ∈ F and any simplex S ∈ Th and any subsimplex S ′ ⊆ S with vertex set
contained in the vertex set of S, the minimum dihedral angle in S ′ is not less than α0.

Further, we present a generalization of the concept of maximum angle condition proposed
in [12] to any dimension, see also [8].
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Definition 4. A family F = {Th}h→0 of partitions of a polytope Ω ⊂ Rd into d-simplices is
said to satisfy the d-dimensional maximum angle condition if there exists a constant γ0 < π
such that for Th ∈ F and any simplex S ∈ Th and any subsimplex S ′ ⊆ S with vertex set
contained in the vertex set of S, the maximum dihedral angle in S ′ is less than or equal to
γ0.

In what follows, we will use the definition for the d-dimensional sine of angles in Rd

introduced in [5]. In terms of the simplex S, for any of its vertices Ai, the d-dimensional sine
of the angle of S at Ai, denoted by Âi, is defined as follows (see (3) in [5, p. 72]):

sind(Âi|A0A1 . . . Ad) = dd−1 (measd S)d−1

(d − 1)! ∏d
j=0,j ̸=i measd−1 Fj

. (2)

where the symbol ∏ stands for the standard product according to the involved indices.
The symbol sin without any subindex will stand for the usual sinus function in what

follows.

Remark 1. For d = 2, sin2(Âi|A0A1A2) is the standard sine of the angle Âi in the triangle
A0A1A2, due to the following well-known formula, e.g. for i = 0, we get from (2) that

meas2(A0A1A2) = 1
2 |A0A1| |A0A2| sin Â0. (3)

In fact, one can similarly define a sine for any k-dimensional (vertex) angle of any k-
dimensional facet of S for k ∈ {2, . . . , d} (which will include the case of vertices of S itself).
Namely, let us denote the k-dimensional facet of S spanned by the k + 1 (distinct) vertices
Ai0 , Ai1 , . . . , Aik

by Fi0,i1,...,ik
. Then for any index iℓ ∈ {i0, . . . , ik} we set

sink(Âiℓ
|Ai0Ai1 . . . Aik

) = kk−1 (meask Fi0,i1,...,ik
)k−1

(k − 1)! ∏
ij∈{{i0,...,ik}\{iℓ}} meask−1 F

ij

i0,i1,...,ik

, (4)

where F
ij

i0,i1,...,ik
denotes (k −1)-dimensional facet of Fi0,i1,...,ik

(which is clearly itself a (k −1)-
dimensional simplex) lying against the vertex Aij

.

Remark 2. Notice that in the above denotation we have S ≡ F0,1,...,d and Fj ≡ F j
0,1,...,d for

j = 0, 1, . . . , d.

Lemma 1. The (generalized) sind of any angle in S is always positive and not greater than 1:

0 < sind(Âi|A0, A1, . . . , Ad) ≤ 1 ∀ i = 0, 1, . . . , d. (5)

Proof. From the definition (2) we see that the generalized sinus is always positive. Without
loss of generality we may assume that i = 0. According to [5, p. 76], we find that

sind(Â0|A0A1 . . . Ad) ≤ sind−1(Â0|A0A1 . . . Ad−1) ≤ · · · ≤ sin2(Â0|A0A1A2) ≤ 1. (6)

Hence, (5) holds.
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3 The Minimum Angle Condition is Stronger than the Maximum
Angle Condition

In [2], the following definition on the families of simplicial partitions is introduced.
Definition 5. A family F = {Th}h→0 of partitions of a polytope Ω ⊂ Rd into d-simplices is
said to satisfy the generalized Zlámal condition if there exists a constant C > 0 such that for
any Th ∈ F and any S = conv{A0, . . . , Ad} ∈ Th we have

sind(Âi|A0A1 . . . Ad) ≥ C > 0 ∀ i ∈ {0, 1, . . . , d}, (7)
where sind is defined in (2).
Theorem 1. The d-dimensional minimum angle condition and the generalized Zlámal con-
dition are equivalent.

For the proof see [2].
Using the above statements we will prove the following theorem in any dimension, gener-

alizing the result obtained in [10] for tetrahedra, but by a different argument.
Theorem 2. The d-dimensional minimum angle condition implies the d-dimensional maxi-
mum angle condition.
Proof. For a d-simplex S = A0A1 . . . Ad, the following relations between sinuses of different
angles hold

sind(Â0|A0A1 . . . Ad) = sind−1(Â0|A0A1 . . . Ad−2Ad−1)
d−1∏
j=1

sin βjd, (8)

where βjd is the dihedral angle between the facet omitting Aj and the facet omitting Ad.
Due to Theorem 1, the left-hand side in (8) is bounded by constant α0 from below.

Further, we note that all sinuses involved are positive and not greater than one, therefore
any sin βjd ≥ α0, i.e., any dihedral angle involved is bounded from π. As this argument is
valid for any vertex, the estimate is valid for any dihedral angle of S. Expanding sind−1, then
sind−2, etc. in (8), and using relevant analogues of (8) within (lower-dimensional) facets of S,
we, similarly to the above argumentation, can prove that all other dihedral angles between
lower-dimensional facets of S are bounded from above.

Remark 3. The converse statement is not true in any dimension d ≥ 2. We can illustrate this
by considering the d-simplex with the following vertices

A0 = (0, 0, 0, . . . , 0, 0),
A1 = (1, 0, 0, . . . , 0, 0),
A2 = (1, 1, 0, . . . , 0, 0),

...
Ad−1 = (1, 1, 1, . . . , 1, 0),

Ad = (1, 1, 1, . . . , 1, ε),
where ε > 0. It can be easily checked that all angles of this simplex are not greater than π

2 ,
i.e., the d-dimensional maximum angle condition is satisfied, but the d-dimensional minimum
angle condition does not hold, since by (6)

sind(Â0|A0A1 . . . Ad) ≤ sin2(Â0|A0Ad−1Ad) → 0
as ε → 0.
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[10] S. Korotov and M. Kř́ıžek: The Minimum Angle Condition Implies the Maximum
Angle Condition for Tetrahedral Finite Elements. Internat. J. Comput. Geom. Appl.
34(03n04), 81–88, 2024. doi: 10.1142/s0218195925500013.

[11] S. Korotov and J. E. Vatne: The Minimum Angle Condition for d-Simplices. Com-
put. Math. Appl. 80(2), 367–370, 2020. doi: 10.1016/j.camwa.2019.05.020.
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